## Supplementary Material

Mostafa Abdollahpur<sup>a,1</sup>, Chiara Celotto<sup>b,c</sup>, Carlos Sanchez<sup>b,c</sup>, Felix Plapppert<sup>a</sup>, Sten Östenson<sup>d</sup>, Pyotr G. Platonov<sup>e</sup>, Pablo Laguna<sup>b,c</sup>, Esther Pueyo<sup>b,c</sup>, Frida Sandberg<sup>a</sup>

<sup>a</sup>Department of Biomedical Engineering, Lund University, Lund, Sweden

<sup>b</sup> BSICoS Group, I3A and IIS-Aragón, University of Zaragoza, Spain

<sup>c</sup> CIBER - Bioingeniería, Biomateriales, y Nanomedicina (CIBER-BBN), Zaragoza, Spain

<sup>d</sup> Department of Internal Medicine and Department of Clinical Physiology, Central Hospital Kristianstad, Kristianstad, Sweden

<sup>e</sup> Department of Cardiology, Clinical Sciences and Center for Integrative Electrocardiology at Lund University (CIEL), Lund,

Sweden



Figure 1S:  $APD_{90}$  over time measured at different tissue locations in 3D simulations. Black indicates regions without ACh or Iso; red corresponds to regions with ACh only; green to regions with Iso only; and cyan to regions with both ACh and Iso.

Preprint submitted to Computers in Biology and Medicine

<sup>&</sup>lt;sup>1</sup>Mostafa Abdollahpur, email: mostafa.abdollahpur@bme.lth.se



Figure 2S: Panel a) Representative action potentials at a tissue point without ACh in the psAF case (solid line) and with 50% reduced electrical remodeling (dashed line). Panel b)  $f^s(m)$  (blue) and ACh(t) (red). Solid lines represent the standard psAF case, while dashed lines correspond to the case with 50% reduced electrical remodeling.