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Conformal prediction framework

1 Conformal prediction frameworks

Conformal Prediction (CP) is defined as a mathematical framework that can be used with any Machine
Learning (ML) model to produce reliable predictions with high probability and user-defined error
rates (Shafer & Vovk, 2008; Vovk et al., 2005). Given a set of training data D, with n instances
{(xi, yi), ..., (xn, yn)}, where xi is a feature vector and yi is the true label of the i -th sample, with K
labels in Y = [1,K], the objective is to predict the label yn+1 ∈ Y for a new sample with feature vector
xn+1. In classification problems, we test all K classes of a new instance and measure the probability
of a prediction to be the correct one for each class. To do so, we calculate the non-conformity score
αi, which is based on the underlying ML algorithm and indicates how strange an instance is compared
with other instances of the same class. A simple example of a non-conformity score is the 1-predicted
probability of the true class, otherwise called inverse probability. Based on the hypothesis that the
instances are independent and identically distributed random variables (i.i.d.), for a new instance
xn+1 we compute the non-conformity score αy

n+1 for each possible class. Finally, for each possible
label we calculate the p-value as:

p− valuey =

∑{
αi ≥ αy

n+1

}
+ 1

n+ 1
,∀i ∈ {1, .., n} (1)

p-value is used to evaluate the non-conformity score of the new instance αn+1 against all other
non-conformity scores. False predictions result in a higher αn+1 than the rest non-conformity scores
of the training set. In this case, we get a low p-value, while in cases of correct prediction, we expect
a higher p-value. So, for a dataset that satisfies the i.i.d. assumption, every p-value in Eq. 1 has the
following property validity guarantee:

P (p− valuey ≤ ϵ) ≤ ϵ (2)

where, ϵ is the user-defined significance level (or target probability error). The statement, P (p −
valuey ≤ϵ), expresses the probability P that the p-value, derived from a set of i.i.d. instances, falls
below or equals the user-defined significance level ϵ. This probability is constrained by the property in
Eq. 2, signifying that the likelihood of obtaining a p-value less than or equal to ϵ is itself limited by ϵ.
In practical terms, this encapsulates the assurance that, under the assumption of i.i.d. instances, the
probability of observing a p-value leading to the rejection of the null hypothesis does not exceed the
chosen significance level. Consequently, we may output a set of possible predictions and construct the
prediction region Cϵ, as follows:

Cϵ = {y ∈ Y |p− valuey ≥ ϵ} (3)

Because of the property in Eq. 2, the probability that each set of predictions does not contain the
correct class will be less than or equal to ϵ, so we limit the error rate to less than or equal to ϵ. In
a binary classification problem with a positive and a negative class there are four possible outcomes
for a conformal prediction i.e., positive, negative, both classes (positive and negative), and no class
assignment (empty class). In each case, the classes are included in the prediction region (Eq. 3), when
we are confident with the desired level. The “empty” label indicates that the sample lies outside the
range where the model can make reliable predictions. In other words, the model cannot assign any class
with the user-defined required confidence level, signifying that the sample is beyond the boundaries of
the model’s applicability. Consequently, the classification decision needs to be determined, by other in
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silico methods and subsequently integrated into an enriched model. This step is useful for expanding
the model’s applicability domain (Alvarsson et al., 2021).

In a regression analysis framework, CP transforms point predictions from a model f̂ trained on D
data with n instances, to intervals which contain the true value with a level of guarantee defined by
the user. In this case, to compute the non-conformity scores for every sample in the training set, we
measure how different the observed yi is from the model prediction f̂(xi). A simple measure to calculate

non-conformity is the absolute residual: αi = |yi − f̂(xi)|. Given ϵ the user-defined significance level,
we calculate the Q1−ϵ quantile of the scores as:

Q1−ϵ =
(1− ϵ)(n+ 1)

n

For a new input xn+1, the prediction interval is defined as follows:

[L(xn+1), U(xn+1)] = [f̂(xn+1)−Q1−ϵ, f̂(xn+1) +Q1−ϵ]

where, L is the lower limit and U the upper limit for the new input xn+1. The resulted prediction
interval [L(xn+1), U(xn+1)], assuming data D are exchangeable, satisfies the property of marginal
coverage:

P (yn+1 ∈ [L(xn+1), U(xn+1)]) ≥ 1− ϵ

In other words, the probability that the predicted value is included in the prediction interval is
bigger or equal to the user-defined level of confidence.

1.1 Transductive conformal prediction

CP was originally used in the transductive or full version (Gammerman & Vovk, 2007; Vovk et al.,
2005). The transductive CP (TCP) uses all the available data to train the model and thus, we can
produce more accurate and informative predictions. After choosing the appropriate non-conformity
function, we add the features of a new instance xn+1, and assuming its class yn+1, we retrain the model
K times, where K is the number of all the possible classes for xn+1. In a binary classification problem,
the model will be trained 2*Z times for each class, with Z being the number of points in the test set.
Then, for these two new training sets, we apply the non-conformity measure, we compute the p-values
(Eq. 1) and finally, we check whether the features (xn+1) of an instance in the test set “conforms”
to the predictions of the training set and leads to decisions for the creation of the prediction region.
TCP is a suitable method for analyzing small data sets as it works as an online framework. For larger
datasets more computationally efficient methods should be selected e.g., inductive CP.

1.2 Inductive conformal prediction

Inductive CP (ICP) is the most popular CP approach. TCP has high a computational cost and may
not be suitable for certain applications in genomic medicine. For example, multi-omics analyses usually
involve large datasets due to the sheer size, complexity, and variability of the genomic data and the
technologies that are used to produce it. To deal with this issue ICP trains the basic algorithm only
once (Papadopoulos, 2008) by splitting the training set n into two smaller sets, a training set with
m < n and a calibration set with n −m instances. The training set is used to create the “prediction
region” and the instances in the calibration set are exclusively used to calculate the p-value of each
possible class of a new test instance X. No matter which CP method we use, ICP will result in
unbiased predictions. The efficiency of an ICP model depends on many factors such as, how large
and well-constructed (i.i.d.) the dataset is, how effective is the underlying ML algorithm, and which
non-conformity measure is employed.
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