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1. The polar coordinate representation of eqn. 1(c) is:  
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where 𝑟 and 𝜃 are the state variables, (√
µ

𝛽
) is the amplitude of oscillation and β is a bifurcation 

parameter. μ = 1, β = −20. 𝐴𝑖𝑗, is the magnitude of complex coupling coefficient, (𝐴𝑖𝑗 ≪ 1), 𝜃𝑖𝑗 is 

angle of complex coupling coefficient, ∅𝑖  and 𝜔𝑖 and are the ith oscillator’s phase and intrinsic 

frequency respectively. 

2. Github link (Source Code) 

I have added the source code of our model, which will help during reproducibility or future work. 

Link: https://github.com/sayanGh-lab/Oscillatory-Generative-model 

https://github.com/sayanGh-lab/Oscillatory-Generative-model
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3. Hidden layer equation 

(learning rates:   𝜂ℎ  =0.001; 𝜂𝑜  =0.001). 

𝑟�̇� = (𝜇 + 𝛽𝑟𝑖
2)𝑟𝑖 + ∑ 𝐴𝑖𝑗𝑟
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Convert polar coordinate equation (r and θ ) to complex domain according to (𝑧 = 𝑟𝑒𝑖𝜃) 

Zr = real(rarr2 ∗ ei∗tharr2 )            (7) 

Zi = imag(rarr2 ∗ ei∗tharr2 )        (8) 

Z = Zr + iZi                    (8a) 

Where Z is the complex domain activation of hopf oscillator. Zr is the real part of oscillator activation, 

Zi is the imaginary part of oscillator activation. 

Forward propagation: 

Wlk
f1 = Wlk,R

f1 + iWlk,I
f1             (9) 

Where Wlk
f1  is the feedforward weight between oscillatory layer to 1st hidden layer. These feedforward 

weights are initialized in complex domain. It has both real (Wlk,R
f1 ) and imaginary part (Wlk,I

f1 ). 

Wml
f2 = Wml,R

f2 + iWml,I
f2             (10) 

Where Wml
f2   is the feedforward weight between 1st hidden layer to output layer. These feedforward 

weights are initialized in complex domain. It has both real (Wml,R
f2 ) and imaginary part (Wml,I

f2 ). 

 

nl
Hf = ∑ Wlk

f1Zkk = ∑ (Wlk,R
f1 Zk,R − Wlk,I

f1 Zk,I)k + i ∑ (Wlk,I
f1 Zk,R + Wlk,R

f1 Zk,I)k      (11) 

Where nl
Hf is the product of complex oscillatory activation (Zk) and Wlk

f1.(eqn. 12) It has both 

real(nl,R
Hf = ∑ (Wlk,R

f1 Zk,R − Wlk,I
f1 Zk,I)k ) and imaginary part (nl,I

Hf = ∑ (Wlk,I
f1 Zk,R + Wlk,R

f1 Zk,I)k ). 

nl
Hf = nl,R

Hf + inl,I
Hf                (12) 
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Both nl,R
Hf  and nl,I

Hf are passed through tanh function separatedly. Real part of sigmoid activation (Xl,R
Hf =

fR
h(nl,R

Hf ): 𝑟𝑒𝑎𝑙 𝑝𝑎𝑟𝑡 𝑜𝑓 1𝑠𝑡 tanh 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 ) and (Xl,I
Hf = fI

h(nl,I
Hf)) (: imaginary part of 1st tanh 

activation) and Xl
Hf is the total activation of 1st hidden layer.(eqn. 13 & eqn, 14). 

Xl
Hf = fR

h(nl,R
Hf ) + ifI

h(nl,I
Hf)            (13) 

Xl
Hf = Xl,R

Hf + iXl,I
Hf             (14) 

Where nm
o  is the product of 1st hidden layer activation (Xl

Hf) and Wml
f2 .(where Wml

f2  is the 1st hidden to 

output node weight, Wml,R
f2  , Wml,I

f2   are the real and imaginary part of Wml
f2 )(eqn. 15) It has both 

real(nm,R
o = ∑ (Wml,R

f2 Xl,R
Hf − Wml,I

f2 Xl,I
Hf)l ) and imaginary part (nm,I

o = ∑ (Wml,I
f2 Xl,R

Hf + Wml,R
f2 Xl,I

Hf)l ). 

 

nm
o = ∑ Wml

f2 Xl
Hf

l = ∑ (Wml,R
f2 Xl,R

Hf − Wml,I
f2 Xl,I

Hf)l + i ∑ (Wml,I
f2 Xl,R

Hf + Wml,R
f2 Xl,I

Hf)l       (15) 

nm
o = nm,R

o + inm,I
o               (16) 

At output node (eqn. 17) we consider the only real part of nm
o , which is nm,R

o . And also at output layer 

we have tanh neuron. 

Ym = fR
o(nm,R

o )                    (17) 

Backpropagation: The complex domain backpropagation has been adapted from [1]. 

 

Loss at every time step, 

L(t) =
1

2
(Om(t) − Ym(t))2              (18) 

Where , Om(t) is the desired (target) signal. 

∂L

∂Wml,R
f2 = (Om,R − Ym,R)fR

o′Xl,R
Hf                (19) 

∂L(t)

∂Wml,I
f2 = (Om,R − Ym,R)fR

o′Xm,I
Hf                (20) 

∂L(t)

∂Wlk,R
f1 = (−1) ∑ (Om,R − Ym,R)fR

o′
(Wml,R

f2 fR
h′

Zk,R − Wml,I
f2 fI

h′
Zk,I)m        (21) 

∂L(t)

∂Wlk,I
f1 = ∑ (Om,R − Ym,R)fR

o′
(Wml,R

f2 fR
h′

Zk,I + Wml,I
f2 fI

h′
Zk,R)m              (22) 

Rewrite the Activation function: 

Sigmoidal activation function: 
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𝒇(x, ak, ck) =
1

1+exp(−ak(x−bk))                 (23) 

Put , ak = 0.5, bk = 0, 

2 f(x, ak, ck) − 1 =
1−exp−0.5x

1+exp0.5x = tanh (x/2)            (24) 

4. Result of 1st phase of Training 

Time series reconstruction with real alpha value(0.2) and corresponding power spectrum density is 

shown in Fig. 1(a). And most importantly how coupled hopf oscillatory network adapt signal 

frequencies is shown in 1(b). 

 

Supplementary Figure  1: (a) Time series reconstruction (training), (b) learning the intrinsic 

frequencies. Yd(t)=desired EEG, Yp (t)= reconstructed EEG, Pr=power spectrum of reconstructed 

signal, Pd=power spectrum of desired signal 

5. Result of 2nd stage of training 

Time series reconstruction with complex alpha value and corresponding power spectrum density is 

shown in Fig. 2(a-d). Where trained oscillator frequencies are taken from 1st stage of training. 
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Supplementary Figure 2: (a),(d)-  Time series of reconstructed and desired signal for af3 (wake) and 

cp3 (NREM N3) channels, (b),(c)-RMSE variation over training epochs, (c),(f)-power spectrum of 

desired and reconstructed signal, 𝑌𝑑(𝑡) = desired EEG, 𝑌𝑝(𝑡) = reconstructed EEG, 𝑃𝑑  = desired EEG 

power spectra, 𝑃𝑟 = reconstructed EEG power spectra. 

6. Result after inserting hidden layer 

Training result after applying hidden layer:  

 

 

Supplementary Figure 3: (a) (–) - Time series of reconstructed and desired signals for af3 (wake) and 

cp3 (NREM N3) channel during training, (©(e)-RMSE over training, (c), (f)-power spectrum of desired 

and reconstructed signal, 𝑌𝑑(𝑡) = desired EEG, 𝑌𝑝(𝑡) = reconstructed EEG, 𝑃𝑑 = desired EEG power 

spectra. 𝑃𝑟=reconstructed EEG power spectra. 
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Comparison between reconstruction accuracy (during training) between without hidden layer and with 

hidden layer. 

 

 

 

Supplementary Figure 4: (a)- ‘CP3’,(b)- ’CP4’ bar plot of RMSE error(Training RMSE) comparing 

with ‘without hidden layer’ & ‘with hidden layer’ of four different electrodes for all five sleep stages. 

 

7. Effect of the hidden layer size  

In the previous section, we observed enhancement of model performance after adding additional a 

hidden layer which consists 100 sigmoidal neurons. Here we vary the number of hidden neurons in the 

hidden layer and compare the corresponding reconstruction RMSE (fig. 5) during training. As 

expected, increasing the hidden layer size reduced RMSE over the range of hidden layer sizes shown 

in fig. 13. However, further increase might cause overfitting and an increase in RMSE.  

 

Supplementary Figure 5: Comparing the effect of hidden layer size to reconstruct 56 EEG electrodes 

(during training) 
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8. Phase locking value (PLV) 

The Functional matrix(FC) represents as a influential tool for understanding brain dynamics and brain 

networks [5-6]. Analysing the FC of model predicted signal and empirical signal is a promising 

benchmark to evaluate model performances [7-8]. 

PLV measures the instantaneous phase difference, calculated using the Hilbert transform, between two 

narrow band signals coming from two channels. The range of the PLV value is between [0, 1], where 

0 means no phase synchrony and 1 means perfectly synchronized [2]. 

PLV is calculated using  

  𝑃𝐿𝑉(𝑖, 𝑘) = |
1

𝑁
∑ 𝑒𝑖(𝛥Ø)𝑁

𝑡=1 |                     (25) 

For N time points, it calculates the average of N unit phasors that represent phase differences. 

   𝛥Ø = Ø1 − Ø2                  (26) 

After calculating the phase, computation of PLV is done by using eqn. 4(a). Here we estimate Phase 

Locking Value (PLV) of experimental EEG data as well as model predicted EEG data.  
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Supplementary Fig 6: (a): FCM for experimental EEG Data, (b): FCM of network predicted signal 

using ‘without hidden layer network ‘, (d) FCM of network predicted signal using ‘with hidden layer 

network’. 

 

 

 

 

 

 

 

 

 

 

9. Generation of EEG Data 

𝑟�̇� = (𝜇 + 𝛽𝑟𝑖
2)𝑟𝑖 + ∑ 𝐴𝑖𝑗𝑟
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𝑟
𝑗

𝜔𝑖
𝜔𝑗

𝑟𝑖

𝑁
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+
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)                   (28) 
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a 

 

b 

 

c 

Supplementary Figure 7 (a-c): -Empirical EEG Data and training and testing (model reconstructed and 

model predicted) of five sleep stages (a: wake; b: NREM N2, c: REM). The blue line shows actual 
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EEG Data (Yd(t)) and orange line (Yp(t)) shows model reconstructed (initial 10 sec) and then predicted 

output (next 5 sec). Where initial 10 sec data are reconstructed and 5 sec data are predicted from model. 

 

 

a 
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b 
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c 

Supplementary Figure 8(a-c): Power spectral density curves of experimental signal and model 

predicted signal for a: wake; b: NREM N2, c: REM, the blue line shows power spectrum of actual EEG 

Data (Pd) and orange line (Pp) shows model predicted power spectrum. 

 

10. Spatial Distribution of Oscillators 

(i) Rectangular Grid: 

Here we use 10 sec data of 8 electrodes from frontal and central lobes shown in fig 6(a-b). The signals 

from the 8 electrodes selected are modeled using the architecture described in section 2.8. Since the 

mapping between the oscillators and the electrodes is determined by the nearest neighbor criterion 

(eqn. 4a), it is expected that nearby electrodes are likely to share some oscillators. Training of the 

network proceeds as described below.  

The network associated with each individual electrode - the hidden layer from which the electrode 

receives inputs, and the set of oscillators from which that hidden layer receives inputs – is trained 

separately (fig. 7). Here all 8 electrodes are selected, which form a typical rectangular grid, and the 

location of the electrodes in the Cartesian coordinate system is specified in Table (1). Training of the 

network associated with each electrode is done successively, from electrode to the next.  Training 

begins with electrode C3 and covers all the electrode following the dotted arrows in fig. 3b. 

Channel  Name X Y Z 

C1 10 10 4 

Cz 20 10 4 

C2 30 10 4 

Fc2 30 10 4 

Fc1 10 10 4 

F1 10 10 4 

Fz 20 20 4 
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F2 30 20 4 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 9: a)3-layer cortical surface; b) Spatial map of Electrodes; c) Dimension of 

Rectangular Grid (d) The number of oscillators allocated to each channel; e) shared oscillators among 

the pair of channel; f) RMSE between desired and predicted signal presented for 8 channels in case of 

cortical layer with rectangular slab geometry. 

Table 1: Location of 8 channel electrodes 
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We create a three-layer cortical surface with a rectangular geometry of dimensions (Fig. 3a and 3c). 

Each layer consists of 18 X 18 = 324 columns, and each column contains one oscillator. Hence totally 

18 X 18 X 3 = 972 oscillators are present in the three layers. The layer of electrodes is placed on top 

of the 3 layered cortical surface. Next, we calculate the number of oscillators allocated to each electrode 

using eqn. (6a) with a distance threshold (𝜉1 = 7.5). All the oscillators in the cortical layer, whose 

distance from the individual electrode is less than (𝜉1), are allocated to that particular electrode. The 

number of oscillators allotted to various electrode are shown in Fig 3 d. Also, there is a separate hidden 

layer (consisting of 15 sigmoidal neurons) associated with each electrode. Note that channels that are 

close to each other in the electrode layer are likely to have more shared oscillators. Fig. 3 (e) provides 

the information about the number of shared oscillators among pairs of electrodes.   

There is another threshold distance among oscillators (𝜉2 = 1), which determines the lateral 

connectivity among the oscillators using eqn. (4b). Only oscillator pairs whose mutual distance is less 

than 𝜉2  are connected.  The network thus designed, - with the oscillators connected among themselves 

over a neighborhood,  and connected to the channels within a distance, with a separate hidden layer 

allotted to each electrode,  -  is trained on 8 channel EEG data. 

11. Hurst Component 

R/S method has been applied to estimate the Hurst exponent of a time series, which measures the long-

range correlation. This measure has been broadly used in clinical EEG studies. Steps for the calculation 

of Hurst components are adopted from [3]. 

Finally, the Hurst exponent is calculated on the rescaled range [24] analysis on the time window of 

2500 data points corresponding to next 5 sec. We have calculated the mean error and standard deviation 

of the difference between the model predicted signal’s Hurst component and the experimental EEG 

signal’s Hurst component. We found with our proposed network NREM N2 has the smallest error 

(Table 2).. 

A. Hurst component prediction mean error: 

Sleep Stages Mean hurst component error 

Wake 0.072±0.0061 

NREM N1 0.014+-0.0134 

NREM N2 0.0088±0.0108 

NREM N3 0.0102±0.0075 

REM 0.033±0.032 
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Table 2: Hurst component between predicted data and actual EEG for 5 sleep stages between model 

predicted and empirical EEG. The results were obtained by averaging over 56 channels for each sleep 

stage. 

 

 Error bar plot of Hurst exponent between our proposed model and Nagual et al. 

 

A      B 

 

C       D 

Supplementary Figure 10: EEG Hurst exponent distribution during prediction proposed by Nguyen et 

al (left bar in each figure), and our proposed coupled hopf network (right bar plot in each figure). Bar 
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plot is calculated using hurst component (HE) prediction error for all 5 set of EEG((i)-Wake, (ii)- 

NREM N1, (iii)-NREM N2, (iv)-NREM N3,  (v)-REM) for 4 different network proposed by Nguyen 

et al. Similarly, HE prediction calculated from our proposed model for all 5 sleep stages (7. A-

comparison between Random HR and Proposed; 7.B--comparison between small world HR and 

Proposed; 7.C- -comparison between Random Kuramoto and Proposed; 7.D--comparison between 

small world Kuramoto and Proposed).  

12. Higuchi fractal dimension (HFD) 

We have compared the signal complexity in terms of Higuchi fractal dimension (HFD) [4] which is 

calculated from model predicted (simulated) and empirical EEG Data. The HFD was calculated from 

model predicted dataset during wake (mean: 1.1561, SD: 0.1104) and NREM N1(mean: 1.0647, SD: 

0.1405). Similarly, the HFD values are calculated from empirical datasets during wake (mean: 1.2085, 

SD: 0.1301) and NREM N1 (mean: 1.1594, SD: 0.0913). The goal of this analysis to compare HFD of 

model predicted wake with the HFD of model predicted NREM N1. To this end, ANOVA was 

conducted and the results (F: 12.19, p< 0.02) showed that complexity was significantly higher in Wake. 

A similar study was conducted with empirical data showing the same data trend (F=6.93, p<0.02). By 

using this following statistical analysis, we can say that the model shows a similar behaviour like actual 

EEG.  

13. Statistical Test on Power spectrum density 

Univariate statistical t-test was done to identify the relative significance of power spectral density 

between the EEG signal predicted by the model and empirical EEG Data. 

Sleep stages Predicted 

power 

spectrum(avg.) 

Predicted 

power 

spectrum(std) 

Empirical 

power 

spectrum(avg) 

Empirical 

power 

spectrum(std) 

p-value 

Wake 43.1617 33.7570 50.5943 43.1744 0.137 

NREM n1 45.704 40.82 49.34 35.61 0.376 

NREM n2 44.10 33.13 54.67 23.68 0.144 

NREM n3 42.86 43.98 43.98 56.001 0.615 

REM 37.66 30.23 53.69 37.07 0.0003 

Table 3: Statistical significance(p-values) of power spectral densities when comparing model predicted 

EEG with actual EEG 
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According to the result presented in the above table (table 2) Wake, NREM N1, NREM N2, NREM 

N3 are not statistically significant. Hence in these 4 stages of sleep model prediction in terms of power 

spectral density is more accurate and matches well with the experimental EEG’s power spectrum. 

However, in case of REM stage the difference in power spectrum density is statistically significant (p 

value < 0.05). 

14. Spherical shell model:  

Cartesian coordinate system: 

Channel Name X(mm) Y(mm) Z(mm) 

F1 60.738 0 59.463 

FZ 59.913 -26.042 54.381 

F2 59.874 -26.025 54.431 

Table 4: Sample location in Cartesian coordinate system from EEGLAB 

Channel Name Total Oscillators 

F1 116 

Fz 132 

F2 129 

FC2 186 

FC1 177 

C1 113 

Cz 219 
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           Table 5: The number of oscillators allotted to  each elctrode 

 

Supplementary Figure 11 (d-f): Time series of reconstructed signal and the desired signal for C4 

channel among 8 channels in a spherical shell, during training stage. (e)- RMSE error w.r.t. training 

epochs, (f)-power spectrum of desired and reconstructed signal, 𝑌𝑑(𝑡) =desired EEG, 𝑌𝑝(𝑡)=predicted 

EEG, 𝑃𝑑=desired EEG power. 

C2 149 
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Supplementary Figure 12: RMSE between desired and reconstructed during training signals: 8 

channels and Spherical shell geometry of the cortical layer. 

15. Detail description on BONN Dataset 

This dataset was recorded from the Department of Epileptology at the University of Bonn, Germany 

[10]. There are 5 sets of EEG data (A-E), containing 100 single channel EEGs of duration 23.6 sec, 

recorded at 173.61 Hz sampling frequency. The recorded EEG data are preprocessed by bandpass 

filtering (0.53 to 70 Hz). There are 4097 samples in each dataset. Sets A and B were collected on five 

healthy volunteers, who were relaxed in an awake state with eyes open (A) and eyes closed (B), 

respectively. From five patients, sets C and D were recorded during the seizure-free interval, and set E 

was recorded during seizure occurrence. In this present study, we have done six different combinations 

of classification studies. 

16. Comparison with Bandyopadhyay et al. [9] 

 

Supplementary Table 5: comparison with Bandyopadhyay et al [9] 

 

 

Bandyopadhyay et al[9] Proposed work 

Type of model Hopf oscillator with hidden 

layer and two-stage training 

Hopf oscillator with hidden layer and two-

stage training 

Signal used in the 

model 

fMRI with 160 ROI Sleep EEG of different sleep stages-62 

channels 
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Lateral 

connection/Method 

Structural connectivity was 

used.  

No such structural connectivity was used. 

Here based on the spherical/rectangular 

model, Individual electrodes have a bunch of 

oscillators, and nearby two electrodes have a 

few common oscillators also, their learned 

frequency and phase have been used. We 

introduce spherical geometry based on 10-20 

electrode coordinate system extracted from 

EEGLab. 

 

Main Result The effect of information loss 

due to structural connectivity 

damage due to some disease 

conditions has been shown 

Future prediction of the signal has been shown 

after training. And all the properties (time 

series, Hurst component, and power spectrum) 

have been explored. 

More interestingly this work shows the 

predicted signal (during testing) follows real 

EEG signal (for different sleep stages). See 

statistical test. 

Analysis matrix Correlation coefficient 

between empirical and 

simulated signals has been 

calculated 

1. MAE error 

2. Power spectrum error 

3. Hurst component error 

between empirical and simulated signal has 

been calculated 

key Findings The effect of loss of structural 

information on functional 

information due to dieseases 

condition in terms of 

correlation coefcient 

estimated on simulated and 

empirical FCs. 

 

Can be useful fo synthetic EEG generation. 

The predicted signal has good agreement with 

actual EEG with respect to power spectrum, 

Hurst exponent, Sensitivity analysis- We have 

shown at which value of tuning parameters (µ, 

𝛇w, 𝜷), the network performs optimally. 
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