APPENDIX
A. BNC-SMA Adapter Phase Shift

To calibrate a VNA with SMA cables but a BNC cali-
bration kit, appropriate BNC-SMA adapters must be at-
tached to the cables coming off port 1 and port 2 of the
VNA. After calibrating the VNA with the BNC calibra-
tion kit, the BNC-SMA adapters are removed from the
SMA cables, shortening the calibrated line length and
adding a phase shift. The adapters are assumed to be
ideal transmission line lengths, modeled by Eq. 1, where
a non-zero length causes a phase shift (¢). Since the ideal
phase for a calibrated line is zero, the unwanted phase
shift is compensated by subtracting it from all subsequent
2-port measurements. This effectively shifts the calibra-
tion plane back to the SMA connections. The phase shift
is calculated by taking a 2-port measurement without the
BNC-SMA adapters attached and leaving the cables un-
connected (open). The phaseshift for port 1 (¢;) and
port 2 (¢2) is half the measured phase of S1; and Saa,
respectively.
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The S-parameters are converted to T-parameters, us-

ing Eq. 11. The adapters, on either end, are cascaded to

determine the measured T-parameter (7”) that the VNA
would see, Eq. 2.
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From this equation, the true T-parameters (T) are cal-
culated by inverting the adapter matrices and moving
them to the left side. The the true T-parameters are
converted back to the true S-parameters using Equation
12. The resulting phases shifts, Eq. 3, can be applied to
future S-parameter measurements (S’) to determine the

true S-parameters. The process should be repeated for
all subsequent VNA calibrations.
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B. Measuring a Cable Propagation Constant

If the stem attenuation coefficient or phase constant
are unknown, then their values can be measured from
a length (1) of the same type of cable. The 2-port S-
parameters of the cable are measured with a calibrated
VNA. The S-parameters of the transmission line are as-
sumed to be defined by Eq. 4, so that So; = e
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The propagation constant () is modeled using Eq. 5,
with the circuit elements (resistance (R), inductance (L),
capacitance (C), and shunt conductance (G)) per unit
length.!

vy = V(R +iwL)(G + iwC) (5)

Assuming that the cable is a “low-loss line” (R <« wL
and G < w(C), then the propagation constant is reduced
to Eq. 6, using a Taylor Expansion.
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Assuming that the center conductor is well insulated
by the cable dielectric, the shunt conductance is ignored
(R > G). In addition, resistance is assumed to be dom-
inated by the finite conductivity of the metal in the ca-
ble’s conductors, making the resistance (R o y/w). The
phase constant (8) and attenuation coefficient («) are
then defined by Eq. 7 and Eq. 8, where R,, L, and C
are constants.
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The attenuation coefficient is fitted to the natural log
of the measured magnitude, Eq. 9, and the phase con-
stant is fitted to the measured phase angle, Eq. 10. For
proper linear fitting of 8 over a long cable, the phase
should be “unwrapped,” where the phase accumulates to
higher values rather than being bounded by —7 and T,
as demonstrated in Figure 1.
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FIG. 1. The measured and curve-fitted S21 of a 6 ft long RG-
316 cable. The top two plots are Eq. 9 and Eq. 10. The
bottom two plots are the measured S-parameters and Eq. 4
using the curve-fitted constants.

C. Parameter Conversions

Eq. 11 converts the S-parameters to T—parameters.z’3
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Eq. 12 converts T-parameters back to S-parameters.
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Eq. 13 calculates the self-impedances at each antenna
(Z11 and Za2) and the mutual-impedance (Zs; and Z2)
between the antennas, from the S-parameters. The char-
acteristic impedance (Z,) is the reference impedance,
characteristic of the transmission line or VNA. In this
work, the characteristic impedance is 50 €2, except for
the differential mode along the stems and dipoles. Then
the characteristic impedance is 100 Q.34
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Eq. 14 converts the Z-parameters back to the S-
parameters.
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