# Magnetic Particle Imaging Resolution needed for Magnetic Hyperthermia Treatment Planning: A Sensitivity Analysis

Shreeniket Pawar<sup>1, ‡</sup>, Nageshwar Arepally<sup>1, ‡</sup>, Hayden Carlton<sup>2</sup>, Joshua Vanname<sup>1</sup>, Robert Ivkov<sup>2-5,\*†</sup> and Anilchandra Attaluri<sup>1,†</sup>

- Department of Mechanical Engineering, School of Science, Engineering, and Technology, The Pennsylvania State University Harrisburg, Harrisburg, PA 17057, USA
- 2. Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- 3. Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- 4. Department of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- \* Correspondence: <u>rivkov1@jhmi.edu</u> (R.I.)
- ‡ Equal contributions: Joint first authors
- † Equal contributions: Joint senior authors.

#### **Supplementary Information:**

# Verification and Validation of the COMSOL Multiphysics solver for Magnetic Nanoparticle Hyperthermia:

The solver was verified and validated against the analytical and experimental solution given by Goldenberg et. al. and Andra et. al. [1,2]. The results show that the numerical solution agrees with the analytical and experimental results.



Figure S 1: Comparison between numerical, analytical and experimental results. The COMSOL Multiphysics yields results that agree to the experimental and analytical solution.

#### Calibration Curve for the Volumetric Heat Source from Magnetic Field:

The calibration curve for the volumetric heat source obtained from the magnetic field, mass of

MION, MPI imaging and concentration of MION is shown in Figure S 2.



Figure S 2: a. Calibration curve for the mean voxel value obtained from concentration of MION from the MPI scanner.

#### **Performance Metrics:**

The performance metrics for the sensitivity analysis of the voxel resolution for the three distributions, that is, uniform, Gaussian, and *in vivo*, for the SLP's 300-600 [W/g] are listed in Table S 1.

|       |    |   | LVD [voxel/mm] |       |       |       |       |       |       |       |
|-------|----|---|----------------|-------|-------|-------|-------|-------|-------|-------|
|       |    |   | 4.06           | 3.34  | 2.71  | 1.99  | 1.18  | 0.81  | 0.54  | 0.36  |
|       |    | Α | 0.75           | 1.02  | 1.37  | 1.70  | 2.07  | 2.18  | 2.28  | 2.36  |
|       | D1 | В | 2.93           | 4.14  | 5.78  | 7.23  | 8.54  | 9.00  | 9.28  | 9.60  |
|       | DI | С | 3.59           | 5.15  | 7.79  | 10.02 | 12.13 | 12.81 | 13.26 | 13.34 |
|       |    | D | 0.00           | 0.00  | 1.66  | 4.36  | 7.55  | 8.73  | 9.65  | 10.62 |
|       | D2 | Α | 0.80           | 1.06  | 1.39  | 1.70  | 2.01  | 2.11  | 2.14  | 2.26  |
| 300   |    | В | 1.80           | 2.39  | 3.15  | 3.87  | 4.62  | 4.85  | 4.93  | 5.21  |
| [W/g] |    | С | 2.14           | 2.97  | 4.11  | 5.24  | 6.48  | 6.87  | 7.01  | 7.49  |
|       |    | D | 0.00           | 0.00  | 0.00  | 0.00  | 0.00  | 0.53  | 0.96  | 2.76  |
|       |    | Α | 0.79           | 1.18  | 1.41  | 1.70  | 2.12  | 2.24  | 2.28  | 2.42  |
|       | D2 | В | 3.57           | 5.51  | 6.65  | 8.38  | 10.22 | 10.77 | 10.97 | 11.63 |
|       | D3 | С | 4.38           | 7.10  | 8.77  | 11.33 | 13.99 | 14.78 | 15.06 | 15.99 |
|       |    | D | 0.00           | 0.67  | 1.99  | 4.24  | 7.03  | 7.95  | 8.27  | 9.30  |
|       |    | Α | 0.98           | 1.34  | 1.86  | 2.40  | 3.03  | 3.23  | 3.40  | 3.54  |
|       | D1 | В | 3.87           | 5.55  | 8.02  | 10.29 | 12.40 | 13.12 | 13.58 | 14.06 |
|       | DI | С | 4.90           | 7.44  | 11.29 | 14.78 | 18.02 | 19.06 | 19.77 | 20.45 |
|       |    | D | 0.00           | 1.24  | 5.95  | 11.55 | 18.30 | 20.55 | 22.45 | 24.05 |
|       |    | Α | 1.03           | 1.38  | 1.83  | 2.28  | 2.78  | 2.94  | 3.00  | 3.20  |
| 400   | D1 | В | 2.32           | 3.13  | 4.20  | 5.27  | 6.48  | 6.87  | 7.01  | 7.50  |
| [W/g] | D2 | С | 2.87           | 4.07  | 5.78  | 7.60  | 9.79  | 10.52 | 10.79 | 11.72 |
|       |    | D | 0.00           | 0.00  | 0.00  | 3.18  | 12.13 | 14.75 | 15.80 | 19.15 |
|       |    | Α | 1.03           | 1.40  | 1.92  | 2.45  | 3.07  | 3.26  | 3.34  | 3.58  |
|       | D2 | В | 4.72           | 6.59  | 9.19  | 11.78 | 14.48 | 15.29 | 15.58 | 16.54 |
|       | D3 | С | 5.99           | 8.68  | 12.52 | 16.20 | 19.98 | 21.12 | 21.53 | 22.88 |
|       |    | D | 0.06           | 1.9   | 5.46  | 9.49  | 14.69 | 16.7  | 17.75 | 20.78 |
|       | D1 | Α | 1.21           | 1.69  | 2.45  | 3.28  | 4.32  | 4.66  | 4.96  | 5.21  |
|       |    | В | 4.84           | 7.11  | 10.62 | 13.83 | 16.90 | 17.93 | 18.62 | 19.30 |
|       |    | С | 6.30           | 9.87  | 14.87 | 20.05 | 24.64 | 26.10 | 27.17 | 28.12 |
|       |    | D | 0.15           | 4.17  | 12.34 | 21.30 | 32.46 | 36.38 | 39.57 | 42.06 |
|       | D2 | Α | 1.26           | 1.71  | 2.32  | 2.98  | 3.80  | 4.09  | 4.20  | 4.59  |
| 500   |    | В | 2.85           | 3.90  | 5.37  | 6.96  | 8.93  | 9.59  | 9.84  | 10.7  |
| [W/g] |    | С | 3.65           | 5.28  | 7.77  | 10.69 | 14.45 | 15.69 | 16.15 | 17.73 |
|       |    | D | 0.00           | 0.00  | 3.86  | 15.40 | 27.31 | 31.73 | 33.07 | 39.22 |
|       | D2 | Α | 1.27           | 1.77  | 2.50  | 3.31  | 4.28  | 4.60  | 4.72  | 5.15  |
|       |    | В | 5.94           | 8.45  | 12.00 | 15.47 | 19.12 | 20.23 | 20.63 | 21.99 |
|       | 05 | С | 7.73           | 11.43 | 16.51 | 21.38 | 26.54 | 28.15 | 28.74 | 30.75 |
|       |    | D | 1.16           | 4.35  | 9.93  | 17.30 | 28.12 | 32.22 | 33.68 | 39.99 |
|       |    | Α | 1.45           | 2.09  | 3.16  | 4.42  | 6.06  | 6.64  | 7.15  | 7.58  |
|       | D1 | В | 5.86           | 8.86  | 13.52 | 17.81 | 22.00 | 23.41 | 24.40 | 25.35 |
|       |    | С | 7.84           | 12.24 | 19.61 | 25.83 | 31.94 | 33.94 | 35.47 | 36.04 |
|       |    | D | 1.54           | 7.94  | 20.06 | 33.64 | 49.97 | 55.83 | 61.84 | 66.67 |
|       | D2 | Α | 1.49           | 2.05  | 2.88  | 3.88  | 5.35  | 5.92  | 6.15  | 7.03  |
| 600   |    | В | 3.39           | 4.72  | 6.73  | 9.11  | 12.27 | 13.39 | 13.81 | 15.39 |
| [W/g] |    | С | 4.48           | 6.65  | 10.25 | 14.80 | 20.55 | 22.56 | 23.33 | 26.20 |
|       |    | D | 0.00           | 0.04  | 13.73 | 28.49 | 52.88 | 65.12 | 68.45 | 78.07 |
|       | D3 | Α | 1.53           | 2.18  | 3.20  | 4.38  | 5.96  | 6.55  | 6.78  | 7.67  |
|       |    | В | 7.24           | 10.47 | 15.01 | 19.47 | 24.36 | 25.94 | 26.53 | 28.60 |
|       | 00 | С | 9.27           | 13.83 | 20.02 | 26.20 | 33.39 | 35.80 | 36.72 | 40.02 |
|       |    | D | 2.69           | 7.44  | 15.93 | 29.54 | 53.78 | 65.43 | 68.23 | 77.28 |

Table S 1: Metrics for the sensitivity analysis of voxel resolution

A: Average  $\Delta T$  [°C] B: Maximum  $\Delta T$  [°C] C: Maximum change in temperature at 1250 [s] (after heating cycle). D: Thermal dose at 1500 [s] (at end of the simulation).

#### **Regression Parameter for the Logarithmic Curve Fitting:**

|    |           | Maximum ∆T [°C] |       | Average ∆T [°C] |      | Thermal dose [%] |       |
|----|-----------|-----------------|-------|-----------------|------|------------------|-------|
|    | SLF [W/g] | Α               | В     | Α               | В    | Α                | В     |
|    | 300       | 2.81            | 6.15  | 0.68            | 1.5  | 4.87             | 3.73  |
| D1 | 400       | 4.34            | 8.7   | 1.1             | 2.12 | 10.83            | 9.47  |
| זע | 500       | 6.18            | 11.63 | 1.74            | 2.91 | 18.47            | 17.51 |
|    | 600       | 8.33            | 14.93 | 2.67            | 3.95 | 28.23            | 27.95 |
|    | 300       | 1.43            | 3.39  | 0.61            | 1.49 | 0.76             | 0.29  |
| D2 | 400       | 2.18            | 4.64  | 0.91            | 2.01 | 8.74             | 5.27  |
|    | 500       | 3.32            | 6.19  | 1.4             | 2.67 | 17.73            | 13.02 |
|    | 600       | 5.07            | 8.2   | 2.31            | 3.59 | 35.32            | 26.79 |
| D3 | 300       | 3.29            | 7.39  | 0.67            | 1.56 | 4.12             | 3.59  |
|    | 400       | 5               | 10.14 | 1.08            | 2.16 | 8.72             | 8     |
|    | 500       | 6.77            | 13.27 | 1.64            | 2.92 | 16.42            | 15.48 |
|    | 600       | 8.96            | 16.77 | 2.58            | 3.94 | 33.07            | 29.22 |

Table S 2: Regression parameters obtained from the logarithmic fit.

#### **Required Linear Resolution of the MPI Scanner**

a. Linear regression:

Parameters obtained for the linear regression are enlisted in Table S 3 and shown in

Figure S 3.



*Figure S 3: Required linear voxel resolution from linear interpolation.* 

| Table S 3: Linear regression p | parameters and SLP | prediction for | current SLP. |
|--------------------------------|--------------------|----------------|--------------|
|--------------------------------|--------------------|----------------|--------------|

|    |                                                       | Maximum ∆T [°C] | Average $\Delta T$ [°C] | Thermal dose [%] |  |
|----|-------------------------------------------------------|-----------------|-------------------------|------------------|--|
| D1 | SLP [W/g]                                             | 384.3           | 370.53                  | 343.21           |  |
|    | a [(voxel ×g <sup>2</sup> )<br>/(mm×W <sup>2</sup> )] | 0.02            | 0.03                    | 0.04             |  |
|    | b[(voxel ×g)<br>/(mm×W)]                              | -2.78           | -5.63                   | -10.77           |  |
|    | $\mathbb{R}^2$                                        | 0.99            | 0.97                    | 0.99             |  |
|    | SLP [W/g]                                             | 378.7           | 379.21                  | -                |  |
| D2 | a [(voxel ×g <sup>2</sup> )<br>/(mm×W <sup>2</sup> )] | 0.02            | 0.02                    | -                |  |
|    | b[(voxel ×g)<br>/(mm×W)]                              | -4.64           | -5.42                   | -                |  |
|    | $\mathbb{R}^2$                                        | 0.97            | 0.94                    |                  |  |
| D3 | SLP [W/g]                                             | 392.74          | 371.61                  | 350.52           |  |
|    | a [(voxel ×g <sup>2</sup> )<br>/(mm×W <sup>2</sup> )] | 0.02            | 0.03                    | 0.06             |  |
|    | b[(voxel ×g)<br>/(mm×W)]                              | -2.02           | -5.46                   | -17.71           |  |
|    | $\mathbb{R}^2$                                        | 1               | 0.97                    | 0.92             |  |

### b. Quadratic regression

Parameters obtained for the linear regression are enlisted in Table S 4.

Table S 4: Quadratic regression parameters and SLP prediction for current SLP.

|    |                                                                        | Maximum ∆T [°C] | Average ∆T [°C] | Thermal dose [%] |
|----|------------------------------------------------------------------------|-----------------|-----------------|------------------|
| D1 | SLP [W/g]                                                              | 391.98          | 390.03          | 345.02           |
|    | a [(voxel ×g <sup>2</sup> )<br>/(mm×W <sup>2</sup> )]                  | 0               | 5.30e-5         | 5.29e-5          |
|    | b[(voxel ×g)<br>/(mm×W)]                                               | 0               | -0.02           | 0                |
|    | c [voxel /mm]                                                          | 0.07            | 4.61            | -0.72            |
|    | $\mathbb{R}^2$                                                         | 1               | 1               | 1                |
|    | SLP [W/g]                                                              | 399.45          | 408.69          | -                |
| D2 | a [(voxel $\times$ g <sup>2</sup> )<br>/(mm $\times$ W <sup>2</sup> )] | 4.79e-5         | 6.83e-5         | -                |
|    | b[(voxel ×g)<br>/(mm×W)]                                               | -0.02           | -0.04           | -                |
|    | c [voxel /mm]                                                          | 4.46            | 7.55            | -                |
|    | $\mathbb{R}^2$                                                         | 1               | 1               | -                |
| D3 | SLP [W/g]                                                              | 399.17          | 387.33          | 369.92           |
|    | a [(voxel ×g <sup>2</sup> )<br>/(mm×W <sup>2</sup> )]                  | 1.00e-5         | 5.13e-5         | 1.98e-4          |
|    | b[(voxel ×g)<br>/(mm×W)]                                               | 0.01            | -0.02           | -0.12            |
|    | c [voxel /mm]                                                          | -0.11           | 4.11            | 19.9             |
|    | $R^2$                                                                  | 1               | 1               | 1                |

#### Matlab Code

```
% Last Updated 12/2/2022 at 7:00 p.m.
% Reference Forum
% https://www.mathworks.com/matlabcentral/answers/892652-anybody-help-me-by-
providing-matlab-code-for-the-three-dimensional-histograms#answer 863405
% -----<del>-</del>____
_____
clc; close all; clear all;
% -----
_____
% Progress Bar for Script Completion
w = waitbar(0, 'Please Wait...');
% -----
                       _____
  _____
% Inputs
tic
% Import Data & Determine Voxel Count
data= readmatrix('Scaled_MNP.txt');
                          _____
% -----
_____
% Main Function
% 46 for Finsish to prevent points from being outside voxels
start=5;
finish=46; % 54 gives ~0.253 delta x on mesh
for iii=start:1:finish
   if iii==47 || iii==48
      continue
   end
% Max Number of Voxels along each axis
s=iii;
labelcolors = [0 0 .4; 0 .4 0; .4 0 0; 0 0 .6; 0 .6 0; 6 0 0; 0 0 .8; 0 0 .1; 0 .1
0;.1 0 0;0 0 .3;
          0.30;.300;00.9;0.90;0.9.9;.900;00.5;0.50;.500;0
0.2;0.20;
           .2 0 0;0 0 1;0 1 0;0 1 1;1 0 0]; % must be rgb
x = data(:, 1);
y = data(:, 2);
z = data(:, 3);
label = data(:,4);
[groups, ID] = findgroups(label);
ngroups = length(ID);
if ngroups > size(labelcolors,1)
   error('too many groups, provide more labelcolors');
end
Nx = s; Ny = s; Nz = s;
xvox = (max(x)-min(x))/(Nx-1);
yvox = (max(y)-min(y))/(Ny-1);
zvox = (max(z)-min(z))/(Nz-1);
xidx = floor(x/xvox); xbin = xidx - min(xidx) + 1;
yidx = floor(y/yvox); ybin = yidx - min(yidx) + 1;
zidx = floor(z/zvox); zbin = zidx - min(zidx) + 1;
xq = xidx * xvox; yq = yidx * yvox; zq = zidx * zvox;
counts = accumarray([xbin(:), ybin(:), zbin(:)], 1, [Nx Ny Nz]);
```

```
occupied = counts > 0;
oind = find(occupied);
gcounts = cell(ngroups, 1);
for K = 1 : ngroups
   mask = groups == K;
   gcounts{K} = accumarray([ybin(mask), xbin(mask), zbin(mask)], 1, [Ny Nx Nz]);
end
gcounts4 = cat(4, gcounts{:});
[~, biggestgroupidx] = max(gcounts4, [], 4);
colidx = biggestgroupidx(occupied);
[ox, oy, oz] = ind2sub(size(occupied), oind);
oxq = (ox + min(xidx) - 1) * xvox;
oyq = (oy + min(yidx) - 1) * yvox;
ozq = (oz + min(zidx) - 1) * zvox;
noq = length(oxq);
rF = [1 2 3 4 1; 8 7 6 5 8; 1 4 6 7 1; 2 8 5 3 2; 1 7 8 2 1; 3 5 6 4 3]; %in
closed form
rV = [0 0 0; 1 0 0; 1 0 1; 0 0 1; 1 1 1; 0 1 1; 0 1 0; 1 1 0] .* [xvox, yvox,
zvox];
poxq = oxq(1:noq); poyq = oyq(1:noq); pozq = ozq(1:noq);
allF = repmat(rF(:,1:end-1), noq, 1) + 8*repelem((0:noq-1).', size(rF,1), 1);
allV = repelem([poxq, poyq, pozq], size(rV,1), 1) + repmat(rV, noq, 1);
[mappedV, ~, Vidx] = unique(allV, 'rows');
mappedF = Vidx(allF);
cdata = labelcolors(colidx,:);
% -----
       _____
% Plotting
% p = patch('Faces', mappedF, 'Vertices', mappedV, 'FaceVertexCData', cdata, ...
%
     'LineWidth', 0.1, 'EdgeColor', 'none', 'FaceAlpha', 0.1);
F1=figure(1);
p = patch('Faces', allF, 'Vertices', allV, 'FaceVertexCData', cdata, ...
    'LineWidth', 0.1, 'EdgeColor', 'none', 'FaceAlpha', 0.1);
colormap(labelcolors);
xlabel('x'); ylabel('y'); zlabel('z');
view(3)
hold on
plot3(data(:,1),data(:,2),data(:,3),'.b')
hold off
axis square
movegui(F1, 'west')
% % ------
  _____
% Find when Data is inside a Voxel and assign a Value to Voxel Verticies
vals_in=[];
count_in=1;
ind_in=[];
allV=[allV(:,:) zeros(length(allV(:,1)),1)];
for i=0:8:length(allV(:,1)) % 1 to number of voxels
if i==length(allV(:,1))
   % do nothing
else
xmin=min(min(allV(((i+1):(8+i)),1)));
xmax=max(max(allV(((i+1):(8+i)),1)));
ymin=min(min(allV(((i+1):(8+i)),2)));
ymax=max(max(allV(((i+1):(8+i)),2)));
zmin=min(min(allV(((i+1):(8+i)),3)));
zmax=max(max(allV(((i+1):(8+i)),3)));
```

```
for ii=1:length(data(:,1))
      if (data(ii,1)>xmin & data(ii,1)<xmax) && (data(ii,2)>ymin &
data(ii,2)<ymax) && (data(ii,3)>zmin & data(ii,3)<zmax)</pre>
         vals_in(count_in)=data(ii,4);
         ind_in(count_in)=ii;
         count_in=count_in+1;
      else
      end
   end
% Convert to SLP (W/(m^3)) and divided by 8 for vertices in a voxel.
m_au=(26.124/26)*mean(vals_in)-1028.893231;
m au = m au - 2;
m_slp=111349*m_au; % grey value to SLP
if m_slp < 0</pre>
   m_slp=0;
end
allV((((i+1):(8+i)),4)=m_slp/(1); % was divided by 8
% Prevent NaN values for voxel average
if isnan(mean(vals in)) == 1
   error('NaN Detected!');
end
count_in=1;
vals_in=0;
end
end
          _____
% -----
_____
% Output Text Files
% Update Progress Bar
F2=waitbar(iii/finish);
str1=num2str(iii);
C={'BME_504_TEXT_FILE_',str1,'.txt'};
str2=strjoin(C,'');
fileID = fopen(str2,'w');
writematrix(allV, str2, 'Delimiter', 'space');
fclose(fileID);
end
% ------
_____
% Close Progress Bar
close(w)
toc
```

## References

- 1. Goldenberg, H., & Tranter, C. J. (1952). Heat flow in an infinite medium heated by a sphere. British journal of applied physics, 3(9), 296.
- Andrä, W., d'Ambly, C. G., Hergt, R., Hilger, I., & Kaiser, W. A. (1999). Temperature distribution as function of time around a small spherical heat source of local magnetic hyperthermia. *Journal of Magnetism and Magnetic Materials*, 194(1-3), 197-203.