

Optimising Event-Driven Spiking Neural Network with Regularisation and Cutoff: Supplementary Material

1 INEQUATION PROOF

We follow Banner et al. (2018) to derive the bound of expected norm of a random variable vector. By Jensen's inequality, it gives

$$\mathbb{E}(\|\boldsymbol{V}(t)\|_{2}) = \mathbb{E}(\sqrt{\sum_{i} V_{i}(t)^{2}}) \leq \sqrt{\mathbb{E}(\sum_{i} V_{i}(t)^{2})}$$
$$= \sqrt{\sum_{i} \mathbb{E}(V_{i}(t)^{2})}$$
(S1)

As the $V_i(t)$ is a uniform random variable in range $[0, V_{thr}]$, the expected value of $V_i^2(t)$ can be computed as follows

$$\mathbb{E}(V_i(t)^2) = \int_0^{V_{\text{thr}}} x^2 \frac{1}{V_{\text{thr}}} dx = \frac{V_{\text{thr}}^2}{3}$$
(S2)

which yields

$$\mathbb{E}(\|\boldsymbol{V}(t)\|_2) \le \frac{\sqrt{n}V_{\text{thr}}}{\sqrt{3}}$$
(S3)

Since t is constant value, the following inequality holds

$$\mathbb{E}(\|\boldsymbol{V}(t)/t\|_2) \le \frac{\sqrt{n}V_{\text{thr}}}{\sqrt{3}t}$$
(S4)

2 SUMMARY OF NOTATIONS.

REFERENCES

Banner, R., Hubara, I., Hoffer, E., and Soudry, D. (2018). Scalable methods for 8-bit training of neural networks. *Advances in Neural Information Processing Systems* 31

Definition
Layer index
Total number of layers
Element index
Discrete timestep
Maximum timestep
The average number of timesteps
Weight matrix
Membrane potential before reset
Membrane potential after reset
Weighted current
Step function
Threshold voltage
Bias current
Event input
Constant input current
Output of the 1 st layer for event-based input
Output of the 1 st layer for frame-based input
Optimal Cutoff Timestep (OCT) function
Conditional discrete timestep
SNN prediction function
Top- k function
Vector of output digits
Set of inputs
Gap between top-1 and top-2 output values
Threshold to trigger cutoff
Set of inputs satisfying $Y_{gap} > \beta$
Pre-specified constant
Average spiking rate
Desired spike rate
L2 norm
number of elements of a vector ReLU activation in ANN
Spiking rate (ANN-to-SNN conversion)
Desired spiking rate (ANN-to-SNN conversion)
Residual spiking rate (ANN-to-SNN conversion)
Spiking rate (direct training)
Desired spiking rate (direct training)
Integer hyperparameter to estimate \tilde{r}_d
Cross-entropy loss
Regulariser of Cosine Similarity loss
Hyperparameter to balance loss terms