Supplementary Material

Optical and electrical properties of thiarubrine A simulated via the Hückel method and the nonequilibrium Green's function

Francesco Scotognella

Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy

E-mail address: francesco.scotognella@polito.it

Figure A1. Calculated absorption spectrum, with modified Hückel method, modified neglect of diatomic overlap method (MNDO), and density functional theory (DFT), of thiarubrine A (isosurface value = 0.02) calculated with the density functional theory.

Figure A2. Calculated absorption spectrum, with modified Hückel method, modified neglect of diatomic overlap method (MNDO), and density functional theory (DFT), of thiophene A (isosurface value = 0.02) calculated with the density functional theory.

номо

LUMO

Figure A3. HOMO and LUMO orbitals for thiarubrine A (isosurface value = 0.02) calculated with the density functional theory.

Figure A4. HOMO and LUMO orbitals for thiophene A (isosurface value = 0.02) calculated with the density functional theory.

Table A1. Electronic transitions (#, wavelength in nm, and oscillator strength) of thiarubrine A (first twelve transitions) calculated with density functional theory.

2	355.2	0.454431813
3	328.9	0.015401400
4	317.8	0.199099720
5	304.0	0.043034603
6	302.0	0.045413391
7	290.4	0.008473551
8	286.9	0.025172441
9	260.9	0.005657426
10	258.6	0.009540445
11	248.4	0.005199597
12	242.2	0.127650371

Table A2. Electronic transitions (#, wavelength in nm, and oscillator strength) of thiophene A (first twelve transitions) calculated with density functional theory.

1	319.3	1.211177137
2	286.8	0.036479509
3	283.0	0.001541003
4	268.8	0.022100216
5	255.3	0.000651788
6	248.6	0.078045378
7	243.4	0.077535108
8	228.5	0.003177762
9	225.9	0.022600486
10	222.2	0.008799227
11	216.8	0.003942661
12	215.8	0.035973649

Table A3. Electronic transitions (#, wavelength in nm, and oscillator strength) of thiarubrine A (first twelve transitions) calculated with modified neglect of diatomic overlap method.

1	627.1	0.016473231
2	433.5	0.197129486
3	396.3	0.012208586
4	334.5	0.003237810
5	325.8	0.002427542
6	320.2	0.015653732
7	305.2	0.084314754
8	304.8	0.115963247
9	302.8	0.005067813
10	294.7	0.004058414
11	286.2	0.102999996
12	282.7	0.003845221

Table A4. Electronic transitions (#, wavelength in nm, and oscillator strength) of thiophene A (first twelve transitions) calculated with modified neglect of diatomic overlap method.

1	394.0	0.513356058
2	332.8	0.000088741
3	328.5	0.039900484
4	314.3	0.000392276
5	305.3	0.009553895
6	299.4	0.061106816
7	291.5	0.003236926
8	285.4	0.000810199
9	279.5	0.000185687
10	271.2	0.012052830
11	270.3	0.037653285
12	270.2	0.052659876

Table A5. Optimized geometry of thiarubrine A.

С	-5.29990	-0.01121	0.24805
С	-3.85242	0.17377	0.15299
Н	-5.75820	-0.01196	-0.74547
С	-2.66398	0.33140	0.07498
Н	-5.75741	0.79273	0.83243
Н	-5.53952	-0.96222	0.73316
S	1.00023	2.11756	0.84401
С	-1.25410	0.51941	-0.01594
С	1.75213	0.63577	0.30754
Н	9.04531	1.28642	-0.33547
S	-0.63617	2.10338	-0.41309
С	1.02082	-0.46424	0.04370
Н	1.51263	-1.38912	-0.25013
С	9.17437	-0.79154	-0.02443
С	5.89581	0.46806	0.02279
С	8.50799	0.36035	-0.15329
С	-0.42877	-0.53211	0.14937
С	4.36914	0.53289	0.12650
Н	-0.83921	-1.51806	0.35648
С	3.17218	0.58069	0.20886
С	7.09250	0.41543	-0.05764
Н	10.25658	-0.81547	-0.10002
Н	8.66308	-1.73187	0.15844

 Table A5. Optimized geometry of thiophene A.

С	-0.12356	-0.10944	-0.00572
С	1.30031	0.22136	-0.03091
Н	-0.37320	-0.81574	-0.80322
С	2.47106	0.48841	-0.05135
Н	-0.73417	0.78793	-0.14368
Н	-0.40050	-0.56483	0.94984
S	5.09361	-0.37391	0.02209
С	3.86103	0.80484	-0.07582
С	4.37785	2.07813	-0.17978
С	5.80568	2.07964	-0.17872
Н	3.76571	2.96906	-0.25347
С	6.32441	0.80709	-0.07397
Н	6.41488	2.97271	-0.25159
С	8.88475	0.22539	-0.02549
С	7.71437	0.49181	-0.04743
С	10.37753	-0.11641	0.00208
С	11.54726	-0.38587	0.02342
С	12.92849	-0.71360	0.04771
Н	13.20812	-1.75930	-0.04059
С	13.86966	0.22737	0.17518
Н	13.61882	1.28000	0.26545
Н	14.92091	-0.04105	0.19195