

Supplementary Material

1 SUPPLEMENTARY MATERIAL

1.1 Supplementary Material A: NESTML language elements

Keyword(s)	Description
integer, real, string,	types
<pre>boolean, mV, J/(mol*K), C*J*s**-1,</pre>	
<pre>min, max, exp, sinh, erfc,</pre>	mathematical functions
random_normal,	draw sample from statistical distribution
random_uniform	
ifelifelse	conditional statements
whiledo, for	loop statements
function, return	definition of functions expressions, bit operators, assignment operators
+,-,*,**,%, , &, <<, +=, <<=, /,inline	ODE and inline expression definition
<pre></pre>	conditional expressions
true, false, inf, ""	literal values
[,]	vector operations
timestep, steps, t	simulation timing functions and time variable
integrate_odes	integrate ODEs
print, println	printing/logging functions for debugging
emit_spike	emit spike event
equations, input, output,	model blocks
update, state, parameters,	
internals, onReceive, onCondition,	
spike, continuous	input/output port designations

Table S1. An overview of syntactical elements of the NESTML language

1.2 Supplementary Material B: NESTML model checks

Description
Description
Each called function is defined and parameter types are consistent
Each block is defined at most once
Each variable is defined at most once within each scope.
Each variable used in an expression has been defined.
All state variables are assigned an initial value
Input ports are not assigned to.
All ODEs are of order greater than 0.
Physical unit literals are correct (e.g. "1/mV" but not "2/mV").
For files containing multiple models, model names are unique.
Spiking input ports have unique qualifier keywords; "continuous" type input ports have no qualifiers.
All defined kernels have the type real.
Parameters and internals are not assigned outside the parameters (resp. internals) block.
If the emit_spike() function is called anywhere in the model, a spiking output port is defined.
All expressions and ODEs have consistent units on the left- and right-hand sides of the equation.
If ODEs are defined, the integrate_odes () function is called at least once in the model.
Functions defined in the model have consistent units and contain a "return" statement.
The variable on the left-hand side of an ODE definition has been declared in the "state" block.
Arguments to the convolve() function are correct.
Kernels are used only in convolutions. Dirac delta functions may only have the time t as a single
argument.
All invariants evaluate to a boolean type.
Operations on vectors are consistent in terms of operating on vectors of the same length.
All declared vectors have a size greater than 0.
For synapse models, the "priority" parameter on event handlers has correct (unique and non-negative)
priority values.

Table S2. List of context condition checks for NESTML models

1.3 Supplementary Material C: Alternative version of the neuron model

```
1 model aeif_psc_alpha_neuron:
 2
     state:
 3
       V_m mV = E_L
                                        # Membrane potential
     V_m mV = E_L# Membrane potent.I_adap pA = 0 pA# Spike-adaptationI_syn pA = 0 nS# AHP conductanceI_syn' pA/ms = 0 nS/ms# AHP conductance
 4
                                        # Spike-adaptation current
 5
                                       # AHP conductance
 6
 7
8
     equations:
9
      I_syn'' = -2 * I_syn' / tau_syn - I_syn / tau_syn**2
10
      inline I_spike pA = g_L * Delta_T * (V_m - V_th) / Delta_T
11
      inline I_leak pA = -g_L \star (V_m - E_L)
12
       V_m' = (I_leak + I_spike + I_syn - I_adap + I_stim) / C_m
13
      I_adap' = (a * (V_m - E_L) - I_adap) / tau_adap
14
15
    parameters:
     16
17
18
19
20
21
22
23
24
25
26
27
    input:
28
      spikes <- spike
29
      I_stim pA <- continuous
30
31
    output:
32
      spike
33
34
     update:
35
       integrate_odes()
36
37
     onCondition(V_m >= V_peak): # Threshold crossing detection
     V_m = E_L  # Reset potential
I_adap += b
38
39
40
      emit_spike()
41
42
    onReceive(spikes):
                                     # Spike input
43
   I_syn' += spikes * (e / tau_syn)
```

Listing 1: An alternative version of the adaptive exponential integrate-and-fire neuron model with alpha-shaped postsynaptic currents. In this version, spikes are processed in an event handler (lines 42-43) instead of using convolutions (compare Listing 2, lines 7 and 10).

1.4 Supplementary Material D: Balanced network model description

A: Moo	A: Model summary			
Popula	tions	Three: excitatory, inhibitory, external input		
Topolo	gy			
Conne	ctivity	Random convergent connections		
Neuror	n model	See Section 3.1.1		
Chann	el models	—		
Synaps	se model	See Section 3.1.2		
Plastic	ity			
Input		Independent fixed-rate Poisson spike trains to all neurons		
Measu	urements Spike ac		ctivity	
B: Pop	B: Populations			
Name	Elements		Size	
Е	aeif_psc_alpha		$N_{\rm E} = 4N_{\rm I}$	
Ι	aeif_psc_alpha		N_{I}	
E _{ext}	Poisson generator		$C_{\rm E}(N_{\rm E}+N_{\rm I})$	

C: Con	C: Connectivity		
Name	Source	Target	Pattern
EE	Е	Е	Random with fixed in-degree $C_{\rm E}$, weight J, delay d
IE	Ι	Е	Random with fixed in-degree $C_{\rm E}$, weight J, delay d
EI	Е	Ι	Random with fixed in-degree $C_{\rm I}$, weight $-gJ$, delay d
II	Ι	Ι	Random with fixed in-degree $C_{\rm I}$, weight $-gJ$, delay d
Ext	E _{ext}	E and I	Fixed in-degree $C_{\rm E}$, weight J, delay d

D: Neuron and synapse model		
Name	aeif_psc_alpha	
Туре	Adaptive exponential integrate-and-fire with alpha-shape postsynaptic current kernel	
Subthreshold dynamics	See Section 3.1.1	
Spiking	See Section 3.1.2	

Neuron model parameters			
Name	Description Value Un		Unit
Cm	Membrane capacitance	250	pF
$g_{ m L}$	Leak conductance	12.5	nS
$E_{\rm L}$	Leak reversal potential	0	mV
a	Subthreshold adaptation	4	nS
b	Spike-triggered adaptation	80.5	pА
$\Delta_{\rm T}$	Slope factor	2	mV
$\tau_{\rm w}$	Adaptation time constant	144	ms
V _{th}	Spike initiation threshold	20	mV
V _{peak}	Spike detection threshold	20	mV
$ au_{ m syn}$	Synaptic time constant	0.5	ms

Synapse model parameters			
Name	Description Value Unit		Unit
d	Synaptic delay	1	ms
$ au_{ m tr}$	pre/post trace time constant	20	ms
λ_{p}	Potentiation learning rate	0	_
$\lambda_{ m d}$	Depression learning rate	0	_

E: Input		
Туре	Description	
Poisson generators	Fixed rate $\nu_{\rm ext}$, $C_{\rm E}$ generators per neuron	

F: Measurements

Spike activity

Table S3: Tabular description of the balanced network in Section 3.2.1.