1 Search strategy Table 1. Search strategy for Embase (conducted on 20th May 2022) | No. | Query | Results | |-----|--|---------| | 1 | 'melanoma'/exp OR 'melanoma' OR 'melano*' | 350589 | | 2 | 'triple negative breast cancer'/exp OR (('breast cancer' OR 'breast tumor' OR 'breast tumour' OR 'breast neoplasm' OR 'breast carcinoma') NEAR/3 ('triple negative' OR 'triple-negative')) | 33527 | | 3 | 'non small cell lung cancer'/exp OR 'nsclc' OR 'non-small cell lung cancer' OR 'non-small-cell | 211833 | | 4 | 'renal cell carcinoma'/exp OR (renal*:ab,ti AND (carcinoma*:ab,ti OR cancer*:ab,ti OR neoplasm*:ab,ti OR adeno*:ab,ti OR pyelocarcinoma*:ab,ti OR oncocytoma:ab,ti) OR 'rcc':ab,ti | 155309 | | 5 | 'stomach cancer'/exp OR 'gastric cancer' | 164199 | | 6 | 'head and neck cancer'/exp OR 'hnscc':ab,ti OR 'hn scc':ab,ti OR 'scchn':ab,ti OR 'scc hn':ab,ti OR 'hnsc':ab,ti 'hnsc':ab, | 224160 | | 7 | 'bladder cancer'/exp OR (((bladder OR urothelial OR 'transitional cell') NEAR/3 (cancer OR cancers OR tumor OR tumors OR tumours OR carcinoma OR carcinomas OR neoplasm OR neoplasms)):ab,ti) OR 'transitional cell carcinoma'/exp OR 'bladder tumor'/exp OR 'urinary bladder neoplasms' | 135990 | | 8 | #1 OR #2 OR #3 OR #4 OR #5 OR #6 OR #7 | 1170442 | | 9 | 'early diagnosis'/exp OR (('early' OR 'earlier' OR 'earliest' OR 'earl*') NEAR/3 ('detect*' OR 'diagnos*' OR 'identif*' OR 'presentation')) OR 'early detection' OR 'early identification' OR 'early presentation' OR 'early diagnos*' OR 'early detection cancer' OR 'late diagnos*' OR 'late presentation' OR 'late detection' OR ('time' NEAR/4 ('diagnos*' OR 'detect*')) OR ('delay' NEAR/4 ('diagnos*' OR 'detect*')) | 673969 | | 10 | 'effectiveness':ab,ti OR 'mortality':ab,ti OR 'survival':ab,ti OR 'financ*':ab,ti OR 'econom*':ab,ti OR 'quality of life':ab,ti OR 'economics':ab,ti OR 'economics':ab,ti OR 'cost':ab,ti OR 'health care cost':ab,ti OR 'drug cost':ab,ti OR 'hospital cost':ab,ti OR 'socioeconomics':ab,ti OR 'health economics':ab,ti OR 'pharmacoeconomics':ab,ti OR 'fee':ab,ti OR 'budget':ab,ti OR 'hospital finance':ab,ti OR 'financial management':ab,ti OR 'health care financing':ab,ti OR 'low cost':ab,ti OR 'high cost':ab,ti OR ((health*care NEXT/1 cost*):ab,ti) OR (('health care' NEXT/1 cost*):ab,ti) OR fiscal:ab,ti OR funding:ab,ti OR financial:ab,ti OR finance:ab,ti OR ((cost NEXT/1 estimate*):ab,ti) OR 'cost | 9013496 | | No. | Query | Results | |-----|--|---------| | | variable':ab,ti OR ((unit NEXT/1 cost*):ab,ti) OR economic*:ab,ti OR pharmacoeconomic*:ab,ti OR price*:ab,ti OR pricing:ab,ti OR ((health*care NEXT/1 (utilisation OR utilization)):ab,ti) OR ((resource NEXT/1 (utilisation OR utilization OR utilization)):ab,ti) OR ((cost* NEAR/3 (treat* utiliza | | | | therap*)):ab,ti) OR (((direct OR indirect) NEAR/2 cost*):ab,ti) OR 'health related quality of life':ab,ti OR 'health-related quality of life':ab,ti OR 'hrqol':ab,ti OR 'qol':ab,ti OR 'life quality':ab,ti OR 'health-related qol':ab,ti OR | | | | 'quality adjusted life':ab,ti OR 'quality-adjust-life':ab,ti OR 'qaly':ab,ti OR 'qald':ab,ti OR 'qale':ab,ti OR 'qtime':ab,ti OR 'quality adjusted life year':ab,ti OR 'life year*':ab,ti OR 'hql':ab,ti OR 'hqol':ab,ti OR 'h qol':ab,ti OR 'hr qol':ab,ti OR (('quality' NEAR/3 'life'):ab,ti) OR 'qols':ab,ti OR 'quality of life scale':ab,ti OR ((('instrument' OR 'instruments') NEAR/3 ('quality of life' OR 'qol')):ab,ti) OR 'quality of wellbeing':ab,ti OR 'response rate':ab,ti OR 'expense':ab,ti OR 'incidence':ab,ti OR 'prevalence':ab,ti OR 'burden':ab,ti OR 'efficacy':ab,ti OR 'death':ab,ti OR 'cure':ab,ti OR 'impact':ti OR 'reduce':ti OR 'benefit':ti OR 'positive':ti OR 'reduction':ti OR 'decrease':ti OR 'increase':ti OR 'improvement':ti OR 'delaye':ti OR 'favourable':ti OR 'favorable':ti OR 'advantage':ti OR 'convenience':ti OR 'improves':ti | | | 11 | 'cohort study':ab,ti OR 'retrospective study':ab,ti OR (cohort analysis':ab,ti OR (longitudinal study':ab,ti OR 'prospective study':ab,ti OR 'observational study':ab,ti OR ((cohort NEXT/1 stud*):ab,ti) OR ((cohort NEXT/1 analy*):ab,ti) OR (register':ab,ti OR 'registry':ab,ti OR (('database' NEAR/2 'study'):ab,ti) OR (('real' NEXT/1 'world'):ab,ti) OR (('healthcare' NEXT/1 'record'):ab,ti) OR 'pragmatic trial':ab,ti OR 'real-world clinical trial':ab,ti OR 'pragmatic clinical trial':ab,ti OR 'real-world':ab,ti OR 'real world':ab,ti OR 'database study':ab,ti | 2058312 | | 12 | #8 AND #9 AND #10 AND #11 | 5802 | | 13 | #12 AND ([conference abstract]/lim OR [conference paper]/lim OR [conference review]/lim OR [editorial]/lim OR [letter]/lim OR [note]/lim) | 2641 | | 14 | #12 AND [animals]/lim NOT ([humans]/lim AND [animals]/lim) | 20 | | 15 | #13 OR #14 | 2647 | | 16 | #12 NOT #15 | 3155 | | 17 | #12 NOT #15 AND [english]/lim | 2956 | Table 2. Search strategy for Medline-In Process (conducted on 20th May 2022) | No. | Query | Results | |-----|---|---------| | 1 | "melanoma" [MeSH Terms] OR "melano*" | 253659 | | 2 | "triple negative breast neoplasms" [MeSH Terms] OR (("breast cancer" OR "breast tumor" OR "breast tumour" OR "breast neoplasm" OR "breast carcinoma") AND ("triple negative" OR "triple-negative")) | 19113 | | No. | Query | Results | |-----
--|---------| | 3 | "Carcinoma, Non-Small-Cell Lung" [MeSH Terms] OR "nsclc" OR "non-small cell lung cancer" OR "non-small-cell lung cancer" OR "non-small" [Title/Abstract] OR "non-small" [Title/Abstract] OR "non-small cell" [Title/Abstract] OR "non-small-cell" [Title/Abstract] OR "non-small-cell" [Title/Abstract] OR "non-small-cell" [Title/Abstract] | 95871 | | 4 | "Carcinoma, Renal Cell" [MeSH Terms] OR (renal* [Title/Abstract] AND (carcinoma* [Title/Abstract] OR cancer* [Title/Abstract] OR neoplasm* [Title/Abstract] OR adeno* [Title/Abstract] OR pyelocarcinoma* [Title/Abstract] OR oncocytoma [Title/Abstract])) OR "rcc" [Title/Abstract] | 100620 | | 5 | "Stomach Neoplasms" [MeSH Terms] OR "gastric cancer" | 127784 | | 6 | "Head and Neck Neoplasms" [MeSH Terms] OR "hnscc" [Title/Abstract] OR "hn scc" [Title/Abstract] OR "scchn" [Title/Abstract] OR "scc hn" [Title/Abstract] OR "hnsc" [Title/Abstract] OR "hnc" [Title/Abstract] | 343878 | | 7 | "urinary bladder neoplasms" [MeSH Terms] OR "urinary bladder neoplasms" OR ((bladder [Title/Abstract] OR urothelial [Title/Abstract] OR "transitional cell" [Title/Abstract]) AND (cancer [Title/Abstract] OR cancers [Title/Abstract] OR tumor [Title/Abstract] OR tumours [Title/Abstract] OR tumours [Title/Abstract] OR carcinoma [Title/Abstract] OR carcinomas [Title/Abstract] OR neoplasms [Title/Abstract])) OR "carcinoma, transitional cell" [MeSH Terms] OR "bladder tumor" | 102413 | | 8 | #1 OR #2 OR #3 OR #4 OR #5 OR #6 OR #7 | 998456 | | 9 | "early diagnosis" [MeSH Terms] OR (("early" OR "earlier" OR "earliest" OR "earl*") AND ("detect*" OR "diagnos*" OR "identif*" OR "presentation")) OR "early detection" OR "early identification" OR "early presentation" OR "early diagnos*" OR "early detection cancer" OR "late diagnos*" OR "late presentation" OR "late detection" OR ("time" AND ("diagnos*" OR "detect*")) OR ("delay" AND ("diagnos*" OR "detect*")) | 2331809 | | 10 | "effectiveness" [Title/Abstract] OR "mortality" [Title/Abstract] OR "survival" [Title/Abstract] OR "financ*" [Title/Abstract] OR "econom*" [Title/Abstract] OR "quality of life" [Title/Abstract] OR "economics" [Title/Abstract] OR "economic aspect" [Title/Abstract] OR "cost" [Title/Abstract] OR "health care cost" [Title/Abstract] OR "drug cost" [Title/Abstract] OR "hospital cost" [Title/Abstract] OR "socioeconomics" [Title/Abstract] OR "health economics" [Title/Abstract] OR "pharmacoeconomics" [Title/Abstract] OR "fee" [Title/Abstract] OR "budget" [Title/Abstract] OR "hospital finance" [Title/Abstract] OR "financial management" [Title/Abstract] OR "health care financing" [Title/Abstract] OR "low cost" [Title/Abstract] OR "high cost" [Title/Abstract] OR ("health care" [Title/Abstract] AND cost*[Title/Abstract]) OR ("health-care" [Title/Abstract] AND cost*[Title/Abstract]) OR ("health care" [Title/Abstract] AND cost*[Title/Abstract]) OR financial [Title/Abstract] OR finance [Title/Abstract] OR (cost[Title/Abstract] AND estimate*[Title/Abstract] OR "cost variable" [Title/Abstract] OR (unit[Title/Abstract] AND cost*[Title/Abstract]) OR economic*[Title/Abstract] OR pharmacoeconomic*[Title/Abstract] OR price*[Title/Abstract] OR pricing[Title/Abstract] OR (healthcare[Title/Abstract] AND (utilization[Title/Abstract] OR utilization[Title/Abstract]) OR ("health care" [Title/Abstract] AND | 6661909 | | 1669677 | |---------| | 1000077 | | | | | | 14436 | | 14430 | | 4794734 | | 13848 | | 203 | | | ### 2 PICOTS eligibility criteria for study inclusion | PICOTS | Inclusion Criteria | |---------------|--| | Population(s) | Adult (≥18 years) patients of any gender or race, with one of the following cancers at the time of diagnosis: Melanoma TNBC NSCLC (Squamous and Non-squamous) RCC Gastric cancer HNC Bladder cancer (Muscle invasive and non-muscle invasive) Patients were included, regardless of presenting with early/ late-stage, low/ high-risk (i.e., eligible [or not] for chemotherapy or presenting with comorbidities) disease, or with/ without surgical resection | | Interventions | No restriction | | Comparisons | No restriction | | Outcomes | Survival outcomes by stage at diagnosis Overall survival Mortality, premature/ avoidable cancer-related deaths Humanistic burden by stage at diagnosis General patient-reported outcomes (e.g., 0-100 scales/questionnaires) Physical, functional, and mobile well-being (e.g., 0-100 scales/questionnaires and qualitative reports) Mental, emotional, and social well-being (either qualitative or quantitative), Fear of cancer progression and/or death, psychological quality of life, qualitative lived experience associated with cancer (either qualitative or quantitative) Financial impact associated with stage at diagnosis | | | Direct medical costs for early vs late-stage cancer, including visit fees, tests, treatments, consultations or follow-ups for outpatients, and hospitalization costs, serious illnesses or medical issues that require substantial monitoring, management of complications, treatment administration, length of stay for inpatients Direct non-medical costs, including travel, accommodation, and meals Indirect costs for patients and caregivers (e.g., productivity loss costs including lost wages, absenteeism, early retirement, etc.) | |------------------|---| | Time | No timeframe restriction | | Study design | Observational studies, including: Cohort studies (prospective and retrospective) Case control studies (prospective and retrospective) Cross sectional studies Longitudinal studies Reviews (systematic or general reviews) were retrieved for the identification of additional relevant primary studies that may have been missed through the electronic searches. | | Country | Global | | Other (Language) | Studies with full texts published in English language only will be included | Abbreviations: HNC: Head and neck cancer; NSCLC: Non-small cell lung cancer; PICOTS: Population, intervention, comparisons, outcomes, time, study design; RCC: Renal cell carcinoma; TNBC: Triple negative breast cancer # 3 Classification and definition of early and late stages of cancer used among the studies included in the SLR that reported their definition of early stages vs. late stages | Study | Tumor type | Stage classification system | Definition of stage | |-------------------------|------------------------|------------------------------|---| | Bladder cance | er | · | | | Fisher 2018 (1) | Bladder cancer | NR | Stage IV bladder cancer diagnosis defined as T4b, node-positive, or distant metastatic disease. | | HNC | | | | | Ho 2019
(2) | Oral cavity cancer | NR | Early stage defined as "Stage 0-I". | | Singh 2021 (3) | Oral cancer | AJCC | Stage was defined by the AJCC classification. Patients were stratified according to their stage of disease at diagnosis into early (Stage I, II) and advanced (Stage III, IV)
stages as per the latest. | | Melanoma | | | | | Song 2015
(4) | Metastatic
melanoma | AJCC 6 th edition | Patients diagnosed with unresectable regionally metastatic refer to stage IIIB/C and distantly metastatic refers to stage IV). | | Toscano
2020
(5) | Melanoma | TNM | Patients diagnosed early or non-metastatic stage defined with a stage I or II. | | Wilson 2019 (6) | Metastatic
melanoma | AJCC 7 th edition | Metastatic disease refers to the time at which the patient was diagnosed with metastatic melanoma, stage IV disease. | | NSCLC | | | | | Berglund
2012
(7) | NSCLC | NR | Early stage defined as "Stage IA-IIB" Late stage defined as "IIIA-IV". | | Ehrenstein 2022 | NSCLC | NR | Early stage refers to the stage "I-IIIA" | | Study | Tumor type | Stage classification system | Definition of stage | |--------------------------|------------|---|--| | (8) | | | | | Flores 2021 (9) | NSCLC | NR | SEER historic staging was used to impute stage for these patients. Those with historic stage values of localized were coded as stage I/II, regional was coded as stage III, and distant was coded as stage IV. | | Monteiro
2022
(10) | NSCLC | AJCC 7 th edition | Early-stage NSCLC defined as clinical stage I-IIIA. | | Snee 2021
(11) | NSCLC | UICC 6 th edition (up to 31 December 2009), UICC 7 th edition from 1 January 2010 and the 8th edition from 1 January 2017 | Early stage refers to stage "I-IIIA", Advanced stage refers to stage "IIIB-IV" | | TNBC | | | | | Schwartz
2018
(12) | TNBC | AJCC | Patients with stage III and IV defined as advanced stage | Abbreviations: AJCC: American Joint Committee; HNC: Head and neck cancer; NR: Not reported; NR: Not reported; NSCLC: Non-small cell lung cancer; SEER: Surveillance, Epidemiology, and End Results Program; TNBC: Triple negative breast cancer; TNM: Tumor (T), nodes (N), and metastases (M); ### 4 Summary of studies included in the clinical review (n=52) | Study
name | Tumor
types | Objective | Study design | Publication type | Country | Data source | Study setting | Time frame | Duration of follow up | |-------------------------------|-------------------|---|---|------------------------|---------|--|-----------------------------------|----------------------------|-----------------------| | Bladder cand | cer | | | | | | | | | | Amiri 2020
(13) | Bladder
cancer | Estimate the survival rate of patients with bladder cancer according to the Cox proportional hazards model based on some key relevant variables. | Retrospective
population-
based cohort
study | Article | Iran | Cancer registry at Provincial Health Department, Cancer Registration Center and Provincial Mortality Registration Center | Provincial
population
based | 2013 to 2018 | NR | | Aragon-
Ching 2021
(14) | Bladder
cancer | Evaluate trends between UC vs. nUC histology for upper tract cancers and compare the demographics, disease characteristics, treatment, incidence of stage and survival according to NCDB. | Retrospective
observational
study | Conference
abstract | USA | NCDB | Nationwide
population
based | 2004 – 2017 | NR | | Davies 2020 (15) | Bladder
cancer | Establish a standing cohort of patients with metastatic bladder cancer. | Retrospective
observational
analysis | Conference
abstract | England | NCRAS | Nationwide population based | January 2016-
June 2017 | NR | | Study
name | Tumor
types | Objective | Study design | Publication type | Country | Data source | Study setting | Time frame | Duration of follow up | |-------------------------------|---------------------------------------|---|---|------------------------|-----------------|--|--------------------------------------|--|--| | Fisher 2018 (1) | Bladder
cancer | Understand how patients with stage IV bladder cancer are treated and to add to the limited data that examine effectiveness outcomes associated with that treatment. | Retrospective
observational
study | Article | USA | Vector
Oncology Data
Warehouse | Multi-center | 1 January
2008- 1 June
2015 | NR | | Omland
2021
(16) | Metastatic
urinary tract
cancer | Describe treatment patterns and survival outcomes in mUTC patients treated in the realworld clinical setting. | Nationwide,
retrospective,
population-
based study | Article | Denmark | EHRs from
Danish
oncology
departments | Multi-center | December
2017 and mid
2018 for one
Center each;
mid 2019 for
remaining four
Centers. | Median
follow-up:
11.6 months | | Sorup 2021
(17) | Urothelial
Cancer | Characterize treatment patterns, survival outcomes, and HRU in patients with stage IV UC in Denmark. | Population-
based,
retrospective
cohort study | Conference
abstract | Denmark | Danish Cancer
Registry | Nationwide
population
based | January 1,
2013-
December 31,
2017 | Median
follow-up:
10.2 months
(IQR, 3.6-
19.4) | | Gastric cand | er | | | | | | | | | | Dijksterhui
s 2022
(18) | Gastric
cancer | Explore use of palliative treatment and overall survival of gastric or GEJ cancer patients and compare overall survival of the patients with interval metastases with gastric or GEJ cancer patients who had distant metastases at initial diagnosis. | Retrospective cohort study | Article in
Press | Netherlan
ds | Netherlands
Cancer
Registry
(NCR) | National wide
population
based | 2010 to 2018 | NR | | Study name | Tumor
types | Objective | Study design | Publication type | Country | Data source | Study setting | Time frame | Duration of follow up | |----------------------------|---------------------------|---|--|------------------------|---------|--|-----------------------------------|--------------|---| | Qiu 2018
(19) | Gastric
cancer | Analyze metastatic pattern in gastric cancer to help physicians to design imagine examination, especially in making determinations regarding interventions. | Retrospective
analysis | Article | USA | SEER | National wide population based | 2010 to 2014 | NR | | HNC | | | | | | | | | | | Amarillo
2021
(20) | Head and neck cancer | Identify an impact of delay in the first treatment in OS in head and neck cancer patients. | Retrospective
observational
cohort study | Conference
abstract | Uruguay | Institutional database of the hospital | Single -
Center | 2005-2015 | Median: 6.9
years | | Ho 2019
(2) | Oral cavity cancer | Evaluate the effectiveness of the TOMS program in stage-shift among oral cavity cancer patients. | Retrospective cohort study | Article | Taiwan | TCR, TOMS
and TDR | National wide population based | 2008 to 2015 | (From the TDR) or to December 31, 2016 (end of follow-up time). | | Hochfelder
2020
(21) | Hypopharyn
geal cancer | Examine the association between primary treatment and overall survival among patients with locoregionally advanced hypopharyngeal cancer. | Retrospective
observational
study | Conference
abstract | USA | NCDB | Nationwide
population
based | 2005-2015 | NR | | Study
name | Tumor
types | Objective | Study design | Publication type | Country | Data source | Study setting | Time frame | Duration of follow up | |--------------------------|----------------------|---|--|------------------------|---------|--|-----------------------------------|---------------------------------|---| | Neto 2021
(22) | Oropharynx
cancer | To assess the prognostic performance of eighth and seventh AJCC staging edition in patients with p16 positive oropharynx cancer. | Institutional
database of
the hospital | Conference
abstract | USA | Institutional
database of the
hospital | Nationwide
population
based | March 2015-
December
2018 | Median:
34.7 months
(2.3-169.74) | | Sargeran
2008
(23) | Oral cancer | Analyze 1- to 5-
year survival rates
for patients with lip
cancer in relation to
age, sex, stage of
the tumor,
histological type,
and treatment. | Retrospective cohort study | Article | Iran | Iran
Ministry
of Health | Nationwide
population
based | 1996 to 2002 | The patients were followed from the date of diagnosis to late 2005. | | Sargeran
2009
(24) | Lip cancer | Analyze 1- to 5-
year survival rates
for patients with lip
cancer in relation to
age, sex, stage of
the tumor,
histological type,
and treatment
modality. | Retrospective cohort study | Article | Iran | Iran Ministry
of Health | Nationwide
population
based | 1996 to 2003 | Median: 57
(range 0-
112
months);
Mean (SD):
56.4 (28)
months | | Melanoma | | | | | | | | | | | Ngo 2020
(25) | Melanoma | Evaluate survival and recurrence patterns of stage II and III cutaneous melanoma. | Retrospective cohort analysis | Conference
abstract | NR | NR | NR | 2000-2012 | NR | | Ramond
2021
(26) | Melanoma | Assess availability
of data from PHE to
study malignant
melanoma survival
in England. | Retrospective
observational
study | Conference
abstract | England | Public Health
England
(PHE) | Nationwide
population
based | 1995-2016 | NR | | Study
name | Tumor
types | Objective | Study design | Publication type | Country | Data source | Study setting | Time frame | Duration of follow up | |--------------------------------|------------------------------|---|---|------------------------|---------|---------------------------------|-----------------------------------|---|---| | Song 2015
(4) | Metastatic
melanoma | Describe survival rates among patients diagnosed with unresectable stage IIIB/C or stage IV melanoma. | Retrospective
observational
study | Article | USA | SEER
database | Nationwide
population
based | 2004 to 2009 | Mean (SD):
11.3 (138)
months | | Tjokrowidj
aja 2021
(27) | Melanoma | Assess overall
survival and cancer-
specific survival for
AJCC-7 and AJCC-
8. | Retrospective
study | Article | USA | SEER
database | Nationwide
population
based | 2010-2015 | NR | | Wilson
2019
(6) | Melanoma | Examine the impact of initial stage of melanoma diagnosis, BRAF status of primary melanoma, and receiving adjuvant therapy on post metastatic survival. | Prospective
observational
study | Article | USA | IMCG
database | Single center | August 2002
to December
2015 | Post
metastasis,
median: 25
(range: 0.5
to 167.8)
months | | Winge-
Main 2020
(28) | Melanoma | Investigate the characteristics and outcomes of Norwegian cutaneous melanoma patients with stage IIB-IV. | Retrospective cohort study | Conference
abstract | Norway | Cancer
Registry of
Norway | Nationwide
population
based | January 2008-
December
2018 | NR | | NSCLC | | | | | | | | | | | Abrão 2021
(29) | NSCLC,
adenocarcin
oma | Examine long-term survival and possible predictors in all patients with stage I and II lung cancer adenocarcinoma. | Hospital-
based
retrospective
cohort study | Article | Brazil | Institutional/cit
y database | Single center | January 2000
to December
31, 2019 | Mean: 45.2
(SD 41.3
months);
Median:32.
8 (Range 1-
223 months | | Study
name | Tumor
types | Objective | Study design | Publication type | Country | Data source | Study setting | Time frame | Duration of follow up | |---|----------------|--|--|------------------------|---------|--|-----------------------------------|---------------|------------------------------------| | Abrão 2022
(30) | NSCLC | Evaluate overall survival and prognostic factors in Stage I NSCLC patients treated only with radiotherapy and surgery in a 19-year follow-up cohort. | Retrospective
hospital-based
cohort study | Article in
Press | Brazil | Sao Paulo's
Oncocentro,
FOSP | Multi-center | 2000 and 2015 | Mean: 51.2
(SD: 41.4)
months | | Azzouqa
2019
(31) | NSCLC | Determine if there is an association between time to treatment initiation and survival in patients with NSCLC. | Retrospective cohort study | Conference
abstract | USA | Mayo Clinic
Cancer Center
registry | Multi-center | 2000 to 2016 | NR | | Berglund
2012
(7) | NSCLC | Examine possible social variations in lung cancer survival and assess if any such gradients can be attributed to social differences in comorbidity, stage at diagnosis or treatment. | Retrospective
observational
study | Article | UK | Thames
Cancer
Registry | Nationwide
population
based | 2006-2008 | NR | | Cerqueira 2022 Linked to: Cerquiera 2022 (32) | NSCLC | Evaluate NSCLC stage III/IV patients' journey in the Brazilian supplementary healthcare system. | Population
based
retrospective
cohort study | Conference
abstract | Brazil | Hospital-based cancer registry database | Private
hospital
based | 2016-2018 | NR | | Ehrenstein 2022 (8) | NSCLC | Describe EGFR testing, patient characteristics, and overall survival among patients with early-stage NSCLC. | Retrospective
observational
study | Article | Denmark | Danish Lung
Cancer
Registry | Nationwide
population
based | 2013 to 2018 | Until 10
September
2019 | | Study
name | Tumor
types | Objective | Study design | Publication type | Country | Data source | Study setting | Time frame | Duration of follow up | |--|----------------|---|--|------------------------|-----------------|--|-----------------------------------|--|--| | Ekman
2019
(33) | NSCLC | Report initial treatment and OS for patients with NSCLC prior to the availability of immunotherapies in Sweden. | Retrospective
observational
study | Conference
abstract | Sweden | Institutional
databases of
University
Hospitals | Multi-center | 2012 to 2015
(follow-up to
December
2016) | Followed up to Dec 2016 | | Flores 2021 (9) | NSCLC | Investigate association of stage shift with population mortality among patients with NSCLC. | Retrospective cohort study | Article | USA | SEER | National wide population based | 2006 to 2016 | Median: 61
Months
[IQR 21-95] | | Greystoke
2021
(34) | NSCLC | Assess patient characteristics, treatment patterns, and OS in patients with NSCLC. | Retrospective
observational
study | Conference
abstract | England | Public Health
England's
CAS | Nationwide
population
based | 2013-2018 | NR | | Jazieh 2021
Linked to:
Jazieh 2020
(35) | NSCLC | Determine the treatment patterns and their associated clinical outcomes in patients with stage III NSCLC, as defined by the AJCC criteria (seventh edition) in the pre-PACIFIC study era. | Retrospective
noninterventio
nal study | Article | 19
Countries | Medical
records from
hospitals (from
Asia, Middle
East, Africa,
and Latin
America) | Multi-center,
Multinational | January 2013-
December
2017 | At least 9
months of
documented
follow-up
since index
diagnosis | | Kalilani
2022
(36) | NSCLC | Provide recent estimates of survival in patients with advanced NSCLC in the USA. | Retrospective
observational
study | Conference
abstract | USA | SEER
database and
Flatiron Health
database | Nationwide
population
based | 1). SEER database: 2010–2016 2). Flatiron Health database: 2017–2020 | NR | | Study
name | Tumor
types | Objective | Study design | Publication type | Country | Data source | Study setting | Time frame | Duration of follow up | |----------------------------|----------------|---|---|------------------------|---|--|-----------------------------------|-----------------------------------|---| | Klarenbeek
2022
(37) | NSCLC | Examine factors
associated between
time-to-treatment
and overall survival
in a large
nationwide
retrospective
cohort. | Large
nationwide
retrospective
study | Article in
Press | Netherlan
ds | The
Netherlands
Cancer
Registry | National wide population based | 2014 to 2019 | NR | | Komiya
2020
(38) | NSCLC | Study the role of T0 status in OS for unresectable stage III non-small cell lung cancer. | Retrospective study | Conference
abstract | USA | National
Cancer
Database | Nationwide
population
based | 2004-2016 | NR | | Luciano
2020
(39) | NSCLC | Assess overall survival, TTT, follow-up time, and treatment pathways in metastatic NSCLC patients treated with
programmed cell death protein 1 inhibitors. | Retrospective
observational
analysis | Conference
abstract | USA | A USA based
EMR network | Nationwide
population
based | NR | Advanced diagnosis: 21.87 months [IQR 11.94-38.97] From inhibitor initiation: 8.71 months (3.06, 17.26) | | Martin
2022
(40) | NSCLC | Report on treatment patterns and their associated clinical outcomes in patients with stage III NSCLC in the LATAM subset from the pre-immuno- oncology era. | Retrospective study | Article | Argentina,
Chile,
Colombia,
Dominica
n
Republic,
Mexico,
Peru and
Uruguay | LATAM
subset from
KINDLE
Study | Multi-center | January 2013-
December
2017 | NR | | Study
name | Tumor
types | Objective | Study design | Publication type | Country | Data source | Study setting | Time frame | Duration of follow up | |--------------------------|----------------|--|---|------------------------|---------|--|---|--------------------------------------|---| | Monteiro
2022
(10) | NSCLC | Evaluate impact of microvascular invasion on the 5-year OS of patients with resected NSCLC treated at the INCA. | Retrospective,
observational
cohort study | Article | Brazil | Institutional
database of the
hospital | Single center | January 2010
and December
2016 | Median: 83
months | | Potter 2022 (41) | NSCLC | Determine the effect of the introduction of low-dose CT screening in 2013 on lung cancer stage shift, survival, and disparities in the stage of lung cancer diagnosed in the USA. | Retrospective
analysis,
quasi-
experimental
study | Article | USA | The National
Cancer
Database | National wide population based | 2010 and 2018 | NR | | Rittberg
2021
(42) | NSCLC | Evaluate real world, population-based outcomes for Stage IV NSCLC to assess impact of changing therapies on referral, treatment patterns and OS, which may help explain ongoing stigma/nihilism. | Retrospective cohort study | Conference
abstract | Canada | NR | Real world,
population-
based study | 2006-2015 | NR | | Snee 2021
(11) | NSCLC | Report characteristics, treatment and overall survival trends, by stage and pathology, of patients diagnosed with NSCLC. | Retrospective cohort study | Article | UK | Leeds
Teaching
Hospital NHS
Trust | Single center | January 2007-
August 2017 | Date of
death or end
of study
(April 2018) | | Study
name | Tumor
types | Objective | Study design | Publication type | Country | Data source | Study setting | Time frame | Duration of follow up | |-------------------------|-------------------------|--|--|------------------------|-----------------|--|-----------------------------------|-----------------------------------|---| | Soares
2021
(43) | NSCLC | Evaluate treatment patterns and survival for patients with stage I–IIIA NSCLC. | Retrospective
observational
cohort study | Article | Portugal | IPO-Porto
oncology
hospital | Single center | January 2012-
December
2016 | Till June
2017 | | Suipyte
2019
(44) | NSCLC | Evaluate patient with stage IV NSCLC in a real life setting and its impact on OS over the past 10 years. | Retrospective cohort study | Conference
abstract | Switzerlan
d | Institutional
database of the
hospitals | Multi-center | 2005-2007 and
2015-2016 | NR | | Vachani
2021
(45) | NSCLC | Quantify the association of stage at diagnosis with OS and MHE in the first year after diagnosis in patients with NSCLC. | Retrospective
observational
study | Conference
abstract | USA | SEER
Database | Nationwide
population
based | 2006-2015 | 12 months | | Van Dao
2022
(46) | NSCLC | Characterize treatment patterns and clinical outcomes of patients with stage III NSCLC. | Retrospective
observational
study | Article | Vietnam | 2 hospitals in
Vietnam (one
each in North
and South
Vietnam) | Multi-center | 2013-2017 | Mean (SD):
17.52
(13.81)
months. | | Renal cell ca | rcinoma | | | | | | | | | | Haas 2022
(47) | Renal cell
carcinoma | Evaluate recurrence rate and overall survival outcomes by disease stage and incremental impact of time to recurrence on overall survival in localized RCC. | Retrospective
observational
study | Conference
abstract | USA | SEER-
Medicare
database | Nationwide
population
based | 2007-2016 | Median: 23
months | | Study
name | Tumor
types | Objective | Study design | Publication type | Country | Data source | Study setting | Time frame | Duration of follow up | |------------------------|-------------------------|--|--|------------------------|---------|--|-------------------------------------|-------------------------------------|-------------------------------------| | Haas 2022
(48) | Renal cell
carcinoma | Evaluate disease free survival and overall survival patterns and risk of overall survival among patients with non-metastatic RCC in the USA. | Retrospective
study | Conference
abstract | USA | ConcertAI
Oncology
Dataset | Nationwide
population
based | 2012-2015 | Median:
49.5 months | | Li 2021
(49) | ccRCC | Explore baseline characteristics, pathological and survival outcomes of Asian-American patients with ccRCC and make comparisons with White patients. | Retrospective
population-
based analysis | Article | USA | SEER
database | Nationwide
population
based | 2010-2015 | Median: 35
[IQR 19-55]
months | | TNBC | I | | I | | | 1 | I | I | | | Aly 2019
(50) | TNBC | Estimate overall survival, treatment patterns and economic burden of elderly metastatic TNBC patients. | Retrospective,
observational
study | Article | USA | SEER-
Medicare
database | National wide population based | 2004 – 2011 | Mean: 14.1
months | | Gogate
2022
(51) | TNBC | Describe clinical parameters by receipt of systemic therapy and to assess OS, PFS after NAT and adjuvant therapy in women with early HR+/HER2- or TNBC using RWE in the USA. | Retrospective
observational
study | Conference
abstract | USA | Flatiron Health
nationwide
electronic
health record-
derived de-
identified
database | Nationwide
real-world
setting | 1 January 2011
to 31 May
2018 | NR | | Study
name | Tumor
types | Objective | Study design | Publication type | Country | Data source | Study setting | Time frame | Duration of follow up | |--------------------------|----------------|---|---------------------------|------------------------|---------|------------------------------------|--------------------------------|-------------------------------------|---| | Lehrberg
2021
(52) | TNBC | Evaluate survival rate and phenotype of patients with early stage breast cancer with negative SLN biopsy. | Retrospective
analysis | Article | USA | The Henry
Ford Health
System | Single-center | October 1998
to February
2017 | Mean (range): White American women, 95 (0, 218) months African American women,: 86 (3, 218) | | Schwartz
2018
(12) | TNBC | Identify and characterize elderly patients with advanced TNBC with respect to baseline demographics and comorbidities, treatment, including chemotherapy regimens, by specific type of therapy, survival patterns, HRU and costs. | Retrospective
analysis | Article | USA | SEER | National wide population based | January 2007
to January
2011 | Through to December 31, 2013 | | Sieluk
2020
(53) | TNBC | Provide insights into patient characteristics, as well as clinical and economic outcomes for elderly patients with early stage TNBC, treated from 2010-2016 in the USA. | Retrospective | Conference
abstract | USA | SEER-
Medicare
database | Multi-center | 2010 – 2015 | Median
(range):
20.2 months
(2.4-84.1) | | Study
name | Tumor
types | Objective | Study design | Publication type | Country | Data source | Study setting | Time frame | Duration of follow up | |-------------------------|----------------|--|---------------------|------------------|---------|---------------------------|---------------|--|--| | Yousefi
2017
(54) | TNBC | Analyze the clinical, pathological profile and survival, recurrence of TNBC patients and find the factors
effective in recurrence in breast cancer patients and compared them with patients without recurrence, and prognostic factors effective in the patients' death. | Retrospective study | Article | Iran | Institutional
database | Single center | September
2002 to
December
2014 | Median: 41
months
(range 4.2 –
208) | Abbreviations: 1R: One regimen; 2R: Two regimens; 3R+: Three or more regimens; 5-FU: Fluorouracil; AI: American Indian; AJCC: American Joint Committee on Cancer; AL: Acral lentiginous; AN: Alaska native; ASCC: Adenosquamous cell carcinoma; BC: Bronchioloalveolar carcinoma; CA: Cerebrovascular accident; CaEto: Carboplatin and etoposide; CaG: Carboplatin and gemcitabine; CAS: Cancer analysis system; CCI: Charlson Comorbidity Index; CHF: Congestive heart failure; COPD: Chronic pulmonary obstructive disease; CPD: Chronic pulmonary disease; EC: Epidermoid carcinoma; ECOG PS: Eastern Cooperative Oncology Group performance score; EGFR: Estimated glomerular filtration rate; GC: Gemcitabine and cisplatin; Gem: Gemcitabine; HER2: Human epidermal growth factor receptor 2; HTN: Hypertension; ICD: International Classification of Diseases; IDC: Invasive ductal carcinoma; IDM: Infiltrating ductal mixed; ILC: Invasive lobular carcinoma; ILM: Infiltrating lobular mixed; IQR: Interquartile range; LA: Locally advanced; LCC: Large cell carcinoma; MA: Mucinous adenocarcinoma; MI: Myocardial infarction; MVAC: Methotrexate, vinblastine, doxorubicin and cisplatin; NA: Not available; NOS: Not otherwise specified; NPCR: National Program of Cancer Registries; NR: Not reported; NSCLC: Non-small cell lung cancer; NSQ: Non-squamous; RCC: Renal cell carcinoma; RD: Renal disease; SACT: Systemic anticancer therapy; SCC: Squamous cell carcinoma; SCNCC: Small-cell neuroendocrine carcinoma; SD: Standard deviation; SEER: Surveillance, Epidemiology, and End Results Program; SQ: Squamous; SRCC: Signet ring cell carcinoma; SS: Superficial spreading; TNBC: Triple negative breast cancer; TNM: Tumor (T), nodes (N), and metastases (M); UC: Urothelial cancer; UICC: Union for International Cancer Control ### **Population characteristics** | Study name | Patient population | Stage at diagnosis | Sample size (N) | Age
(Year) | Gender, n
(%) | Race/
ethnicity | Stage distribution | ECOG PS | Tumor
histology | Comorbiditi es | |-----------------------|---|--------------------|-----------------|---|---|--|--|---------|--|--| | Bladder canc | er | | | | | | | | | | | Amiri 2020
(13) | All stages | All stages | 321 | NR | Male: 264
(82.20)
Female: 57
(0.177) | NR | Poorly differentiated: 217 (67.4) Well differentiated: 104 (32.4) | NR | Adenocarcino
ma: 10 (3.1)
SCC: 7 (2.1)
UC: 304 (94.7) | Yes: 116
(34.1)
No: 205
(63.8) | | Aragon-
Ching 2021 | Urothelial
carcinoma | All stages | 29743 | Median: 73 | NR | White: Caucasian: 92% African American: 4% | Stage IV: NR (8.1) | NR | NR | NR | | (14) | Non-urothelial carcinoma | All stages | 561 | Median:
72 | NR | White: Caucasian: 91% African American: 6% | Stage IV: NR (29) | NR | NR | NR | | Davies 2020 (15) | Patients with
metastatic
urothelial
cancer | Metastatic | 2,543 | Mean: 74 (SD: 11.1) | Male: 64%
Female:
36% | NR | NR | NR | Transitional cell morphology: NR (73) | Hypertensio
n: 24
Type-2
diabetes: 9 | | Fisher 2018 (1) | Patients with
stage IV
bladder cancer | Stage IV | 508 | Mean:
69.7(SD:
11.1)
Median:
71(range
: 35-92) | Male: 382
(75.2)
Female:
126 (24.8) | White:402
(79.1) Black:
78 (15.4)
Asian:1 (0.2)
Others:
Latino: 3
(0.6)
Other/undocu
mented: 24
(4.7) | ICD: Stage I: 38 (7.5); II: 63 (12.4); III: 47 (9.3); IV: 158 (31.1); Unknown: 23 (45) Undocumented: 179(35.2) | NR | NR | Diabetes:
119 (23.4)
RD: 84
(16.5)
COPD: 63
(12.4) MI:
41 (8.1)
CHF: 26
(5.1) CA:
24 (4.7 | | Study name | Patient population | Stage at diagnosis | Sample size (N) | Age
(Year) | Gender, n
(%) | Race/
ethnicity | Stage distribution | ECOG PS | Tumor
histology | Comorbiditi es | |------------|--|--------------------|-----------------|--|--|---|--|--|---|---| | | Patients with
stage IV
bladder cancer
(<65 Years) | Stage IV | 145 | Mean: 55.7(SD: 6.7) Median: 57(range: 35-64) | Male: 109
(75.2)
Female: 36
(24.8) | White: 107
(73.8) Black:
27 (18.6)
Asian: 1 (0.7)
Others:
Latino: 2
(0.6)
Other/undocu
mented: 8
(5.5) | ICD: Stage I: 10 (6.9); II: 13 (9); III: 16 (11); IV: 56 (38.6); Unknown: 8 (5.5) Undocumented: 42(29) | NR | NR | Diabetes:
27 (18.6)
RD: 13
(9.0)
COPD: 10
(6.9)
MI: 6 (4.1)
CHF: 3
(2.1)
CA: 1 (0.7) | | Omland | All patients with metastatic Urinary tract Cancer who initiated first- line chemotherapy | Overall | 952 | Median:
69 [IQR:
63-75] | Male: 686
(72.1)
Female:
266 (27.9) | NR | NR | Status 0:
341 (35.8)
Status 1:
321 (33.7)
Status 2:
135 (14.2)
Status 3: 5
(0.5) Status
unknown:
150 (15.8) | UC: 879
(92.3%) SCC:
27 (2.8%)
Adenocarcino
ma: 10 (1.1%)
SCNCC: 29
(3.0%) Other:
5 (0.5%)
Unknown: 2
(0.2%) | NR | | 2021 (16) | Patients
initiated GC as
first-line
treatment | Overall | 440 | Median:
67 [IQR:
61-71] | Male: 339
(77)
Female:
101 (23) | NR | NR | Status 0:
205 (46.6)
Status 1:
129 (29.3)
Status 2: 34
(7.7) Status
3: 1 (02)
Status
unknown:
71 (16.1) | UC: 414 (94.1%); SCC: 14 (3.2%) Adenocarcino ma: 7 (1.6%) SCNCC: 0 (0.0%) Other: 4 (0.9%) Unknown: 1 (0.2%) | NR | | Study name | Patient population | Stage at diagnosis | Sample size (N) | Age
(Year) | Gender, n
(%) | Race/
ethnicity | Stage distribution | ECOG PS | Tumor
histology | Comorbiditi es | |------------|--|--------------------|-----------------|-------------------------------|---|--------------------|--------------------|--|--|----------------| | | Patients
initiated GC
split course as
first-line
treatment | Overall | 84 | Median:
68 [IQR:
63-73] | Male: 64
(76.2)
Female: 20
(23.8) | NR | NR | Status 0: 35
(41.7)
Status 1: 34
(40.5)
Status 2: 4
(4.8) Status
3: 0 (0)
ECOG
unknown:
11 (13.1) | UC: 79
(94.0%)
SCC: 4 (4.8%)
Adenocarcino
ma: 1 (1.2%)
SCNCC: 0
Other: 0
Unknown: 0 | NR | | | Patients
initiated CaG
as first-line
treatment | Overall | 201 | Median:
72 [IQR:
66-76] | Male: 131
(65.2)
Female: 70
(34.8) | NR | NR | Status 0: 33 (21) Status 1: 48 (30.6) Status 2: 47 (29.9) Status 3: 3 (1.9) ECOG unknown: 26 (16.6) | UC: 194
(96.5%)
SCC: 5 (2.5%)
Adenocarcino
ma: 2 (1.0%)
SCNCC: 0
Other: 0
Unknown: 0 | NR | | | Patients
initiated Gem
as first-line
treatment | Overall | 157 | Median:
76 [IQR:
70-78] | Male: 104
(66.2)
Female: 53
(33.8) | NR | NR | Status 0: 33 (21) Status 1: 48 (30.6) Status 2: 47 (29.9) Status 3: 3 (1.9) ECOG unknown: 26 (16.6) | UC: 154
(98.0%)
SCC: 2 (1.3%)
Adenocarcino
ma: 0
SCNCC: 0
Other: 1
(0.6%)
Unknown: 0 | NR | | | Patients
initiated CaEto
as first-line
treatment | Overall | 35 | Median:
69 [IQR:
63-76] | Male: 25
(71.4)
Female: 10
(28.6) | NR | NR | Status 0: 20
(57.1)
Status 1: 7
(20) Status
2: 5 (14.3)
Status 3: 0
(0)
Unknown:
3 (8.6)) | UC: 8 (22.9%)
SCC: 0
Adenocarcino
ma: 0
SCNCC: 26
(74.3%)
Other: 0
Unknown: 1
(2.9%) | NR | | Study name | Patient population | Stage at diagnosis | Sample size (N) | Age
(Year) | Gender, n
(%) | Race/
ethnicity | Stage distribution | ECOG PS | Tumor
histology | Comorbiditi es | |---------------------------|---|--------------------|-----------------|-------------------------------|--|--------------------|---
---|---|---| | | Patients initiated other treatments (MVAC, vinflunine/gem citabine, cisplatin/gemci tabine/lapatini b, paclitaxel/ carboplatin, paclitaxel/ gemcitabine, and docetaxel/cispl atin/5-FU) as first-line treatment | Overall | 35 | Median:
63 [IQR:
59-71] | Male: 23
(65.7)
Female: 12
(34.3) | NR | NR | Status 0: 20
(57.1)
Status 1: 7
(20) Status
2: 5 (14.3)
Status 3: 0
(0)
Unknown:
3 (8.6)) | UC: 30
(85.7%)
SCC: 2 (5.7%)
Adenocarcino
ma: 0
SCNCC: 3
(8.6%)
Other: 0
Unknown: 0 | NR | | Sorup 2021
(17) | Patients with incident stage IV urothelial cancer | Stage IV | 620 | Median: 72.2 [IQR: 65.6-78.2] | Male: 394
(63.5)
Female:
226 (36.5) | NR | Stage IV: 620
(100) | NR | NR | NR | | Gastric cance | er | | <u> </u> | | 1 | <u> </u> | ' | | ' | <u> </u> | | Dijksterhuis
2022 (18) | Gastric
adenocarcinom
a diagnosed
with distant
interval
metastases | Overall | 164 | Median:
66 [IQR:
58-72] | Male: 98
(60)
Female: 66
(40) | NR | TNM 7 th and
8 th :
Stage I-II: 50
(30)
Stage III: 74
(45)
Stage Iva: 15
(9) | Status 0/1:
114 (69)
Status 2: 8
(5) Status
unknown:
42 (26) | Intestinal: 46 (28) Diffuse: 75 (46) Mixed: 7 (4) Indeterminate: 4 (2) Signet ring cell histology: 32 (20) | No. of comorbiditi es 0: 93 (57) No. of comorbiditi es 1: 45 (27) No. of comorbiditi es >2: 17 (10) | | Study name | Patient population | Stage at diagnosis | Sample size (N) | Age
(Year) | Gender, n | Race/
ethnicity | Stage distribution | ECOG PS | Tumor
histology | Comorbiditi
es | |------------------|-----------------------------------|--------------------|-----------------|----------------------------------|---|---|---|---------|---|--------------------------------| | | | | | | | | | | | No. Of comorbiditi es Unknown: | | | Overall | Overall | 19022 | Median:
66 | Male:
12208
(64.18)
Female:
6814
(35.82) | NR | AJCC 7 th : Stage
I: NR (21.63);
II: NR (14.92);
III: NR (22.48);
IV: NR (40.96) | NR | NR | NR | | | Patients with no liver metastases | Overall | NR | Mean:
65.74
(SD:
14.15) | Male: 9703
(80.84)
Female:
5753
(86.24) | White: 10743
(82.21)
Asian: 2413
(87.68)
African
American:
1909 (80.18) | NR | NR | Adenocarcino
ma: 11459
(79.74)
Mucinous: 327
(86.28)
SRCC: 3670
(93.53) | NR | | Qiu 2018
(19) | Patients with liver metastases | Overall | NR | Mean:
65.66
(SD:
13.20) | Male: 2300
(19.16)
Female:
918 (13.76) | White: 2325
(17.79)
Asian: 339
(12.32)
African
American:
472 (19.82) | NR | NR | Adenocarcino
ma: 2912
(20.26)
Mucinous: 52
(13.72)
SRCC:254
(6.47) | NR | | | Patients with no lung metastases | Overall | NR | Mean:
65.82
(SD:
13.95) | Male:
11148
(93.57)
Female:
6276
(94.58) | White: 12128
(93.56)
Asian: 2623
(95.76)
African
American:
2234 (93.91) | NR | NR | Adenocarcino
ma: 13322
(93.5)
Mucinous: 350
(93.09)
SRCC: 3752
(95.57) | NR | | | Patients with lung metastases | Overall | NR | Mean:
64.21
(SD:
14.52) | Male: 766
(6.43)
Female:
360 (5.42) | White: 835
(6.44) Asian:
116 (4.24)
African
American:
145 (6.09) | NR | NR | Adenocarcino
ma: 926 (6.5)
Mucinous: 26
(6.91)
SRCC: 174
(4.43) | NR | | Study name | Patient population | Stage at diagnosis | Sample size (N) | Age
(Year) | Gender, n | Race/
ethnicity | Stage distribution | ECOG PS | Tumor
histology | Comorbiditi es | |--------------------------|---|--------------------|-----------------|----------------------------------|---|---|--------------------|---------|---|----------------| | | Patients with no bone metastases | Overall | NR | Mean:
65.99
(SD:
13.93) | Male:
11302
(94.59)
Female:
6322
(95.18) | White: 12300
(94.53)
Asian: 2614
(95.47)
African
American:
2265 (95.45) | NR | NR | Adenocarcino
ma: 13624
(95.47)
Mucinous: 362
(94.52)
SRCC: 3638
(92.41) | NR | | | Patients with bone metastases | Overall | NR | Mean:
60.68
(SD:
13.99) | Male: 646
(5.41)
Female:
320 (4.82) | White: 712
(5.47) Asian:
124 (4.53)
African
American:
108 (4.55) | NR | NR | Adenocarcino
ma: 646 (4.53)
Mucinous: 21
(5.48)
SRCC: 299
(7.59) | NR | | | Patients with
no brain
metastases | Overall | NR | Mean:
65.75
(SD:
13.98) | Male:
11816
(99.05)
Female:
6590
(99.43) | White:12868
(99.02)
Asian:2717
(99.49)
African
American:
2356 (99.58) | NR | NR | Adenocarcino
ma: 14134
(99.18)
Mucinous: 376
(99.47)
SRCC: 3896
(99.19) | NR | | | Patients with brain metastases | Overall | NR | Mean:
61.34
(SD:
13.64) | Male: 113
(0.95)
Female: 38
(0.57) | White: 127
(0.98) Asian:
14 (0.51)
African
American: 10
(0.42) | NR | NR | Adenocarcino
ma: 117 (0.82)
Mucinous: 2
(0.53)
SRCC: 32
(0.81) | NR | | HNC | | | | | | | | | | | | Amarillo
2021
(20) | Patients who received treatment | All stages | 377 | NR | Study name | Patient population | Stage at diagnosis | Sample size (N) | Age
(Year) | Gender, n | Race/
ethnicity | Stage distribution | ECOG PS | Tumor
histology | Comorbiditi
es | |-------------|--------------------|------------------------------------|-----------------|---------------|--|--------------------|--|---------|--------------------|-------------------| | | NR | Overall | 36,139 | NR | NR | NR | ICD-C-O (C00-
C06): Stage I:
10383 (30.2);
II: 6627 (19.3);
III: 3954 (11.5);
IV: 13134
(38.2);
Unknown:
Other: 1766
(NR) | NR | NR | NR | | | NR | Stage 0 | 275 | Median:
55 | Male: 239
(86.9)
Female: 36
(13.1) | NR | NR | NR | NR | NR | | Ho 2019 (2) | NR | Stage I | 10,383 | Median:
53 | Male: 9158
(88.2)
Female:
1225 (11.8) | NR | NR | NR | NR | NR | | | NR | Stage II | 6,627 | Median:
54 | Male: 6037
(91.1)
Female:
590 (8.9) | NR | NR | NR | NR | NR | | | NR | Stage III | 3,954 | Median:
53 | Male: 3630
(91.8)
Female:
324 (8.2) | NR | NR | NR | NR | NR | | | NR | Stage IV | 13,134 | Median: 53 | Male:
12083 (92)
Female:
1051 (8) | NR | NR | NR | NR | NR | | | NR | Other (no
stage
information) | 1,766 | Median: 53 | Male: 1543
(87.4)
Female:
223 (12.6) | NR | NR | NR | NR | NR | | Study name | Patient population | Stage at diagnosis | Sample size (N) | Age
(Year) | Gender, n
(%) | Race/
ethnicity | Stage distribution | ECOG PS | Tumor
histology | Comorbiditi es | |--------------------------|---|--------------------|-----------------|---|--|---|---|---------|--------------------|----------------| | | Stage III or IV,
M0,
hypopharynge
al SCC
patients | Stage III or
IV | 5,272 | NR | Hochfelder
2020 (21) | Native
Hawaiian/
Pacific
Islander | Overall | 469 | Mean: 57.8 (SD: 12.3) | Male: 340
(72.5)
Female:
129 (27.5) | Native/
Hawaiian/Pac
ific
Islander: 469
(100) | NR | NR | NR | NR | | | Non-Hispanic
White | Overall | 71,110 | Mean:
62.2
(SD:
12.1) | Male: 54274 (76.3) Female:16 838 (23.7) | Non-Hispanic
White: 71110
(100) | NR | NR | NR | NR | | Neto 2021
(22) | AJCC 7 th edition | All stages | 463 | NR | NR | NR | AJCC 7 th : Stage
I: 17 (NR); II:
29 (NR); III: 54
(NR); IVA: 319
(NR); IVB: 19
(NR); IVC: 25
(NR) | NR | NR | NR | | | AJCC 8 th edition | All stages | 463 | NR | NR | NR | AJCC 8 th : Stage
I: 279 (NR); II:
94 (NR); III: 65
(NR); IV: 25
(NR) | NR | NR | NR | | Sargeran
2009
(24) | Overall | Overall | 82 | Mean: 58.6 (SD: 15.2) Median: 62 (range: 27-85) | Male: 70
(85)
Female: 12
(15) | NR | Stage I: 35 (43);
II: 17 (21); III:
11 (13); IV: 9
(11); Unknown:
10 (12) | NR | NR | NR | | Study name | Patient population | Stage at diagnosis | Sample size (N) | Age
(Year) | Gender, n
(%) | Race/
ethnicity | Stage distribution | ECOG PS | Tumor
histology | Comorbiditi es | |--------------------------|-------------------------------------|-----------------------|-----------------|--------------------------------|---|---
--|---------|--------------------|----------------| | Sargeran
2008
(23) | Overall | Overall | 82 | Mean:
61 (SD:
15) | Male: 257
(55)
Female:
213 (45) | NR | ICD 10: Stage
of tumor I: 92
(20) II: 73 (16)
III: 70 (15) IV:
167 (35) | NR | NR | NR | | Melanoma | | | | | | | | | | | | N 2020 | Stage II and III cutaneous melanoma | Stage II and
III | 169 | Median: 63.2 (range: 14-93) | Male: 106
(62.7)
Female: 63
(37.3) | NR | AJCC 8 th : Stage
II: 81(47.9),
Stage III: 88
(52.1) | NR | NR | NR | | Ngo 2020
(25) | Stage II cutaneous melanoma | Stage II | 81 | Median:
69.3 | NR | NR | NR | NR | NR | NR | | | Stage III cutaneous melanoma | Stage III | 88 | Median:
58.1 | NR | NR | NR | NR | NR | NR | | Ramond
2021
(26) | Overall patients with melanoma | All stages | 184,864 | NR | Song 2015 | Overall stage
at diagnosis | Overall | 1682 | Mean:
64 (SD:
15.3) | Male: 68%
Female:
32% | White: 91.7% Black: 1.7% Asian: 1.4% Hispanic: 4.8% Others: 0.3% (AI/ AN) Unknown: 0.2% | AJCC 6 th : Stage IIIB/C: 74 (4.40) Stage IV: Stage M1A: 212 (126) Stage M1B: 292 (17.4) Stage M1C: 1104 (65.6) | NR | NR | NR | | (4) | Stage IIIB/C at diagnosis | Stage at
diagnosis | 74 | Mean:
63.1
(SD:
18.9) | Male:
66.2%
Female:
33.8% | White: 96% Black: 1.4% Asian: 0% Hispanic: 2.7% Others: 0% (AI/AN): 0 Unknown: 0% | NR | NR | NR | NR | | Study name | Patient population | Stage at diagnosis | Sample size (N) | Age
(Year) | Gender, n
(%) | Race/
ethnicity | Stage distribution | ECOG PS | Tumor
histology | Comorbiditi es | |-----------------------------|---------------------------|-----------------------|-----------------|--------------------------------|--|---|--------------------|---------|--------------------|----------------| | | Stage IV M1A at diagnosis | Stage at diagnosis | 212 | Mean:
64.8
(SD:
16.3) | Male:
63.7%
Female:
36.3% | White: 93.4% Black: 1.9% Asian: 1.9% Hispanic: 2.4% Others: 0% (AI/ AN) Unknown: 0.5% | NR | NR | NR | NR | | | Stage IV M1B at diagnosis | Stage at diagnosis | 292 | Mean:
67.8
(SD:
13.3) | Male:
67.8%
Female:
32.2% | White: 93.5% Black: 2.4% Asian: 0% Hispanic: 4.1% Others: NR | NR | NR | NR | NR | | | Stage IV M1C at diagnosis | Stage at
diagnosis | 1104 | Mean:
62.9
(SD:
15.2) | Male: 69%
Female:
31% | White: 90.6% Black: 1.5% Asian: 1.7% Hispanic: 5.5% AI/ AN: 0.5% Unknown: 0.3% | NR | NR | NR | NR | | Tjokrowidja
ja 2021 (27) | Melanoma
overall | Overall | 59,989 | NR | Male:
33353 (55)
Female:
26636 (45) | NR | NR | NR | NR | NR | | Study name | Patient population | Stage at diagnosis | Sample size (N) | Age
(Year) | Gender, n | Race/
ethnicity | Stage distribution | ECOG PS | Tumor
histology | Comorbiditi es | |------------|---------------------|--------------------|-----------------|---------------|-----------|--------------------|--|---------|--------------------|----------------| | | Melanoma
overall | Overall | NR | NR | NR | NR | AJCC 7 th pathological stage groups: IA: 26,944 (45); IB: 18,507 (31); IIA: 4117 (7); IIB: 2829 (5) IIC: 1441 (2) Stage III: IIIA: 1160 (2) IIIB: 1463 (2) IIIC: 925 (2); IV: 2603 (4) | NR | NR | NR | | | Melanoma
overall | Overall | NR | NR | NR | NR | AJCC 8 th pathological stage groups: IA: 38,344 (64) IB: 7099 (12) Stage II: IIA: 4116 (7) IIB: 2833 (5) IIC: 1445 (2) Stage III: IIIA: 855 (1) IIIB: 909 (1) IIIC: 1730 (3) IIID: 54 (1); IV: 2604 (4) | NR | NR | NR | | Study name | Patient population | Stage at diagnosis | Sample size (N) | Age
(Year) | Gender, n
(%) | Race/
ethnicity | Stage distribution | ECOG PS | Tumor
histology | Comorbiditi
es | |--------------------|---------------------|--------------------|-----------------|------------------------------------|--|--------------------|--|---------------------------------|--|-------------------| | | Melanoma
overall | Overall | NR | NR | NR | NR | AJCC 7 th clinical stage groups: AJCC Stage I: IA: 26,944 (45) IB: 18,429 (30) Stage II: IIA: 4117 (7) IIB: 2829 (5) IIC: 1441(2) Stage III: 4048 (7) Stage IV: 2603 (4) | NR | NR | NR | | | Melanoma
overall | Overall | NR | NR | NR | NR | AJCC 8 th clinical stage groups: AJCC Stage I: IA: 32,143 (53) IB: 13,225 (22) Stage II: IIA: 4118 (7) IIB: 2835 (5) IIC: 1446 (2) Stage III: 4040 (7) Stage IV: 2604 (4) | NR | NR | NR | | Wilson 2019
(6) | Overall | Overall | 304 | Median:
60
(range:
18–93) | Male: 202
(66.4)
Female:
102 (33.6) | NR | AJCC 7 th stage: IA: 25 (8.2); IB: 71 (23.4); IIA: 30 (9.9); IIB: 41 (13.5); IIC: 28 (9.2); IIIA: 29 (9.5); IIIB: 46 (15.1); IIIC: 34 (11.2). | ECOG
status 0:
204 (77.9) | AL: 19 (8.1)
Nodular: 123
(52.6) SS: 69
(29.5) Other:
23 (9.8) | NR | | Study name | Patient population | Stage at diagnosis | Sample size (N) | Age
(Year) | Gender, n
(%) | Race/
ethnicity | Stage distribution | ECOG PS | Tumor
histology | Comorbiditi
es | |----------------------------|---|--------------------|-----------------|------------------------------------|--|--------------------|--|--------------------------------|--|-------------------| | | Stage I at diagnosis | Stage I | 96 | Median: 55 (range: 18–82) | Male: 64
(66.7)
Female: 32
(33.3) | NR | AJCC 7 th stage:
IA: 25 (26)
IB: 71 (74) | ECOG
status 0: 67
(80.7) | AL: 5 (7.8)
Nodular: 16
(25.0); SS: 38
(59.4); Other:
5 (7.8) | NR | | | Stage II at diagnosis | Stage II | 99 | Median:
67
(range:
31–93) | Male: 69
(69.7)
Female: 30
(30.3) | NR | AJCC 7 th stage:
Stage II: Stage
IIA: 30 (30.3);
IIB: 41 (41.4);
IIC: 28 (28.3). | ECOG
status 0: 72
(79.1) | AL: 4 (4.5)
Nodular: 57
(64.0)
SS: 13 (14.6)
Other: 15
(16.9) | NR | | | Stage III at diagnosis | Stage III | 109 | Median: 57 (range: 20–84) | Male: 69
(63.3)
Female: 40
(36.7) | NR | AJCC 7 th stage:
IIIA: 29 (26.6);
IIIB: 46 (42.2);
IIIC: 34 (31.2) | ECOG
status 0: 65
(73.9) | AL: 10 (12.3)
Nodular: 50
(61.7) SS: 18
(22.2) Other: 3
(3.7) | NR | | Winge-Main
2020
(28) | Patients with cutaneous melanoma | Overall | 4,339 | Median:
72
(range:
60-82) | Male:
57.9%
Female:
42.1% | NR | ICD-10,
AJCC8: Stage
II: NR (IIB:
35.7; IIC: 17.7)
(IIIA: 4; IIIB:
8.2; IIIC: 18.8;
IIID: 2.7); IV:
NR (13) | NR | NR | NR | | NSCLC | | | | | | | | | | | | Abrão 2021
(29) | NSCLC
Overall | Overall | 1,278 | NR | Male: 684
(53.5)
Female:
594 (46.5) | NR | TNM 6 th and 7 th : Stage I: 853 (66.7); II: 425 (33.3) | NR | NR | NR | | Abrão 2022
(30) | Overall patients treated with surgery or radiotherapy | Stage I | 681 | Mean:
64.5
(SD:
10.3) | Male: 353
(51.8)
Female:
328 (48.2) | NR | NR | NR | NR | NR | | Azzouqa
2019
(31) | Patients with
newly
diagnosed
NSCLC | All stages | 10,010 | Median: | Male: 53%
Female:
47% | NR | NR | NR | NR | NR | | Study name | Patient population | Stage at diagnosis | Sample size (N) | Age
(Year) | Gender, n
(%) | Race/
ethnicity | Stage distribution | ECOG PS | Tumor
histology | Comorbiditi es | |---------------------------|---|---|-----------------|---------------------------|--|--------------------|---|---|--|----------------| | Berglund
2012
(7) | Early stage
NSCLC | Stages IA-IIB | 1,828 | NR | Cerqueira
2022
(32) | Stage III/IV at diagnosis | Stage III/IV | 10,440 | NR | Male:
58.5%
Female:
41.5% | NR | Stage IV:
72.2% | NR | NR | NR | | | NSCLC stage
I-IIIA with
EGFR
mutation
status-
Negative | EGFR
mutation
status-
Negative | 3710 | NR | Male: 1623
(43.7)
Female:
2087 (56.3) | NR | Stage I: Stage IA: 1437 (38.73) Stage IB: 673 (18.14) Stage II: Stage IIA: 188 (5.07) Stage IIB: 591 (15.93) Stage III: 821 (22.12) | Status 0:
1896 (54.6)
Status1-2:
1443 (41.6)
Status >2:
133 (3.8)
Missing:
238 (6.4) | Adenocarcino
ma: 3174
(85.6)
Other: 536
(14.4) | NR | | Ehrenstein
2022
(8) | NSCLC stage
I-IIIA with
EGFR
mutation
status-Positive | EGFR
mutation
status-
Positive | 361 | NR | Male: 107
(29.6)
Female:
254 (70.4) | NR | Stage I: Stage IA: 166 (45.98) Stage IB: 81 (22.44) Stage II: Stage IIA: 9 (2.49) Stage IIB: 43
(11.91) Stage III: 62 (17.17) | Status 0:
225 (67.8)
Status1-2:
104 (31.3)
Missing: 29
(8) | Adenocarcino
ma: 331 (91.7)
Other: 30 (8.3) | NR | | | Stage I-IIIA
NSCLC | Stage I-IIIA
NSCLC | 8758 | NR | Male: 4309
(49.2)
Female:
4449 (50.8) | NR | NR | Status 0:
4243 (52.7)
Status 1-2:
3451 (42.8)
Missing:
700 (8) | Adenocarcino
ma: 4671
(53.3)
Other: 4087
(46.7) | NR | | Ekman 2019
(33) | Patients with incident NSCLC | All stages | 2,779 | Median: 70 (range: 22–96) | Male: 48.5% Female: 51.5% | NR | Stage I: (NR)
19.3; II: (NR)
7.7; IIIA: (NR)
12.3; IIIB: (NR)
7.2; IV: (NR)
51.2 | NR | Non-SCC:
(NR) 70.9
SCC: (NR)
17.7 Other:
(NR) 11.4 | NR | | Study name | Patient population | Stage at diagnosis | Sample size (N) | Age
(Year) | Gender, n
(%) | Race/
ethnicity | Stage distribution | ECOG PS | Tumor
histology | Comorbiditi es | |---------------------------|---|--------------------|-----------------|------------------------------------|--|---|--|---|--|----------------| | Flores 2021
(9) | NSCLC
Overall | Overall | 312,382 | Median:
68
(range:
60-76) | Male:
166657
(53.4)
Female:
145725
(46.7) | White:24906
2 (79.7)
Black: 38201
(12.2)
Others:
24345 (7.8) | NR | NR | Squamous cell
carcinoma:
81,948 (26.2),
Adenocarcino
ma: 163,086
(52.2), Other
NSCLC:
67,348 (21.6) | NR | | Greystoke
2021
(34) | Patients with NSCLC with a record of systemic treatment in the SACT database of the Public Health England's CAS | Stage I-III | 40,180 | Median:
67 | Male: 55%
Female:
45% | White:
Caucasian:
90% | Stage IB-IIIB:
5%
Non-resected
Stage IIIB: 15%
Stage IV: 55% | NR | NR | NR | | Jazieh 2021
(35) | Patients de
novo locally
advanced stage
III NSCLC | Stage III | 3151 | Median:
63
(range:
21-92) | Male: 2411
(76.5)
Female:
740 (23.5) | NR | AJCC 7 th : Stage
I: NA (NA)
Stage III:3151
(100); IIIA:
1568 (55.9);
IIIB: 1239
(55.9) | Status 0:
663 (30.3)
Status 1:
1278 (58.4)
Status ≥2:
246 (11.3) | Adenocarcino ma: 1665 (53.7) SCC/EC: 1134 (36.6) Other: 96 (3.1) Large cell carcinoma: 61 (2.0) Mixed: 34 (1.1) Bronchiole- alveolar: 14 (0.5) | NR | | Study name | Patient population | Stage at diagnosis | Sample size (N) | Age
(Year) | Gender, n
(%) | Race/
ethnicity | Stage distribution | ECOG PS | Tumor
histology | Comorbiditi es | |--------------------------|---|-------------------------------------|-----------------|------------------------------------|---|--------------------|---|--|--|----------------| | | Stage III
NSCLC –
Africa and
Middle East | Stage III | 1046 | Median:
61
(range:
24-89) | Male: 870
(83.2)
Female:
176 (16.8) | NR | AJCC 7 th : Stage
I: NA (NA); III:
1046 (100);
IIIA: 489
(58.9); IIIB:
341 (41.1);
Unknown: NA
(NA) | Status 0:
303 (33.9)
Status 1:
489 (54.7)
Status ≥2:
102 (11.4) | Adenocarcino ma: 480 (47.8) SCC/EC: 432 | NR | | | Stage III
NSCLC – Asia | Stage III | 1874 | Median:
63
(range:
24-92) | Male: 1401
(74.8)
Female:
473 (25.2) | NR | AJCC 7 th : Stage
I: NA (NA); III:
1874 (100);
IIIA: 976
(54.7); IIIB:
808(45.3);
Unknown: NA
(NA) | Status 0:
295 (25.5)
Status 1:
735 (63.4)
Status ≥2:
129 (11.1) | Adenocarcino ma: 1039 (55.7) SCC/EC: 648 (34.7) Other: 76 (4.1) LCC: 24 (1.3) Mixed: 19 (1.0) Bronchiole- alveolar: 3 (0.2) | NR | | | Stage III
NSCLC –
Latin America | Stage III | 231 | Median:
65
(range:
21-89) | Male: 140
(60.6)
Female: 91
(39.4) | NR | AJCC 7 th : Stage
I: NA (NA); III:
231 (100); IIIA:
103 (53.4);
IIIB: 90 (46.6) | Status 0: 65
(48.5)
Status 1: 54
(40.3)
Status ≥2:
15 (11.2) | Adenocarcino
ma: 146 (64.0)
SCC/EC: 54
(23.7)
Other: 11 (4.8)
LCC: 10 (4.4)
Mixed: 2 (0.9)
Bronchiole-
alveolar: 0 | NR | | Kalilani
2022
(36) | Patients with
advanced stage
NSCLC
identified from
SEER
database | Advanced
stage (Stage
III/IV) | 182,693 | NR | NR | NR | Stage III:
49,298
Stage IV:
133,395 | NR | NR | NR | | Study name | Patient population | Stage at diagnosis | Sample size (N) | Age
(Year) | Gender, n
(%) | Race/
ethnicity | Stage distribution | ECOG PS | Tumor
histology | Comorbiditi
es | |----------------------------------|---|-------------------------------------|-----------------|---------------|--|--------------------|--|--|--|-------------------| | | Patients with
advanced stage
NSCLC
identified from
Flatiron
database | Advanced
stage (Stage
III/IV) | 4,358 | NR | NR | NR | Stage IIIB:
1,045
Stage IIIC: 130
Stage IV: 3,210 | NR | NR | NR | | | NSCLC Stage
III/IV | Stage III/IV | 10,306 | NR | Male: 5878
(57)
Female:
4428 (43) | NR | NR | Status 0:
2659 Status
1: 3159
ECOG >2:
192
Unknown:
3529 | NR | NR | | | NSCLC Stage
III | Stage III | 5038 | Median:
68 | NR | NR | NR | NR | Adenocarcino
ma: 5696
SCC: 2742
LCC: 1580
Other: 288 | NR | | Klarenbeek
2022 (37) | NSCLC Stage
III
Chemoradioth
erapy | Stage III | 2,772 | NR | Male: 1600
(58)
Female:
1172 (42) | NR | NR | Status 0:
870 (31)
Status 1:
858 (31); 2:
116 (5);
>2: 16 (1)
Unknown:
912 (32) | Adenocarcino
ma: 1129 (41)
SCC: 1100
(40)
LCC: 506 (19)
Other: 37 (0) | NR | | | NSCLC Stage
III
Radiotherapy | Stage III | 1,359 | NR | Male: 861
(63)
Female:
498 (37) | NR | NR | Status 0:
226 (17)
Status 1:
338 (25)
Status 2:
211 (16);
>2: 91 (6)
Unknown:
493 (46) | Adenocarcino
ma: 434 (32)
SCC: 572 (42)
LCC: 191 (14)
Other: 162
(12) | NR | | Study name | Patient population | Stage at diagnosis | Sample size (N) | Age
(Year) | Gender, n | Race/
ethnicity | Stage
distribution | ECOG PS | Tumor
histology | Comorbiditi es | |-------------------------|---|---------------------------|-----------------|---------------|--|--------------------|-----------------------|--|--|----------------| | | NSCLC Stage
III systemic
therapy | Stage III | 907 | NR | Male: 513
(57)
Female:
394 (43) | NR | NR | Status 0:
213 (23)
Status 1:
272 (30); 2:
69 (8); >2:
11 (1)
Unknown:
342 (38) | Adenocarcino
ma: 414 (46)
SCC: 313 (35)
LCC:156 (16)
Other: 24 (3) | NR | | | NSCLC Stage
IV | Stage IV | NR | Median:
67 | NR | NR | NR | NR | NR | NR | | | Stage IV
systemic
therapy | Stage IV | 5268 | NR | Male: 2904
(55)
Female:
2364 (45) | NR | NR | Status 0:
1350(26)
Status 1:
1691 (32);
2: 371 (7);
>2: 74 (1)
Unknown:
1782 (34) | Adenocarcino
ma: 3719 (71)
SCC: 757 (14)
LCC: 727 (14)
Other: 65 (1) | NR | | Komiya
2020 | Patients with
unresectable
stage III
NSCLC with
T0 status | Unresectable stage III | 458 | NR | (38) | Patients with
unresectable
stage III
NSCLC with
T1-4 status | Unresectable
stage III | 84,263 | NR | Luciano
2020
(39) | Advanced
stage (stage
III/IV)
NSCLC
patients | Stage III/IV | NR | Study name | Patient population | Stage at diagnosis | Sample size (N) | Age
(Year) | Gender, n
(%) | Race/
ethnicity | Stage distribution | ECOG PS | Tumor
histology | Comorbiditi es | |--------------------------|---|--|-----------------|------------------------------------|---|--|--|--
--|----------------| | Martin 2022 | Patients with
LA Stage III
NSCLC
classified
according to
7 th and 8 th
edition AJCC | Stage III | 231 | Median:
65
(range:
21-89) | Male: 140
(60.6)
Female: 91
(39.4) | White: 69 (29.9) Asian: East Asian: 1 (0.4) Hispanic: 23 (10) Others: Mestizo: 58 (25.1) Mixed: 11 (4.8) Other: 1 (0.4) Unknown: 68 (29.4) | AJCC 7 th and
8 th : Stage III:
Stage IIIA: 122
(52.81) Stage
IIIB: 106
(45.89) Stage
Unknown: 3
(1.29) | Status 0: 65
(48.5)
Status 1: 54
(40.3) | Adenocarcino
ma: 146
(64.0); SCC/
EC: 54 (23.7)
Other: 11 (4.8)
LCC: 10 (4.4)
Mixed: 2 (0.9) | NR | | (40) | Patients with LA Stage IIIA NSCLC classified according to 7th edition AJCC | Stage III | 193 | NR | NR | NR | AJCC 7th: Stage
III: Stage IIIA:
103 (53.4)
Stage IIIB: 90
(46.6) | NR | NR | NR | | | Patients with LA Stage IIIB NSCLC classified according to 8th edition AJCC | Stage III | 35 | NR | NR | NR | AJCC 8 th : AJCC Stage III: Stage IIIA: 19 (54.29) Stage IIIB: 16 (45.71) | NR | NR | NR | | Monteiro
2022
(10) | Overall | Early stage NSCLC (clinical stages I-IIIA) | 91 | Mean:
62
(range:
29-83) | Male: 40
(44)
Female: 51
(56) | White: 57
(62.6)
Others: Non-
white: 34
(37.4) | AJCC 7th:
AJCC Stage I:
Stage IA: 23
(25.3); IB: 27
(29.7) Stage
IIA: 15 (16.5);
IIB: 11 (12.1);
IIIA: 15 (16.5) | Status 0: 33
(36.3)
Status 1: 58
(63.7) | Adenocarcino
ma: 61 (67)
SCC: 25 (27.5)
Other: 5 (5.5) | NR | | Study name | Patient population | Stage at diagnosis | Sample size (N) | Age
(Year) | Gender, n | Race/
ethnicity | Stage distribution | ECOG PS | Tumor
histology | Comorbiditi
es | |---------------------------|---|--------------------|--|-------------------------|--|---|--|---------|--|-------------------| | Potter 2022
(41) | Overall | Stage I-IV | 2010-
2013:
n=314,107
2014-
2018:
n=449,367 | NR | Male: NR
(2010-
2013: 52.3;
2014-2018:
50.8)
Female: NR
(2010-
2013: 47.7;
2014-2018:
49.2) | White:2010-2013: 247,136 (78.6); 2014-2018: 357,862 (79.6) Black: 2010-2013: 37107 (11.8); 2014-2018: 52816 (11.8) Asian:2010-2013: 7236 (2.3); 2014-2018: 12726 (2.8) Hispanic: 2010-2013: 17326 (5.5); 2014-2018: 17014 (3.8) | ICD-0-3: Stage I: 2010-2013: 86 609 (27.6) 2014-2018: 144 744 (32.2) Stage II: 2010-2013: 27,405 (8.7) 2014-2018: 38,538 (8.6) Stage III: 2010-2013: 63,004 (201) 2014-2018: 85,029 (18.9) Stage IV: 2010-2013: 137 089 (43.6) 2014-2018: 181 056 (40.3) | NR | Adenocarcino ma: 2010- 2013: 153,268 (48.8); 2014- 2018: 245,321 (54.6); SCC: 2010-2013: 88400 (28.1); 2014-2018: 126441 (28.1); LCC: 2010-2013: 7076 (2.3); 2014-2018: 7400 (1.6); ASCC: 2010-2013: 5071 (1.6); 2014-2018: 6402 (1.4); Carcinoid tumor: 2010-2013: 11211 (3.6); 2014-2018: 17563 (3.9); BC: 2010-2013:13558 (4.3); 2014-2018: 14755 (3.3) | NR | | Rittberg 2021 (42) | Patients
diagnosed with
stage IV
NSCLC | Stage IV | 3,601 | Mean:
62 (SD:
NR) | Male: 53%
Female:
47% | NR | Stage IV: 3,601 (100) | NR | NR | NR | | Study name | Patient population | Stage at diagnosis | Sample size (N) | Age
(Year) | Gender, n | Race/
ethnicity | Stage distribution | ECOG PS | Tumor
histology | Comorbiditi es | |-------------------|--------------------|--------------------|-----------------|---|--|--------------------|---|---------|--|----------------| | | Overall | Overall | 3739 | Mean: 72.3 (SD: 10.9) Median: 73 (range: 18-101) [IQR: 65-80] | Male: 1881
(50.3)
Female:
1858 (49.7) | NR | UICC 6 th : Stage
I: 717 (19.2)
Stage II: 434
(11.6) Stage
IIIA: 469 (12.5)
Stage IIIB: 337
(9.0) Stage IV:
1782 (47.7) | NR | Adenocarcino ma (NSQ): 1019 (27.3) Other NSQ: 93 | NR | | Snee 2021
(11) | NSQ NSCLC | NSQ | 1112 | Mean: 68.6 (SD: 11) Median: 69 (range: 31-101) [IQR: 62-77] | Male: 519
(46.7)
Female:
593 (53.3) | NR | UICC 6th: Stage
I: 223 (20.1)
Stage II: 113
(10.2) Stage
IIIA: 110 (9.9)
Stage IIIB: 89
(8.0) Stage IV:
577 (51.9) | NR | Adenocarcino
ma (NSQ):
1019 (27.3)
Other NSQ: 93
(8.4) | NR | | | SQ NSCLC | SQ | 819 | Mean: 70.8 (SD: 9.4) Median: 71 (range: 33-96) [IQR: 64-77] | Male: 505
(61.7)
Female:
314 (38.3) | NR | UICC 6th: Stage
I: 127 (15.5)
Stage II: 132
(6.1) Stage
IIIA: 164 (20)
StageIIIB:117(1
4.3) Stage IV:
279 (34.1) | NR | 819 (100.0) | NR | | Study name | Patient population | Stage at diagnosis | Sample size (N) | Age
(Year) | Gender, n
(%) | Race/
ethnicity | Stage
distribution | ECOG PS | Tumor
histology | Comorbiditi
es | |------------|---|---|-----------------|--|--|--------------------|---|---------|--------------------|-------------------| | | NSCLC NOS
(not otherwise
specified)
NSCLC | NSCLC NOS | 430 | Mean: 68.9 (SD: 10.6) Median: 69 (range: 18-92) [IQR: 63-77] | Male: 220
(50.1)
Female:
210 (49.9) | NR | UICC 6 th : Stage
I: 30 (6.8) Stage
II: <40 (<9.1)
Stage IIIA: 54
(12.3) Stage
IIIB: <55
(<12.3) Stage
IV: 263 (59.9) | NR | 439 (100.0) | NR | | | Other NSCLC | Other
NSCLC | 88 | Mean: 70.1 (SD: 10.7) Median: 71 (range: 42-91) [IQR: 63-78] | Male: 49
(55.7)
Female: 39
(44.3) | NR | UICC 6 th : Stage
I: 19 (21.6)
Stage II: <13
(<14.8) Stage
IIIA: 8 (9.1)
Stage IIIB: <5
(<6.0) Stage IV:
47 (53.4) | NR | 88 (100.0) | NR | | | Clinically
diagnosed
NSCLC with
unknown
pathology | Clinically
diagnosed
NSCLC with
unknown
pathology | 1281 | Mean: 78 (SD: 9.3) Median: 79 (range: 43-99) [IQR: 72-85] | Male: 588
(45.9)
Female:
693 (54.1) | NR | UICC 6 th : Stage
I: 318 (24.8)
Stage II: 137
(10.7) Stage
IIIA: 133 (10.4)
Stage IIIB:77
(6) Stage IV:
616 (48.1) | NR | 1281 (100.0) | NR | | | Overall
NSCLC during
– 2007 | Overall | 255 | NR | NR | NR | UICC 6 th : Stage
I: NR (9.8); II:
NR (18); IIIA:
NR (16.5);
IIIB:NR (11.0);
IV: NR (44.7) | NR | NR | NR | | Study name | Patient population | Stage at diagnosis | Sample size (N) | Age
(Year) | Gender, n
(%) | Race/
ethnicity | Stage distribution | ECOG PS | Tumor
histology | Comorbiditi es | |------------|-----------------------------------|--------------------|-----------------|---------------|------------------|--------------------|---|---------|--------------------|----------------| | | Overall
NSCLC during
- 2008 | Overall | 270 | NR | NR | NR | UICC 6 th : Stage
I: NR (10); II:
NR (15.6);
IIIA: NR
(15.6); IIIB: NR
(13.3); IV: NR
(45.6) | NR | NR | NR | | | Overall
NSCLC during
– 2009 | Overall | 346 | NR | NR | NR | UICC 6 th : Stage
I: NR (8.1); II:
NR (16.8); III:
NR (17.3); IIIB:
NR (11.0); IV:
NR (46.8) | NR | NR | NR | | | Overall
NSCLC during
- 2010 | Overall | 342 | NR | NR | NR | UICC 6 th : Stage
I: NR (16.4); II:
NR (8.8); IIIA:
NR (12.0); IIIB:
NR (5.9); IV:
NR (57) | NR | NR | NR | | | Overall
NSCLC during
- 2011 | Overall | 347 | NR | NR | NR | UICC 6 th : Stage
I: NR (18.4); II:
NR (9.2); IIIA:
NR (9.8); IIIB:
NR (8.9); IV:
NR (53.6) | NR | NR | NR | | | Overall
NSCLC during
- 2012 | Overall | 385 | NR | NR | NR | UICC 6 th : Stage
I: NR (19); II:
NR (7); IIIA:
NR (9.6); IIIB:
NR (10.7); IV:
NR (53.8) | NR | NR | NR | | | Overall
NSCLC during
- 2013 | Overall | 372 | NR | NR | NR | UICC 6 th : Stage
I: NR (21); II:
NR (12.1);
IIIA: NR (9.7);
IIIB: NR (8.6);
IV: NR (48.7) | NR | NR | NR | | Study name | Patient population | Stage at diagnosis | Sample size (N) | Age
(Year) | Gender, n | Race/
ethnicity | Stage distribution | ECOG PS | Tumor
histology | Comorbiditi es | |---------------------
--|--------------------|-----------------|---|--|--------------------|---|---------|---|----------------| | | Overall
NSCLC during
- 2014 | Overall | 364 | NR | NR | NR | UICC 6 th : Stage
I: NR (25.5); II:
NR (10.7);
IIIA: NR (11);
IIIB: NR (7.4);
IV: NR (45.3) | NR | NR | NR | | | Overall
NSCLC during
- 2015 | Overall | 356 | NR | NR | NR | UICC 6 th : Stage
I: NR (25.8); II:
NR (10.7);
IIIA: NR
(11.8); IIIB: NR
(8.7); IV: NR
(43) | NR | NR | NR | | | Overall
NSCLC during
– 2016 | Overall | 407 | NR | NR | NR | UICC 6 th : Stage
I: NR (24.8); II:
NR (11.1);
IIIA: NR
(11.8); IIIB: NR
(7.4); IV: NR
(45) | NR | NR | NR | | | Overall NSCLC during - 2017 (Diagnosed up to 31 August 2017) | Overall | 289 | NR | NR | NR | UICC 6 th : Stage
I: NR (27.7); II:
NR (10.4);
IIIA: NR
(14.9); IIIB: NR
(8.0); IV: NR
(39.1) | NR | NR | NR | | Soares 2021
(43) | Overall (2012-
2016 cohort) | Overall | 495 | Mean:
66.5
(SD:
10.1)
Median:
67
(range:
34-88)
[IQR:
59-74] | Male: 369
(74.5)
Female:
126 (25.5) | NR | International
Association for
the Study of
Lung Cancer 7 th
edition of
TNM: Stage I:
174 (35.2); II:
86 (17.4); IIIA:
235 (47.5) | NR | NSQ: 291
(58.8)
SQ: 167 (33.7)
NSCLC NOS:
21 (4.2)
Other: 16 (3.2) | NR | | Study name | Patient population | Stage at diagnosis | Sample
size (N) | Age
(Year) | Gender, n
(%) | Race/
ethnicity | Stage distribution | ECOG PS | Tumor
histology | Comorbiditi
es | |-------------------------|--|--------------------|--------------------|---|---|--------------------|---|---------|---|--| | | Overall (2015-2016 cohort);
treated patients | Overall | 199 | Mean:
66.5
(SD: 9.9)
Median:
68
(range:
34-86)
[IQR:
59-74] | Male: 149
(74.9)
Female: 50
(25.1) | NR | International Association for the Study of Lung Cancer 7 th edition of TNM: Stage I: 77 (38.7); II: 33 (16.6); IIIA: 89 (44.7) | NR | NSQ: 119
(59.8)
NSQs: 68
(34.2)
NSCLC NOS:
7 (3.5)
Other: 5 (2.5) | NR | | | Stage I-II
(2015-2016
cohort);
treated
patients;
diagnosed at
stage I–II | Stage I-II | 102 | Mean: 66.8 (SD: 9.1) Median: 67 (range: 34-85) [IQR: 60-73] | Male: 74
(72.5)
Female: 28
(27.5) | NR | International Association for the Study of Lung Cancer 7 th edition of TNM: Stage I: 72 (70.6); II: 30 (29.4) | NR | NSQ: 68
(66.7)
SQ: 28 (27.4)
NSCLC NOS:
Masked
Other: Masked | NR | | | Stage IIIA
(2015-2016
cohort);
treated
patients;
diagnosed at
stage IIIA | Stage IIIA | 78 | Mean:
64 (SD:
10.1)
Median:
63
(range:
38-83)
[IQR:
57-72] | Male: 59
(75.6)
Female: 19
(24.4) | NR | International Association for the Study of Lung Cancer 7 th edition of TNM: Stage IIIA: 78 (100) | NR | NSQ: 41
(52.6)
SQ: 33 (42.3)
NSCLC NOS:
Masked
Other: Masked | NR | | Suipyte
2019
(44) | Elderly and young patients with NSCLC | Stage IV | 499 | NR | Vachani
2021
(45) | Newly
diagnosed
patients | All stages | 125,330 | Mean: 76.3 | Male: 51%
Female:
49% | NR | NR | NR | NR | HTN: 88%
CPD: 52%
Diabetes:
45% | | Study name | Patient population | Stage at diagnosis | Sample size (N) | Age
(Year) | Gender, n
(%) | Race/
ethnicity | Stage distribution | ECOG PS | Tumor
histology | Comorbiditi es | |-------------------------|---|--------------------|-----------------|------------------------------------|--|--------------------|--|--|--|----------------| | Van Dao
2022
(46) | Patients de
novo locally
advanced stage
III NSCLC in
Vietnam as per
subgroup (7 th
Edition AJCC) | Stage III | 149 | Median:
60
(range:
26-82) | Male: 113
(75.3)
Female: 37
(24.66) | NR | AJCC 7 th : Stage
III: Total stage
III: 149 (100);
IIIA: 65 (43.6);
IIIB: 84 (56.4) | Status ≤1:
33 (75)
Status ≥2:
11 (25) | Adenocarcino
ma: 90 (62.5)
Epidermoid or
SCC: 38 (26.4)
LCC: 9 (6.2)
Other: 4 (2.8)
Mixed: 3 (2.1) | NR | | RCC | | I | | | | I | | | I | | | Haas 2022a
(47) | Patients with
newly
diagnosed,
intermediate-
high risk (pT2
N0 high grade,
pT3 N0 any
grade) or high-
risk (pT4 N0
any grade, pT
any N1 any
grade) RCC | Overall | 643 | Mean:
75.5
(SD:
NR) | Male: 61%
Female:
39% | White: 86% | NR | NR | NR | NR | | Haas 2022b (48) | Patients
stratified into
intermediate-
high (pT2N0
high grade,
pT3N0) or
high risk
(pT4N0,
pTanyN1)
RCC | Overall | 274 | Median:
63.5 | Male: NR
(66)
Female: NR
(34) | White: 78% | NR | NR | NR | NR | | Study name | Patient population | Stage at diagnosis | Sample size (N) | Age
(Year) | Gender, n | Race/
ethnicity | Stage distribution | ECOG PS | Tumor
histology | Comorbiditi es | |--------------|------------------------|--------------------|-----------------|---|---|--|--------------------|---------|--------------------|----------------| | | Overall | Overall | 25,145 | Median:
60 [IQR:
52.00-
69.00] | Male:
15792
(62.8)
Female:
9353 (37.2) | White: 23559
(93.69)
Asian: 1586
(6.31)
Chinese: 274
(1.1)
Japanese: 189
(0.8) South
Asian: 164
(07) Other
Asian: 959
(3.8) | NR | NR | NR | NR | | | Overall –
White | Overall | 23,559 | Median:
60 [IQR:
52.00-
69.00] | Male:
14703
(62.41)
Female:
8856
(37.59) | White: 23559 (100) | NR | NR | NR | NR | | Li 2021 (49) | Overall –
Asian | Overall | 1586 | Median:
61 [IQR:
52.00-
70.00] | Male: 1089
(68.66)
Female:
497 (31.34) | Asian:
Total: 1586
Chinese: 274
Japanese: 189
South Asian:
164
Other Asian:
959 (100) | NR | NR | NR | NR | | | Asian –
Chinese | Overall | 274 | Median:
64 [IQR:
54.00-
72.75] | Male: 193
(70.44)
Female: 81
(29.56) | NR | NR | NR | NR | NR | | | Asian –
Japanese | Overall | 189 | Median:
65 [IQR:
55.00-
74.00] | Male: 135
(71.43)
Female: 54
(28.57) | NR | NR | NR | NR | NR | | | Asian – South
Asian | Overall | 164 | Median:
56 [IQR:
46.00-
65.00] | Male: 120
(73.17)
Female: 44
(26.83) | NR | NR | NR | NR | NR | | Study name | Patient population | Stage at diagnosis | Sample size (N) | Age
(Year) | Gender, n
(%) | Race/
ethnicity | Stage distribution | ECOG PS | Tumor
histology | Comorbiditi es | |----------------------------|---|--------------------|-----------------|---|--|--|--------------------|---------|---|----------------| | | Asian – Other
Asian | Overall | 959 | Median:
61 [IQR:
52.00-
69.00] | Male: 641
(66.84)
Female:
318 (33.16) | NR | NR | NR | NR | NR | | TNBC | | | | | | | | | | | | | Metastatic
TNBC – all
patients | Metastatic
TNBC | 625 | Mean: 76.8 (SD: 7.3) | Male: 0 (0)
Female:
625 (100) | White: Non-Hispanic white: 454 (72) Black: Non-Hispanic black: 119 (19) Hispanic:38 (6) Others: 14 (2) | NR | NR | Tumor size,
mean (SD)
115.5 (243) | NR | | Aly 2019a
(50) | Metastatic
TNBC – No
chemotherapy | Metastatic
TNBC | 308 | Mean:
79 (SD:
7.7) | Male: 0 (0)
Female:
308 (100) | White: Non-Hispanic white: 221 (71) Black: Non-Hispanic black: 65 (21) Hispanic:11 (3) Others: 11 (3) | NR | NR | Tumor size,
mean (SD)
93.8 (203) | NR | | | Metastatic
TNBC – 1R
only (Patients
who received
only one
regimen) | Metastatic
TNBC | 161 | Mean: 75.7 (SD: 6.6) | Male: 0 (0)
Female:
161 (100) | White: Non-Hispanic white: 115 (71) Black: Non-Hispanic black: 30 (18) | NR | NR | Tumor size,
mean (SD)
131.5 (268) | NR | | | Metastatic TNBC – 2R only (Patients who received only two regimens) | Metastatic
TNBC | 88 | Mean: 73.5 (SD: 5) | Male: 0 (0)
Female: 88
(100) | White: Non-
Hispanic
white: 69 (78)
Black:
Non-
Hispanic
black: 11 (12) | NR | NR | Tumor size,
mean (SD)
118.5 (257) | NR | | Study name | Patient population | Stage at diagnosis | Sample size (N) | Age
(Year) | Gender, n
(%) | Race/
ethnicity | Stage distribution | ECOG PS | Tumor
histology | Comorbiditi es | |-----------------------------------|---|--------------------|-----------------|------------------------------------|------------------------------------|---|--|---------|--|----------------| | | Metastatic
TNBC – 3R+
(Patients who
received three
or more
regimens) | Metastatic
TNBC | 68 | Mean: 73.7 (SD: 5.8) | Male: 0 (0)
Female: 68
(100) | White: Non-
Hispanic
white: 49 (72)
Black: Non-
Hispanic
black: 13 (19) | NR | NR | Tumor size,
mean (SD)
170.5 (314) | NR | | | Early stage at diagnosis of TNBC | Early stage | 707 | NR | Gogate 2022
(51) | Systemically
treated patients
with early
stage TNBC | Early stage | 462 | Median:
59 | NR | White:283 (61.3) Asian:9 (1.9) Hispanic: Hispanic or Latino: 1 (0.2) Others: Black or African American: 83 (18.0) | Tumor grade at initial diagnosis: Grade 1: 5 (1.1) Grade 2: 88 (19.0) Grade 3: 365 (79.0) Unknown: 4 (0.9) | NR | IDC: 423
(91.6) ILC: 7
(1.5) IDM and
ILM: 3 (0.6)
MA: 0 (0.0)
Other: 26 (5.6)
Unknown: 3
(0.6) | NR | | Lehrberg
2021
(52) | Breast cancer
White
American | Overall | 1,391 | Mean:
61.6
(range:
23-91) | NR | White: 1391
(100) | NR | NR | Non-TNBC,
Her2-: 905
(65.1) Non-
TNBC, Her2+:
213 (15.3)
TNBC: 145
(10.4)
Missing: 128
(9.2) | NR | | Study name | Patient population | Stage at diagnosis | Sample size (N) | Age
(Year) | Gender, n | Race/
ethnicity | Stage distribution | ECOG PS | Tumor
histology | Comorbiditi es | |--------------------------|--------------------------------------|------------------------|-----------------|------------------------------------|-----------|--|--------------------|---------|--|---| | | Breast cancer
African
American | Overall | 907 | Mean:
60.1
(range:
21-92) | NR | African
American:
907 (100) | NR | NR | Non-TNBC,
Her2-: 494
(54.5) Non-
TNBC, Her2+:
152 (16.8)
TNBC: 141
(15.5)
Missing: 120
(13.2) | NR | | | Breast cancer
White
American | Sentinel node negative | 526 | Mean:
61.8
(range:
31-91) | NR | White: 526
(100) | NR | NR | Non-TNBC,
Her2-: 905
(65.1) Non-
TNBC, Her2+:
213 (15.3)
TNBC: 145
(10.4)
Missing: 128
(9.2) | NR | | | Breast cancer
African
American | Sentinel node negative | 918 | Mean:
60.4
(range:
27-92) | NR | African
American:
918 (100) | NR | NR | Non-TNBC,
Her2-: 494
(54.5) Non-
TNBC, Her2+:
152 (16.8)
TNBC: 141
(15.5)
Missing: 120
(13.2) | NR | | Schwartz
2018
(12) | AJCC Stage
III | Stage III | 828 | NR | NR | White: 634
(76.6) Black:
117 (14.1)
Hispanic: 43
(5.2) Others:
34 (4.1) | NR | NR | Ductal: 629
(76.0%)
Lobular: 27
(3.3%)
Mixed: 49
(5.9%)
Inflammatory:
29 (3.5%)
NOS: 30
(3.6%)
Other: 64
(7.7%) | CCI:
0: 383
(46.3)
1: 216
(26.1)
2: 105
(12.7)
>3: 124
(15) | | Study name | Patient population | Stage at diagnosis | Sample size (N) | Age
(Year) | Gender, n | Race/
ethnicity | Stage distribution | ECOG PS | Tumor
histology | Comorbiditi es | |-------------------------|---|---------------------|-----------------|---------------------------|-------------------------------------|---|-----------------------|---------|---|--| | | AJCC Stage
IV | Stage IV | 416 | NR | NR | White: 297
(71.4) Black:
86 (20.7)
Hispanic: 22
(5.3) Others:
11 (2.6) | NR | NR | Ductal: 286
(68.8%)
Lobular: 19
(4.6%)
Mixed: 15
(3.6%)
Inflammatory:
13 (3.1%)
NOS: 54
(13.0%)
Other: 29
(7.0%) | CCI:
0: 209
(50.2)
1: 102
(24.5)
2: 54 (13)
>3: 51
(12.3) | | | All stages (II and III) | Stages (II and III) | 1569 | NR | Male: <1%
Female:
>99% | NR | NR | NR | NR | NR | | | All stages (II
and III– -
adjuvant
cohort | Stages (II and III) | 1162 | NR | NR | NR | Stage II: 928
(80) | NR | NR | NR | | Sieluk 2020 (53) | All stages (II
and III– -
neoadjuvant
cohort | Stages (II and III) | 94 | NR | NR | NR | Stage II: 48 (51) | NR | NR | NR | | | All stages (II
and III
neoadjuvant+
adjuvant
cohort | Stages (II and III) | 313 | NR | NR | NR | Stage II: 165
(53) | NR | NR | NR | | Yousefi
2017
(54) | TNBC overall | Overall | 180 | Median: 48 (range: 23-85) | Male: 0 (0)
Female:
180 (100) | NR | NR | NR | NR | NR | Abbreviations: 1R: One regimen; 2R: Two regimens; 3R+: Three or more regimens; 5-FU: Fluorouracil; AI: American Indian; AJCC: American Joint Committee on Cancer; AL: Acral lentiginous; AN: Alaska native; ASCC: Adenosquamous cell carcinoma; BC: Bronchioloalveolar carcinoma; CA: Cerebrovascular accident; CaEto: Carboplatin and etoposide; CaG: Carboplatin and gemcitabine; CAS: Cancer analysis system; CCI: Charlson Comorbidity Index; CHF: Congestive heart failure; COPD: Chronic pulmonary obstructive disease; CPD: Chronic pulmonary disease; EC: Epidermoid carcinoma; ECOG PS: Eastern Cooperative Oncology Group performance score; EGFR: Estimated glomerular filtration rate; GC: Gemcitabine and cisplatin; Gem: Gemcitabine; HER2: Human epidermal growth factor receptor 2; HTN: Hypertension; ICD: International Classification of Diseases; IDC: Invasive ductal carcinoma; IDM: Infiltrating ductal mixed; ILC: Invasive lobular carcinoma; ILM: Infiltrating lobular mixed; IQR: Interquartile range; LA: Locally advanced; LCC: Large cell carcinoma; MA: Mucinous adenocarcinoma; MI: Myocardial infarction; MVAC: Methotrexate, vinblastine, doxorubicin and cisplatin; NA: Not available; NOS: Not otherwise specified; NPCR: National Program of Cancer Registries; NR: Not reported; NSCLC: Non-small cell lung cancer; NSQ: Non-squamous; RCC: Renal cell carcinoma; RD: Renal disease; SACT: Systemic anticancer therapy; SCC: Squamous cell carcinoma; SCNCC: Small-cell neuroendocrine carcinoma; SD: Standard deviation; SEER: Surveillance, Epidemiology, and End Results Program; SQ: Squamous; SRCC: Signet ring cell carcinoma; SS: Superficial spreading; TNBC: Triple negative breast cancer; TNM: Tumor (T), nodes (N), and metastases (M); UC: Urothelial cancer; UICC: Union for International Cancer Control #### 5 Summary of studies identified for humanistic burden review #### **Humanistic burden study summaries** | Study name | Objective | Study design | Publication type | Country | Data source | Study setting | Time frame | QoL scale | |--|---|--|------------------------|---------|--|------------------------------|---|---| | Melanoma | | | | | | | | | | Toscano 2020
(5) | Assess the association of LOC and coping changes, with change in HRQoL in newly diagnosed breast cancer and melanoma patients at 1-, 6-, 12-, and 24-month post-diagnosis | Prospective
longitudinal
study | Article | France | Department of
Onco-
Dermatology
and the
Cancerology
Institute | Hospital-based | November 2010
to December
2012 | EORTC QLQ-C30, Brief cope questionnaire | | NSCLC | | I | I | I | I | I | I | | | Tjong 2021
Linked to:
Michael 2021
(55) | Examine
moderate-to-
severe symptom
burden in the 12
months
following
diagnosis of
stage IV
NSCLC | Population-
based study | Conference
abstract | Canada | Administrative
database | Database | January 2007-
September 2018 | ESAS
questionnaire | | Bladder cancer | | | | | | | | | | Yu 2019
(56) | Quantify HRQoL of patients with bladder cancer around the time of diagnosis | Semi-structured
face-to-face
interview | Article | UK | Participants in
Bladder Cancer
Prognoses
Program | Multi-Center
cohort study | 19 December
2005 to 21 April
2011 | EORTC QLQ-
C30
questionnaire | Abbreviations EORTC QLQ-C30: European Organization for the Research and Treatment of Cancer Core Quality of Life Questionnaire; ESAS: Edmonton symptom assessment system; HRQoL: Health-related quality of life; LOC: Locus-of-control; NSCLC: Non-small cell lung cancer; QoL: Quality of life; UK: United Kingdom # 6 Summary of studies identified for economic burden review | Study
name | Tumor
Type | Objective |
Study
design | Publication | Country | Data
source | Study setting | Time
frame | Duration of follow up | Study perspective | Cost | |-----------------------|-----------------------------------|---|---|------------------------|---------|---|-----------------------------------|--|---|---|---------------| | Bladder can | | | design | type | | source | setting | irame | Tonow up | perspective | year | | Aly 2019
(57) | Bladder
(urothelial)
cancer | To assess the lifetime costs by stage that will help understand the economic burden of Urothelial Carcinoma | Retrosp
ective
cohort
study | Conference
abstract | USA | SEER
database | Nationwide
population
based | 2004-
2013 | Median [IQR], months: Stage 0: 44 [23-71] Stage I: 33 [15-62] Stage II: 17 [7-39] Stage III: 17 [7-42] Stage IV: 8 [3-18] | NR | NR | | Sorup
2021
(17) | Urothelial
Cancer | To characterize treatment patterns, survival outcomes, and healthcare resource use in patients with stage IV UC in Denmark. | Populati
on-
based,
retrospe
ctive
cohort
study | Conference
abstract | Denmark | Danish
Cancer
Registry | Nationwide
population
based | January
1,
2013-
Decem
ber 31,
2017 | Median: 10.2
months
(IQR, 3.6-
19.4) | NR | NR | | Head and no | eck cancer | | | | | | | | | | | | Singh 2021
(3) | Oral cancer | To determine the direct healthcare costs of oral cancer at a single major tertiary provider in India | Cost of illness (prospe ctive) | Article | India | Institutiona 1 database of the hospital | Single
center | Octobe
r 2019
to
March
2020 | NR | Healthcare
provider's
perspective | 2018-
2019 | | Study
name | Tumor
Type | Objective | Study
design | Publication type | Country | Data
source | Study setting | Time
frame | Duration of follow up | Study perspective | Cost | |-------------------------|---------------|--|---|------------------------|---------|---|-----------------------------------|-------------------------------|---------------------------------|-------------------|------| | NSCLC | Турс | | ucsign | турс | - | Source | setting | II and | топож ир | perspective | ycai | | Buck 2015 (58) | NSCLC | Describe patterns of systemic treatment, clinical characteristics of patients by stage, DFS, treatment patterns by starting date of adjuvant treatment from diagnosis and health care resource utilization and cost by disease stage | Retrosp
ective
observat
ional
study | Article | USA | Vector
Oncology
Data
Warehouse | Nationwide
population
based | Jan
2007 to
Jan201
4 | NR | NR | 2013 | | Gildea
2017
(59) | NSCLC | Assess the wait time to diagnose NSCLC and the health care utilization and the costs of diagnosing and treating the disease based on the stage of diagnosis | Retrosp
ective
cohort
study | Article | USA | Optum
Research
Database | Nationwide
population
based | Jan
2007 to
Sep
2011 | Mean
(SD):1.1
(0.9) Years | NR | NR | | Vachani
2021
(45) | NSCLC | Quantify the association of stage at diagnosis with OS and monthly healthcare | Retrosp
ective
observat
ional
study | Conference
abstract | USA | SEER
Database | Nationwide
population
based | 2006-
2015 | 12 months | NR | 2020 | | Study
name | Tumor
Type | Objective | Study
design | Publication type | Country | Data
source | Study setting | Time
frame | Duration of follow up | Study
perspective | Cost
year | |---------------------------|---------------|--|--|------------------|---------|-----------------------------------|---|--|--|---|--------------| | | | expenditures
in the first year
after diagnosis
in patients
with NSCLC. | | 3,72 | | | , | | | | Joseph | | TNBC | | | | | | | | | | | | | Aly 2019a
(50) | TNBC | Estimate the overall survival, treatment patterns and economic burden of elderly metastatic TNBC patients. | Retrosp
ective,
observat
ional
study | Article | USA | SEER-
Medicare
database | National
wide
population
based | 2004 -
2011 | Mean: 14.1 months | NR | 2017 | | Haiderali
2021
(60) | TNBC | Examined real-world HCRU and costs in patients diagnosed with early stage (II– IIIB) TNBC | Retrosp
ective,
observat
ional
study | Article | USA | Concert AI
Oncology
Dataset | Nationwide
population
based | 1
March
2008 to
31
March
2016 | Median: 46.1
months
(From the
date of
diagnosis) | Healthcare
provider's
perspective | NR | | Schwartz
2018
(12) | TNBC | Identify and characterize elderly patients with advanced TNBC with respect to baseline demographics and comorbidities, treatment, including chemotherapy | Retrosp
ective
analysis | Article | USA | SEER | National
wide
population
based | Jan
2007 to
Jan
2011 | Through to December 31, 2013 | NR | 2013 | | Study
name | Tumor
Type | Objective | Study
design | Publication type | Country | Data
source | Study
setting | Time
frame | Duration of follow up | Study
perspective | Cost
year | |------------------------|---------------|---|-----------------|------------------------|---------|-------------------------------|------------------|----------------|--|----------------------|--------------| | | | regimens, by
specific type
of therapy,
survival
patterns, HRU
and costs. | | | | | | | | | | | Sieluk
2020
(53) | TNBC | To provide insights into patient characteristics, as well as clinical and economic outcomes for elderly patients with early stage TNBC, treated from 2010-2016 in the USA | Retrosp | Conference
abstract | USA | SEER-
Medicare
database | Multicenter | 2010 -
2015 | Overall,
median
(range): 20.2
months (2.4-
84.1) | NR | NR | Abbreviations: HRU: Healthcare resource utilization; IQR: Inter quartile range; NR: Not reported; NSCLC: Non-small cell lung cancer; OS: Overall survival; SEER: Surveillance, Epidemiology, and End Results; TNBC: Triple negative breast cancer; UC: Urothelial cancer; USA: United States of America #### 7 Geographic distribution of included studies ^{*}Studies in Europe comprised of UK: 6 studies; Denmark: 4 studies; Norway: 1 study; Netherlands: 2 studies; Sweden: 1 study; Switzerland: 1 study; Portugal: 1 study; France: 1 study; Abbreviations: UK; United Kingdom; US: United States # 8 Summary for median OS outcomes by tumor type and disease stage | Study name | Patient population | Stage at diagnosis | Sample size (N) | Time point | Results, months
(95% CI) | p-value | |---------------------|---|--------------------|-----------------|-------------------------------------|--------------------------------|--------------| | Bladder cancer | - | | | - | | | | | Urothelial carcinoma | Stage 0 and I | 29,743 | NR | Median: 80.53
(78.13–83.25) | NR | | | Non-urothelial carcinoma | Stage 0 and I | 561 | NR | Median: 28.98
(20.3–46.78) | 0.001 vs. UC | | Aragon-Ching 2021 | Urothelial carcinoma | Stage II and III | 29,743 | NR | Median: 35.65
(33.38–38.05) | NR | | (14) | Non-urothelial carcinoma | Stage II and III | 561 | NR | Median: 15.75
(11.17–26.87) | Significant | | | Urothelial carcinoma | Stage IV | 29,743 | NR | Median: 8.57 (8.05–
9.10) | NR | | | Non-urothelial carcinoma | Stage IV | 561 | NR | Median: 7 (5.62–
9.26) | 0.283 vs. UC | | Davies 2020
(15) | Patients with metastatic urothelial cancer | Metastatic | 2,543 | NR | Median: 5.8 (5.4–6.3) | NR | | | Overall Population | Stage IV | 502 | From start of 1L | Median: 8.4 (7.5–
9.6) | NR | | | (including untreated patients) | Stage IV | 265 | From start of 2L | Median: 4.4 (3.6–
5.0) | NR | | Fisher 2018
(1) | Overall – Treated | Stage IV | 321 | From start of 1L | Median: 11 (9.7–
12.2) | NR | | | population | Stage IV | 147 | From start of 2L | Median: 5.3 (4.5–
6.5) | NR | | | Overall – From diagnosis | Stage IV | 508 | From stage IV diagnosis | Median: 9.4 (8.3–
10.7) | NR | | Omland 2021
(16) | All patients with
metastatic Urinary
tract Cancer who
initiated first-line
chemotherapy | Metastatic | 952 | NR | Median: 11.7 (10.8–12.5) | NR | | Sorup 2021
(17) | Patients with incident stage IV UC | Stage IV | 620 | Median: 10.2 (IQR, 3.6-19.4) months | Median: 9.4 (8.3–
10.6) | NR | | Study name | Patient population | Stage at diagnosis | Sample size (N) | Time point | Results, months
(95%
CI) | p-value | |------------------------|---|--------------------|-----------------|------------|-----------------------------|---------| | Gastric cancer | | | | | | | | Dijksterhuis 2022 (18) | Patients diagnosed with distant interval metastases | Metastatic | 164 | NR | Median: 5.5 (2.3-10.2*) | NR | | | Overall | Overall | 19,022 | NR | Median: 14 | NR | | | No metastasis | No metastasis | 11,230 | NR | Median: 37 | NR | | | With liver metastases | | 3,218 | NR | Median: 4 | NR | | | With lung metastases | | 1,126 | NR | Median: 3 | NR | | | With bone metastases | | 966 | NR | Median: 4 | NR | | | With brain metastases | | 151 | NR | Median: 3 | NR | | | Metastases on one site: Only liver | | 2,247 | NR | Median: 5 | NR | | | Metastases on one site: Only lung | | 396 | NR | Median: 5 | NR | | | Metastases on one site: Only bone | | 487 | NR | Median: 4 | NR | | Qiu 2018
(19) | Metastases on one site: Only brain | Metastatic | 52 | NR | Median: 3 | NR | | | Metastases on two sites: Lung and liver | Wetastatic | 428 | NR | Median: 3 | NR | | | Metastases on two sites: Lung and bone | | 92 | NR | Median: 4 | NR | | | Metastases on two sites: Lung and brain | | 12 | NR | Median: 3 | NR | | | Metastases on two sites: Liver and bone | | 172 | NR | Median: 4 | NR | | 8 | Metastases on two
sites: Liver and
brain | | 18 | NR | Median: 1 | NR | | | Metastases on two sites: Bone and brain | - | 15 | NR | Median: 2 | NR | | | Metastases on three
sites: Lung, liver
and bone | | 102 | NR | Median: 3 | NR | | Study name | Patient population | Stage at diagnosis | Sample size (N) | Time point | Results, months
(95% CI) | p-value | |-----------------------|--|--------------------|-----------------|------------|-----------------------------|--------------------------| | | Metastases on three sites: Lung, liver and brain | | 17 | NR | Median: 2 | NR | | | Metastases on three sites: Liver, bone, brain | | 7 | NR | Median: 3 | NR | | | Metastases on three sites: Lung and bone and brain | | 6 | NR | Median: 1 | NR | | | Metastases on four sites: Liver, lung, bone and brain | | 11 | NR | Median: 2 | NR | | | Metastases on four sites: Metastasis to other sites | | 3,060 | NR | Median: 7 | NR | | | Metastases on four sites: Metastasis to unknown sites | | 670 | NR | Median: 4 | NR | | Head and Neck Cancer | • | | | | | | | | Patients who received treatment | All stages | 377 | 6.9 years | Median: 29.16 (23–
35) | NR | | | Patients with localized disease who received treatment | Stage I-II | 97 | 6.9 years | Median: 84.1 | p<0.0001 vs
localized | | Amarillo 2021
(20) | Patients with localized disease who received treatment: TDT <40.5 days | Stage I-II | NR | 6.9 years | Median: 116.3 | NR | | | Patients with localized disease who received treatment: TDT \geq 40.5 days | Stage I-II | NR | 6.9 years | Median: 55 | NR | | | Patients with advanced disease who received treatment | Stage III-IV | 357 | 6.9 years | Median: 24.1 | p<0.0001 vs
localized | | Study name | Patient population | Stage at diagnosis | Sample size (N) | Time point | Results, months (95% CI) | p-value | |----------------------|---|---------------------------|-----------------|-------------------|---------------------------|--| | | Patients with
advanced disease
who received
treatment: TDT
<40.5 days | Stage III-IV | NR | 6.9 years | Median: 27.6 | p=0.009 vs. TDT
<40.5 days | | | Patients with advanced disease who received treatment: TDT ≥40.5 days | Stage III-IV | NR | 6.9 years | Median: 21.1 | p=0.009 vs. TDT
<40.5 days | | Hochfelder 2020 (21) | Hypopharyngeal squamous cell carcinoma patients | Stage III or IV, M0 | 5,272 | NR | Median: 22.6 (11.1–47.3*) | NR | | Melanoma | | | | | | | | | Stage II cutaneous melanoma | Stage II | 81 | After relapse | NR | 0.57 vs stage III | | | Having multiple lesions (≥ 10) on relapse | Stage II and Stage
III | NR | | Median: 7.2*** | NR | | Ngo 2020 | Patients having just 1 lesion on relapse | Stage II and Stage
III | NR | | Median: 8.4*** | p<0.001 vs multiple lesions on relapse | | (25) | Patients in whom >1
organ systems were
involved | Stage II and Stage
III | NR | | Median: 8.4*** | NR | | | Patients in whom single organ system was involved | Stage II and Stage
III | NR | | Median: 21.6*** | p=0.009 vs >1 organ
involved | | | Stage IIIB/C at diagnosis | Stage IIIB/C | 74 | | Median: 24.3 | NR | | Song 2015 | Stage IV M1A at diagnosis | Stage IV M1A | 212 | Mean: 11.3 months | Median: 22.3 | NR | | (4) | Stage IV M1B at diagnosis | Stage IV M1B | 292 | (SD 13.8) | Median: 11.2 | NR | | | Stage IV M1C at diagnosis | Stage IV M1C | 1104 | | Median: 5.1 | NR | | Tjokrowidjaja 2021 | | Stage IIC | 1,441 | NR | Median: 46 | NR | | (27) | | Stage IIIC | 925 | NR | Median: 36 | NR | | Study name | Patient population | Stage at diagnosis | Sample size (N) | Time point | Results, months
(95% CI) | p-value | |----------------------|---|--------------------|-----------------|-------------------|-----------------------------|-----------------------------| | | Survivor function of patients with melanoma to the skin who are pathologically staged; AJCC 7 th edition | Stage IV | 2,603 | NR | Median: 9 | NR | | | Survivor function of | Stage IIC | 1,445 | NR | Median: 46 | NR | | | patients with | Stage IIIC | 1,730 | NR | Median: 46 | NR | | | melanoma to the | Stage IIID | 54 | NR | Median: 22 | NR | | | skin who are
pathologically
staged; AJCC 8 th
edition | Stage IV | 2,604 | NR | Median: 9 | NR | | | Survivor function of | Stage IIC | 1,441 | | Median: 46 | NR | | | patients with melanoma to the skin who are clinically staged; AJCC 7 th edition | Stage IV | 2,603 | | Median: 9 | NR | | | Survivor function of | Stage IIC | 1,446 | Median: 27 months | Median: 46 | NR | | | patients with
melanoma to the
skin who are
clinically staged;
AJCC 8 th edition | Stage IV | 2,604 | | Median: 9 | NR | | NSCLC | | | | | | | | | Patients with newly diagnosed NSCLC having TTI ≤20 days | Stage I | NR | NR | Median: 103.4 | NR | | Azzouqa 2019
(31) | Patients with newly
diagnosed NSCLC
having TTI >20
days | Stage I | NR | NR | Median: 63.9 | p<0.0001 vs TTI
≤20 days | | | Patients with newly diagnosed NSCLC having TTI ≤20 days | Stage II | NR | NR | Median: 72.3 | NR | | Study name | Patient population | Stage at diagnosis | Sample size (N) | Time point | Results, months (95% CI) | p-value | |---------------------|--|--------------------|-----------------|------------|--------------------------|-----------------------------| | | Patients with newly
diagnosed NSCLC
having TTI >20
days | Stage II | NR | NR | Median: 46.8 | p=0.0014 vs TTI
≤20 days | | | Patients with newly diagnosed NSCLC having TTI ≤20 days | Stage III | NR | NR | Median: 30.6 | NR | | | Patients with newly
diagnosed NSCLC
having TTI >20
days | Stage III | NR | NR | Median: 28.5 | p=0.118 vs TTI ≤20
days | | | Patients with newly diagnosed NSCLC having TTI ≤20 days | Stage IV | NR | NR | Median: 8.3 | NR | | | Patients with newly
diagnosed NSCLC
having TTI >20
days | Stage IV | NR | NR | Median: 12.8 | p<0.0001 vs TTI
≤20 days | | Cerqueira 2022 (32) | Patients with stages III/IV NSCLC | Stages III/IV | 10,440 | 1-Year | Median: 20.7 | NR | | | Patients with incident stage I non-squamous NSCLC | Stage I | 263 | 2012-2016 | Median: Not reached | NR | | | Patients with incident stage I squamous NSCLC | Stage I | 65 | 2012-2016 | Median: 52.8 | NR | | Ekman 2019
(33) | Patients with incident stage II non-squamous NSCLC | Stage II | 97 | 2012-2016 | Median: 43.2 | NR | | | Patients with incident stage II squamous NSCLC | Stage II | 35 | 2012-2016 | Median: 23.6 | NR | | | Patients with incident stage IIIA non-squamous NSCLC | Stage IIIA | 136 | 2012-2016 | Median: 26.7 | NR | | Study name | Patient population | Stage at diagnosis | Sample size (N) | Time point | Results, months
(95% CI) | p-value | |----------------------------|---|------------------------------------|-----------------|------------|--------------------------------|---------| | | Patients with incident stage IIIA squamous NSCLC | Stage IIIA | 60 | 2012-2016 | Median: 20.4 | NR | | | Patients with incident stage IIIB non-squamous NSCLC | Stage IIIB | 67 | 2012-2016 | Median: 12.5 | NR | | | Patients with incident stage IIIB squamous NSCLC | Stage IIIB | 44 | 2012-2016 | Median: 12.9 | NR | | | Patients with incident stage IV non-squamous NSCLC | Stage IV | 736 | 2012-2016 | Median: 7.6 | NR | | | Patients with incident stage IV non-squamous NSCLC | Stage IV | 123 | 2012-2016 | Median: 6.1 | NR | | | Stage I/II | Stage I/II | 88,179 | | Median: 57 (18–
NR*) | NR | | Flores 2021 | Stage III | Stage III | 76,422 | 10 years | Median: 12 (4 –34*) | NR | | (9) | Stage IV | Stage IV | 140,615 | • | Median: 5 (1 –13*) | NR | | | Missing | Missing | 7,166 | | Median: 10 (2–28*) | NR | | | Newly diagnosed patients with NSCLC patients: | Adjuvant IB-IIIA and resected IIIB | 2,670 | NR | Median: 75.89
(63.54–NA) | NR | | Greystoke 2021 (34) | | Advanced non-
resected IIIB | 4,970 | NR | Median: 12.48
(11.99–12.94) | NR | | | Overall | Advanced IV | 20,470 | NR | Median: 8.34 (8.21–
8.48) | NR | | Jazieh 2021
(61) | Patients de novo
locally advanced
stage III NSCLC | Stage III | 2,619 | NR | Median: 34.9 (32–38.01) | NR | | Klarenbeek 2022 (37) | Stage III | Stage III | 5038 | NR |
Median: 22 | NR | | | Stage IV | Stage IV | 5268 | NR | Median: 10 | NR | | Luciano 2020
(39) | Advanced stage
(stage III/IV)
NSCLC patients | Stage III/IV | NR | NR | Median: 6.98 (3.57–13.94*)*** | NR | | Study name | Patient population | Stage at diagnosis | Sample size (N) | Time point | Results, months
(95% CI) | p-value | |-----------------------|---|--------------------|-----------------|--|-------------------------------|---------| | | Overall stage of disease is as per AJCC 7 th edition | Stage III | 168 | | Median: 48.6 (34.7–
NC) | NR | | Martin 2022
(40) | Stage IllA of disease is as per AJCC 7 th edition | Stage IIIA | 89 | Median follow-up:
660 days (range 7–
2404) | Median: 52.5 (41.8–70.9) | NR | | | Stage IllB of disease is as per AJCC 7 th edition | Stage IIIB | 79 | | Median: 23.1 (16.8–52.1) | NR | | | | Stage I | 1,034 | NR | Median: 72 (56.4-
NC) | NR | | Potter 2021 (41) | Stage I-III NSCLC patients with | Stage II | 560 | NR | Median: 55.5 (45.9-
NC) | NR | | , | recorded EGFR test | Stage III | 1,527 | NR | Median: 29.5 (27.4-33.6) | NR | | | Patients diagnosed with stage IV NSCLC with treatment era for 2006-2009 | Stage IV | 3,601 | NR | Median: 3 | NR | | Rittberg 2021
(42) | Patients diagnosed with stage IV NSCLC with treatment era for 2010-2013 | Stage IV | 3,601 | NR | Median: 2.9 | NR | | | Patients diagnosed with stage IV NSCLC with treatment era for 2014-2015 | Stage IV | 3,601 | NR | Median: 2.8 | p=0.082 | | Snee 2021 | Patients diagnosed
with NSCLC in
2007-2012 | Stage I non- | 64 | NR | Median: 55.27
(24.8–98.5*) | NR | | (11) | Patients diagnosed with NSCLC in 2013-2017 | squamous | 159 | NR | Median: Not reached (34.2–NR) | NR | | Study name | Patient population | Stage at diagnosis | Sample size (N) | Time point | Results, months
(95% CI) | p-value | |------------|---|---|-----------------|------------|-------------------------------|---------| | | Patients diagnosed with NSCLC in 2007-2012 | Stage I squamous | 58 | NR | Median: 37.28
(18.5–66.8*) | NR | | | Patients diagnosed with NSCLC in 2013-2017 | 211130112111111111111111111111111111111 | 69 | NR | Median: 51.13
(32.6–NA*) | NR | | | Patients diagnosed
with NSCLC in
2007-2012 | Stage I NSCLC clinically diagnosed | 128 | NR | Median: 16.72 (5.8–33.1*) | NR | | | Patients diagnosed with NSCLC in 2013-2017 | with unknown
pathology | 189 | NR | Median: 20.9 (8.0–
40.3*) | NR | | | Patients diagnosed with NSCLC in 2007-2012 | Stage II non-squamous | 61 | NR | Median: 34.27
(10.6–80.0*) | NR | | | Patients diagnosed with NSCLC in 2013-2017 | | 51 | NR | Median: 26.43
(10.2–58.0*) | NR | | | Patients diagnosed with NSCLC in 2007-2012 | | 58 | NR | Median: 17.2 (8.6–58.2*) | NR | | | Patients diagnosed with NSCLC in 2013-2017 | Stage II squamous | 74 | NR | Median: 19.87 (7.2–53.9*) | NR | | | Patients diagnosed with NSCLC in 2007-2012 | Stage II NSCLC clinically diagnosed | 81 | NR | Median: 8.93 (2.9–
16.8*) | NR | | | Patients diagnosed with NSCLC in 2013-2017 | with unknown pathology | 55 | NR | Median: 11.33 (5.4–
26.9*) | NR | | | Stage IIIA, non-
squamous (patients
diagnosed with
NSCLC in 2007-
2012) | Stage IIIA, non-
squamous | 51 | NR | Median: 9.93 (6.5–38.6*) | NR | | Study name | Patient population | Stage at diagnosis | Sample size (N) | Time point | Results, months (95% CI) | p-value | |------------|--|-------------------------|-----------------|------------|-------------------------------|---------| | | Stage IIIA, non-
squamous Stage II
NSCLC without
pathological
diagnosis (patients
diagnosed with
NSCLC in 2013-
2017) | | 57 | NR | Median: 23.97
(10.6–NA*) | NR | | | Patients diagnosed with NSCLC in 2007-2012 | Stage IIIA, | 91 | NR | Median: 10.73 (4.4–21.1*) | NR | | | Patients diagnosed with NSCLC in 2013-2017 | squamous | 72 | NR | Median: 14.5 (8.4–36.0*) | NR | | | Stage III NSCLC
without pathological
diagnosis (patients
diagnosed with
NSCLC in 2007-
2012) | | 77 | NR | Median: 5.77 (1.5–
11.0*) | NR | | | Stage III NSCLC
clinically diagnosed
with unknown
pathology (patients
diagnosed with
NSCLC in 2013-
2017) | Stage III NSCLC | 57 | NR | Median: 5 (1.9–7.5*) | NR | | | Patients diagnosed with NSCLC in 2007-2012 | Stage IIIB-IV, non- | 345 | NR | Median: 4.07 (1.3–
10.05*) | NR | | | Patients diagnosed
with NSCLC in
2013-2017 | squamous | 321 | NR | Median: 5 (1.7–
12.9*) | NR | | | Patients diagnosed
with NSCLC in
2007-2012 | Stage IIIB-IV, squamous | 229 | NR | Median: 5.33 (2.2–12.0*) | NR | | Study name | Patient population | Stage at diagnosis | Sample size (N) | Time point | Results, months
(95% CI) | p-value | |----------------------|--|---|-----------------|------------|---|---------| | | Patients diagnosed with NSCLC in 2013-2017 | | 167 | NR | Median: 4.8 (2.4–
11.9*) | NR | | | Stage IIIB-IV NSCLC without pathological diagnosis (patients diagnosed with NSCLC in 2007- 2012) | Stage IIIB-IV
NSCLC clinically
diagnosed with | 370 | NR | Median: 1.23 (0.4–3.2*) | NR | | | Stage IIIB-IV NSCLC (patients diagnosed with NSCLC in 2013- 2017) | unknown pathology | 323 | NR | Median: 1.23 (0.4–3.4*) | NR | | | Stage I (diagnosed with NSCLC between 2012-2016) | Stage I | 174 | NA | Median: Not
reached (29.3 – Not
reached*) | NR | | Soares 2021
(43) | Stage II (diagnosed with NSCLC between 2012-2016) | Stage II | 86 | NA | Median: 23 (10.2–
Not reached*) | NR | | | Stage III A
(diagnosed with
NSCLC between
2012-2016) | Stage III A | 235 | NA | Median: 21.7 (9.5–
52.7*) | NR | | | Elderly patients
(>70 years)
diagnosed between
2005-2007 | Stage IV | NR | NR | Median: 3.7 | NR | | Suipyte 2019
(44) | Elderly patients (>70 years) diagnosed between 2015-2016 | Stage IV | NR | NR | Median: 5.3 | NR | | . , | Young patients (<70 years) diagnosed between 2005-2007 | Stage IV | NR | NR | Median: 7.8 | NR | | | Young patients (<70 years) diagnosed between 2015-2016 | Stage IV | NR | NR | Median: 12.1 | NR | | Study name | Patient population | Stage at diagnosis | Sample size (N) | Time point | Results, months (95% CI) | p-value | |----------------------|--|--------------------|-----------------|----------------------------------|-------------------------------|---------| | | Patients de novo
locally advanced
stage III NSCLC | Stage III | 139 | NR | Median: 25.7
(19.98–42.61) | NR | | Van Dao 2022
(46) | Patients de novo
locally advanced
stage IIIA NSCLC | Stage IIIA | 59 | NR | Median: 28.2
(24.15–NC) | NR | | | Patients de novo
locally advanced
stage IIIB NSCLC | Stage IIIB | 80 | NR | Median: 20 (13.01–
42.61) | NR | | RCC | | | | | | | | | Patients with intermediate-high risk RCC | Localized | NR | | Median: 83.4 | NR | | | Patients with high risk RCC | | NR | Median follow-up:
49.5 months | Median: 78.4 | NR | | Haas 2022b
(48) | Patients without recurrence among intermediate-high risk and high risk RCC | | NR | | Median: 93.8 | NR | | | Patients with recurrence among intermediate-high risk and high risk RCC | | NR | | Median: 69.6 | NR | | Haas 2022a
(47) | Newly diagnosed,
recurrent patients
with intermediate-
high risk RCC | Localized | 259 | Median follow-up:
23 months | Median: 55.68 | NR | | | Newly diagnosed, recurrent patients with T3G1-G2 RCC (intermediate-high risk RCC subgroup): after recurrence | | 101 | | Median: 77.64 | NR | | Study name | Patient population | Stage at diagnosis | Sample size (N) | Time point | Results, months
(95% CI) | p-value | |-----------------------|---|--------------------|-----------------|-------------------------|------------------------------|---------| | | Newly diagnosed, recurrent patients with T3G3 RCC (intermediate-high risk RCC subgroup): after recurrence | | 111 | | Median: 55.68 | NR | | | Newly diagnosed, recurrent patients with T3G4 RCC (intermediate-high risk RCC subgroup): after recurrence | | 41 | | Median: 23.4 | NR | | TNBC | 11 1 1 1 C C . TIT | | | a : 10 | | | | | All AJCC stage III elderly patients | Stage III | 828 | Survival from diagnosis | Median: 30 (27–34) | NR | | Schwartz 2018
(12) | Overall (Stage
III/IV) elderly
patients | Stage III and IV | 1244 | Survival from diagnosis | Median: 18 (16–20) | NR | | | All AJCC stage IV elderly patients | Stage IV | 416 | Survival from diagnosis | Median: 5 (4–7) | NR | | | Patients who initiated systemic | Stage II/III | 313 | | Median: 77.6 (55.6–
NR) | NR | | Sieluk 2020
(53) | neoadjuvant and adjuvant (including | Stage II | 165 | NR | Median: 77.6 (77.6–
NR) | NR | | (55) | chemotherapy and radiation) therapy | Stage III | 148 | | Median: 37.8 (27.3–
56.1) | NR | | Aly 2019a
(50) | Metastatic TNBC - all patients | Metastatic | 625 | Mean: 17.1 months | Median: 7 (6.2–8.1) | NR | Abbreviations: 1L: First line; 2L: Second line; AJCC: American Joint Committee on Cancer; CI: Confidence interval; IQR: Inter quartile range; NA: Not available; NC: Not calculable; NR: Not reported; NSCLC: Non-small cell lung cancer; RCC: Renal cell carcinoma; SD:
Standard deviation; TDT: Time between diagnosis and treatment; TNBC: Triple negative breast cancer; TTI: Time to treatment initiation; UC: Urothelial cancer # 9 Summary of reported OS rates ### Overall survival rates in patients included in studies | Study name | Patient population | Stage at diagnosis | Sample size
(N) | Time point /
Variable | Survival rate results | p-value | |-------------------|--|--------------------|--------------------|--------------------------|---|---------| | Bladder cancer | | | | | | | | | | TNM stage I | 210 | | 67% | | | | | TNM stage II | 74 | 5-years | 45% | < 0.001 | | | | TNM stage III | 29 | | 15% | | | A: 2020 (12) | | Stage I (TNM) | 210 | | Mean rate per month: 58.5%; 95% CI: 55–62 | | | Amiri 2020 (13) | Bladder cancer | Stage II (TNM) | 74 | ND | Mean rate per month: 44.5%; 95% CI: 37.2–51.7 | ND | | | | Stage III (TNM) | 29 | NR | Mean rate per month: 21.7%; 95% CI: 12.9–30.4 | NR | | | | Stage IV (TNM) | 8 | | Mean rate per month: 21.3%; 95% CI: 8.9–33.6 | | | | Overall (The time origin was the start of therapy within 1L or 2L for those who did not receive treatment) | Stage IV | 502 | From start of 1L | n (%): 425 (84.7); 95% CI: 7.5–
9.6 | NR | | Fisher 2018 | | Stage IV | 265 | From start of 2L | n (%): 236 (89.1); 95% CI: 3.6–
5.0 | NR | | (1) | Overall – Treated (The time origin was | Stage IV | 321 | From start of 1L | n (%): 263 (81.9); 95% CI: 9.7–
12.2 | NR | | | the start of therapy within 1L or 2L) | Stage IV | 147 | From start of 2L | n (%): 130 (88.4); 95% CI: 4.5–
6.5 | NR | | | | Stage IV | 620 | 1-year | 40.4%; 95% CI: 36.4–44.4 | NR | | Sorup 2021 (17) | Patients with incident urothelial cancer | Stage IV | 620 | 2-year | 23.6%; 95% CI: 20.1–27.4 | NR | | Head and neck car | icer | | | | | | | | | Stage 0 | 275 | | 90.8% | NR | | | | Stage I | 10,383 | _ | 88% | NR | | | | Stage II | 6627 | 3-year | 79.8% | NR | | Ho 2019 (2) | Oral cavity cancer | Stage III | 3954 | | 79.8% | NR | | | | Stage IV | 13,134 | | 45.4% | NR | | | | Stage 0 | 275 | 5-year | 83.9% | NR | | | | Stage I | 10,383 | J-y Cai | 82.1% | NR | | Study name | Patient population | Stage at diagnosis | Sample size
(N) | Time point /
Variable | Survival rate results | p-value | |------------|--------------------|--------------------|--------------------|--------------------------|-----------------------|-----------| | | | Stage II | 6627 | | 72.7% | NR | | | | Stage III | 3954 | | 72.7% | NR | | | | Stage IV | 13,134 | | 38% | NR | | | | Stage 0 | 275 | | 97.1% | NR | | | | Stage I | 10,383 | | 92.3% | NR | | | | Stage II | 6627 | | 84.9% | NR | | | | Stage III | 3954 | | 74.6% | NR | | | | Stage IV | 13,134 | | 52.1% | NR | | | | Stage 0 | 275 | | 94.5% | NR | | | | Stage I | 10,383 | | 89.0% | NR | | | | Stage II | 6627 | 3-year | 80.4% | NR | | | | Stage III | 3954 | | 68.3% | NR | | | | Stage IV | 13,134 | | 45.9% | NR | | | | Stage 0 | 275 | | 90.8% | NR | | | | Stage I | 10,383 | | 88% | NR | | | | Stage II | 6627 | 5-year | 79.8% | NR | | | | Stage III | 3954 | | 79.8% | NR | | | | Stage IV | 13,134 | | 45.4% | NR | | | | Stage I | 17 | 1-year | 100.0 | NR | | | | Stage II | 29 | 1-year | 89.1 | NR | | | | Stage III | 54 | 1-year | 94.3 | NR | | | | Stage IV A | 319 | 1-year | 92.0 | NR | | | | Stage IV B | 19 | 1-year | 94.1 | NR | | | | Stage IV C | 25 | 1-year | 59.4 | NR | | | | Stage I | 17 | 3-year | 93.3 | NR | | Neto 2021 | | Stage II | 29 | 3-year | 85.4 | NR | | (22) | Oropharynx cancer | Stage III | 54 | 3-year | 90.2 | NR | | (22) | | Stage IV A | 319 | 3-year | 81.6 | NR | | | | Stage IV B | 19 | 3-year | 60.1 | NR | | | | Stage IV C | 25 | 3-year | 50.9 | 9 <0.001 | | | | | | | | vs. stage | | | | Stage I | 279 | 1-year | 93.4 | NR | | | | Stage II | 94 | 1-year | 91.4 | NR | | Study name | Patient population | Stage at diagnosis | Sample size (N) | Time point /
Variable | Survival rate results | p-value | |---------------|---------------------------|------------------------|-----------------|--|-----------------------|--------------------------| | | | Stage III | 65 | 1-year | 90.2 | NR | | | | Stage IV | 25 | 1-year | 59.4 | NR | | | | Stage I | 279 | 3-year | 85.7 | NR | | | | Stage II | 94 | 3-year | 80.5 | NR | | | | Stage III | 65 | 3-year | 71.5 | NR | | | | Stage IV | 25 | 3-year | 50.9 | p
<0.001
vs. stage | | | | | 82 | 1-Year | 91% | NR | | | Overall Lip cancer | Overall | 82 | 2-Year | 86% | NR | | | 1 | | 82 | 5-year | 62% | NR | | | | G. I. | 35 | 1-Year | 97% | | | | | Stage I at | 35 | 2-Year | 91% | | | | | diagnosis | 35 | 5-year | 81% | | | Sargeran 2009 | Early-stage Lip cancer | C. H. | 17 | 1-Year | 93% | | | (24) | | Stage II at | 17 | 2-Year | 87% | p<0.001 | | ` ' | | diagnosis | 17 | 5-year | 75% | vs. stage | | | | C. III . | 11 | 1-Year | 81% | IV | | | | Stage III at diagnosis | 11 | 2-Year | 73% | | | | Advanced stage Lip cancer | | 11 | 5-year | 45% | | | | | Stage IV at diagnosis | 9 | 1-Year | 67% | | | | | Overall | 470 | The mean (SD)
follow-up: 32
months (26), range
0–116. | n (%): 80 (17) | NR | | | | Overall | 470 | 1-Year | 77% | NR | | Sargeran 2008 | 0.1 | Overall | 470 | 2-Year | 57% | NR | | (23) | Oral cancer | Overall | 470 | 5-year | 30% | NR | | | | Stage I | 92 | 1-Year | 93% | NR | | | | Stage I | 92 | 2-Year | 80% | NR | | | | Stage I | 92 | 5-year | 51% | NR | | | | Stage II | 73 | 1-Year | 91% | NR | | | | Stage II | 73 | 2-Year | 80% | NR | | Study name | Patient population | Stage at diagnosis | Sample size
(N) | Time point /
Variable | Survival rate results | p-value | |---------------|---|---------------------------|--------------------|--------------------------|--------------------------------------|---------| | | | Stage II | 73 | 5-year | 44% | NR | | | | Stage III | 70 | 1-Year | 77% | NR | | | | Stage III | 70 | 2-Year | 50% | NR | | | | Stage III | 70 | 5-year | 13% | NR | | | | Stage IV | 167 | 1-Year | 45% | NR | | | | Stage IV | 167 | 2-Year | 22% | NR | | | | Stage IV | 167 | 5-year | 12% | NR | | Melanoma | | | | • | · | | | | All patients with melanoma | Stage I, II, III and IV | 184,864 | 1 year | 94% | NR | | | Patients with stage I melanoma | Stage I | NR | 1 year | 99% | NR | | Ramond 2021 | Patients with stage II melanoma | Stage II | NR | 1 year | 94% | NR | | (26) | Patients with stage III melanoma | Stage III | NR | 1 year | 90% | NR | | | Patients with stage IV melanoma | Stage IV | NR | 1 year | 48% | NR | | | All patients with melanoma (Relative survival) ^a | Stage I, II, III and IV | 184,864 | 1 year | 97% | NR | | | Stage IIIB/C at diagnosis | Stage IIIB/C | 74 | 1-year | 67.20% | NR | | | Stage IV M1A at diagnosis | Stage M1A | 212 | 1-year | 64.50% | NR | | | Stage IV M1B at diagnosis | Stage M1B | 292 | 1-year | 43.80% | NR | | | Stage IV M1C at diagnosis | Stage M1C | 1104 | 1-year | 22.30% | NR | | | Stage IIIB/C at diagnosis | Stage IIIB/C | 74 | 2-year | 42.90% | NR | | Song 2015 | Stage IV M1A at diagnosis | Stage M1A | 212 | 2-year | 40.40% | NR | | (4) | Stage IV M1B at diagnosis | Stage M1B | 292 | 2-year | 23.40% | NR | | | Stage IV M1C at diagnosis | Stage M1C | 1104 | 2-year | 8.90% | NR | | | Stage IIIB/C at diagnosis | Stage IIIB/C | 74 | 3-year | 32.10% | NR | | | Stage IV M1A at diagnosis | Stage M1A | 212 | 3-year | 26.40% | NR | | | Stage IV M1B at diagnosis | Stage M1B | 292 | 3-year | 13.80% | NR | | | Stage IV M1C at diagnosis | sis Stage M1C 1104 3-year | 4.70% | NR | | | | | | Stage IA | 26,944 | 3-Year | n (%): 10627 (97); 95% CI: 96–
97 | NR | | Tjokrowidjaja | Survivor function for AJCC 7th | Stage IA | 26,944 | 5-Year | n (%): 2806 (94); 95% CI: 94–95 | NR | | 2021 | edition among pathologically staged | Stage IB | 18,507 | 3-Year | n (%): 7715 (95); 95% CI: 94–95 | NR | | (27) | patients | Stage IB | 18,507 | 5-Year | n (%): 2116 (90); 95% CI: 90–91 | NR | | | _ | Stage IIA | 4117 | 3-Year | n (%): 1600 (87); 95% CI: 86–88 | NR | | | | Stage IIA | 4117 | 5-Year | n (%): 432 (78); 95% CI: 75–80 | NR | | Study name | Patient population | Stage at diagnosis | Sample size (N) | Time point /
Variable | Survival rate results | p-value | |-----------------|-------------------------------------|--------------------|-----------------|------------------------------|--------------------------------------|---------| | | | Stage IIB | 2829 | 3-Year | n (%): 937 (76); 95% CI: 74–78 | NR | | | | Stage IIB | 2829 | 5-Year | n (%): 242 (64); 95% CI: 61–66 | NR | | | | Stage IIC | 1441 | 3-Year | n (%): 335 (57); 95% CI: 54–60 | NR | | | | Stage IIC | 1441 | 5-Year | n (%): 74 (39); 95% CI: 35–44 | NR | | | | Stage IIIA | 1160 | 3-Year | n (%): 438 (86); 95% CI: 83–89 | NR | | | | Stage IIIA | 1160 | 5-Year | n (%): 140 (79); 95% CI: 75–82 | NR | | | | Stage IIIB | 1463 | 3-Year | n (%): 446 (69); 95% CI: 66–72 | NR | | | | Stage IIIB | 1463 | 5-Year | n (%): 98 (57); 95% CI: 52–61 | NR | | | | Stage IIIC | 925 | 3-Year | n (%): 194 (50); 95% CI: 46–54 | NR | | | | Stage IIIC | 925 | 5-Year | n (%): 35 (38); 95% CI: 33–43 | NR | | | | Stage IV | 2603 | 3-Year | n (%): 247 (24); 95% CI: 22–26 | NR | | | | Stage IV | 2603 | 5-Year | n (%): 61 (20); 95% CI: 18–22 | NR | | | | Stage IA | 38,344 | 3-Year | n (%): 15333 (96); 95% CI: 96–
96 | NR | | | | Stage IA | 38,344 | 5-Year | n (%): 4074 (93); 95% CI: 93–94 | NR | | | | Stage IB | 7099 | 3-Year | n (%): 3008 (94); 95% CI: 93–95 | NR | | | | Stage IB | 7099 | 5-Year | n (%): 848 (89); 95% CI: 88–90 | NR | | | | Stage IIA | 4116 | 3-Year | n (%): 1600 (87); 95% CI: 86–88 | NR | | | | Stage IIA | 4116 | 5-Year | n (%): 432 (78); 95% CI: 75–80 | NR | | | | Stage IIB | 2833 | 3-Year | n (%): 937 (76);
95% CI: 74–78 | NR | | | | Stage IIB | 2833 | 5-Year | n (%): 242 (64); 95% CI: 61–66 | NR | | | Survivor function for AJCC 8th | Stage IIC | 1445 | 3-Year | n (%): 335 (57); 95% CI: 54–60 | NR | | | edition among pathologically staged | Stage IIC | 1445 | 5-Year | n (%): 74 (39); 95% CI: 34-44 | NR | | | patients | Stage IIIA | 855 | 3-Year | n (%): 333 (87); 95% CI: 84–90 | NR | | | | Stage IIIA | 855 | 5-Year | n (%): 100 (82); 95% CI: 78–85 | NR | | | | Stage IIIB | 909 | 3-Year | n (%): 306 (81); 95% CI: 78–84 | NR | | | | Stage IIIB | 909 | 5-Year | n (%): 79 (69); 95% CI: 64–74 | NR | | | | Stage IIIC | 1730 | 3-Year | n (%): 430 (56); 95% CI: 53–59 | NR | | | | Stage IIIC | 1730 | 5-Year | n (%): 94 (44); 95% CI: 40–48 | NR | | | | Stage IIID | 54 | 3-Year | n (%): 10 (30); 95% CI: 17–45 | NR | | | | Stage IIID | 54 | 5-Year | n (%): 0 (0) | NR | | | | Stage IV | 2604 | 3-Year | n (%): 247 (24); 95% CI: 22–26 | NR | | | | Stage IV | 2604 | 5-Year | n (%): 61 (20); 95% CI: 18–22 | NR | | Wilson 2019 (6) | Overall | NA | 304 | Median (post metastasis): 25 | n (%): 75 (24.7) | NR | | Study name | Patient population | Stage at diagnosis | Sample size
(N) | Time point /
Variable | Survival rate results | p-value | |--------------------------------|--|------------------------------|--------------------|---|-------------------------------|---------| | | | | | (range: 0.5 to | | | | | | | | 167.8) months | | | | | Stage I at diagnosis (clinically stage AJCC 7) | Stage I | 96 | Median (post
metastasis): 22
(range: 5.1–155.8)
months | n (%): 29 (30.2) | NR | | | Stage II at diagnosis (clinically stage AJCC 7) | Stage II | 99 | Median (post
metastasis): 37.5
(range: 5.5–141.3)
months | n (%): 23 (23.2) | NR | | | Stage III at diagnosis (clinically stage AJCC 7) | Stage III | 109 | Median (post
metastasis): 27.7
(range: 0.5–167.8)
months | n (%): 23 (23.2) | NR | | | | Stage IIB | 4,339 | 3-year | 74.50% | NR | | | | Stage IIC | 4,339 | 3-year | 48.70% | NR | | | | Stage IIIA | 4,339 | 3-year | 91.50% | NR | | Winge-Main 2020 | Patients with cutaneous melanoma | Stage IIIB | 4,339 | 3-year | 76.70% | NR | | (28) | | Stage IIIC | 4,339 | 3-year | 63.10% | NR | | | | Stage IIID | 4,339 | 3-year | 55.40% | NR | | | | Stage IV | 4,339 | 3-year | 63.70% | NR | | NSCLC | I. | Stage 1 v | 1,557 | 3 year | 03.7070 | 1110 | | | Stage I | Stage I | 853 | 5-year | n (%): 755 (45.6) | NR | | Abrão 2021 (29) | Stage II | Stage II | 425 | 5-year | n (%): 387 (27.5) | < 0.001 | | Abrão 2022 (30) | Stage I/II | Early stage | 681 | NR | 3-years: 68.8% 5-years: 58.1% | NR | | ` ' | Socioeconomic quintile-Q1 (affluent) | Early stage | | 2 (1.4: | 50% | NR | | Berglund 2012 ^b (7) | Socioeconomic quintile-Q5 (deprived) | (Stages IA-IIB at diagnosis) | 1828 | 3-year (cumulative data) | 39% | NR | | Cerqueira 2022
(32) | Patients with stages III/IV NSCLC | Stages III/IV | 10,440 | 1-Year | 57.1% | NR | | | EGFR mutation status negative | Stage IIA | 188 | 6-Year | n (%): <5 (NR) | NR | | TI | 3 | Stage IB | 81 | 6-Year | n (%): <5 (NR) | NR | | Ehrenstein 2022 | ECED (1) D ::: | Stage IIA | 9 | 4-Year | n (%): <5 (NR) | NR | | (8) | EGFR mutation status-Positive | Stage IIA | 9 | 5-Year | n (%): <5 (NR) | NR | | | | Stage IIB | 43 | 5-Year | n (%): <5 (NR) | NR | | Study name | Patient population | Stage at diagnosis | Sample size
(N) | Time point /
Variable | Survival rate results | p-value | |--------------------------|---|--------------------|--------------------|--------------------------|--|-------------------------| | | | Stage IIB | 43 | 6-Year | n (%): <5 (NR) | NR | | | | Stage IIIA | 62 | 5-Year | n (%): <5 (NR) | NR | | | | Stage IIIA | 62 | 6-Year | n (%): <5 (NR) | NR | | | | | 49,298 | 1 year | 55.1% | NR | | | | Stage III | 49,298 | 3 years | 26.3% | NR | | | Patients identified from SEER | - | 49,298 | 5 years | 17.5% | NR | | | database | | 133,395 | 1 year | 25.8% | NR | | 17-11 | | Stage III | NR | | | | | Kalilani 2022 (36) | | | 133,395 | 5 years | n (%): <5 (NR) n (%): <5 (NR) n (%): <5 (NR) n (%): <5 (NR) 55.1% 26.3% 17.5% 25.8% 7.4% 4% 72.5% 36.4% 65.9% 24.6% n (%): NR (1-year: 71%, 3-year: 37%, 5-year: 25%); n (%): NR (1-year: 44%, 3-year: 16%, 5-year: 9%); 30.5% 12.7% 35.3% 13.5% 68.9%; 95% CI: 53.5-80.0 61%; 95% CI: 39.6-76.9 25%; 95% CI: 59.3% to 59.7% 34.1%; 95% CI: 33.8% to 34.5% | NR | | | | C4 III | 1,175 | 1 year | 72.5% | NR | | | Patients identified from Flatiron | Stage III | 1,175 | 3 years | 36.4% | NR | | | database | Stage IV | 3,210 | 1 year | 65.9% | NR | | | | | 3,210 | 3 years | 24.6% | NR | | Klarenbeek 2022 | Stage III | Stage III | NR | 1-year, 3-year, 5- | | NR | | (37) | Stage IV | Stage III | 5268 | year | | NR | | | Patients with unresectable stage III NSCLC with T0 status | Unresectable | 458 | 5-year | 30.5% | < 0.0001 | | Komiya 2020 | Patients with unresectable stage III NSCLC with T1-4 status | | 84,263 | 5-year | 12.7% | NR | | (38) | Patients with unresectable stage III NSCLC with T0 status | stage III | 458 | 5-year | 35.3% | NR | | | Patients with unresectable stage III NSCLC with T1-4 status | | 84,263 | 5-year | 13.5% | NR | | N | Stage I | Stage I | 50 | 5 years OS | 68.9%; 95% CI: 53.5–80.0 | 0.001 | | Monteiro 2022 | Stage II | Stage II | 26 | 5 years OS | 61%; 95% CI: 39.6–76.9 | NR | | (10) | Stage IIIA | Stage IIIA | 15 | 5 years OS | 25%; 95% CI: 6.9–48.8 | NR | | | Patients with stage I NSCLC | | NR | 5-year | 59.5%; 95% CI: 59.3% to 59.7% | NR | | Potter 2022 ^c | Patients with unknown stage NSCLC | Unknown | NR | 5-year | 34.1%; 95% CI: 33.8% to 34.5% | <0.001
vs stage
I | | (41) | Patients in low screening state | Stage I | NR | 2010 to 2017 | Annual percent change: 5.9% | NR | | | Patients in high screening state | Stage I | NR | 2010 to 2014 | Annual percent change: 2.2%; | 0.39 | | Study name | Patient population | Stage at diagnosis | Sample size
(N) | Time point /
Variable | Survival rate results | p-value | |-------------------|--|---|--------------------|--------------------------|---|---------| | | Patients in high screening state | Stage I | NR | 2014 to 2017 | Annual percent change: 13.4%; 95% CI: 1.4% to 26.9% | 0.04 | | | Patients diagnosed with NSCLC in 2007-2012 | Stage I non-squamous | 58 | 1-year | 91%; 95% CI: 84–98 | NR | | | Patients diagnosed with NSCLC in 2013-2017 | | 123 | 1-year | 90%; 95% CI: 86–95 | NR | | | Patients diagnosed with NSCLC in 2007-2012 | | 37 | 3-year | 58%; 95% CI: 47–71 | NR | | | Patients diagnosed with NSCLC in 2013-2017 | | 44 | 3-year | 72%; 95% CI: 64–81 | NR | | | Patients diagnosed with NSCLC in 2007-2012 | | 25 | 5-year | 43%; 95% CI: 32–57 | NR | | | Patients diagnosed with NSCLC in 2013-2017 | | <6 | 5-year | 51%; 95% CI: 37–72 | NR | | | Patients diagnosed with NSCLC in 2007-2012 | Stage I squamous | 46 | 1-year | 79%; 95% CI: 70–90 | NR | | | Patients diagnosed with NSCLC in 2013-2017 | | 55 | 1-year | 85%; 95% CI: 77–94 | NR | | Snee 2021
(11) | Patients diagnosed with NSCLC in 2007-2012 | | 29 | 3-year | 5%; 95% CI: 39–65 | NR | | , | Patients diagnosed with NSCLC in 2013-2017 | | 24 | 3-year | 73%; 95% CI: 61–86 | NR | | | Patients diagnosed with NSCLC in 2007-2012 | | 16 | 5-year | 28%; 95% CI: 18–42 | NR | | | Patients diagnosed with NSCLC in 2013-2017 | | <6 | 5-year | 32%; 95% CI: 13–81 | NR | | | Patients diagnosed with NSCLC in 2007-2012 | | 76 | 1-year | 59%; 95% CI: 51–69 | NR | | | Patients diagnosed with NSCLC in 2013-2017 | Stage I NSCLC | 97 | 1-year | 66%; 95% CI: 60–74 | NR | | | Patients diagnosed with NSCLC in 2007-2012 | clinically diagnosed with unknown pathology | 25 | 3-year | 20%; 95% CI: 14–28 | NR | | | Patients diagnosed with NSCLC in 2013-2017 | | 17 | 3-year | 27%; 95% CI: 19–38 | NR | | | Patients diagnosed with NSCLC in 2007-2012 | | 11 | 5-year | 9%; 95% CI: 05–16 | NR | | Study name | Patient population | Stage at diagnosis | Sample size
(N) | Time point /
Variable | Survival rate results | p-value | |------------|--|--------------------|--------------------|--------------------------|-----------------------|---------| | | Patients diagnosed with NSCLC in 2013-2017 | | <6 | 5-year | 10%; 95% CI: 04–28 | NR | | | Patients diagnosed with NSCLC in 2007-2012 | | 41 | 1-year | 68%; 95% CI: 58–81 | NR | | | Patients diagnosed with NSCLC in 2013-2017 | | 30 | 1-year | 72%; 95% CI: 60–85 | NR | | | Patients diagnosed with NSCLC in 2007-2012 | Stage II non- | 27 | 3-year | 45%; 95% CI: 34–60 | NR | | | Patients diagnosed with NSCLC in 2013-2017 | squamous | 12 | 3-year | 42%; 95% CI: 30–61 | NR | | | Patients diagnosed with NSCLC in 2007-2012 | | 18 | 5-year | 31%; 95% CI: 21–46 | NR | | | Patients diagnosed with NSCLC in 2013-2017 | | 0 | 5-year | 0%; 95% CI: NA | NR | | | Patients diagnosed with NSCLC in 2007-2012 | | 36 | 1-year | 62%; 95% CI: 51–76 | NR | | | Patients diagnosed with NSCLC in 2013-2017 | | 45 | 1-year | 66%; 95% CI: 55–.77 | NR | | | Patients diagnosed with NSCLC in 2007-2012 | C4 II | 18 | 3-year | 31%; 95% CI: 21–46 | NR | | | Patients diagnosed with NSCLC in 2013-2017 | Stage II squamous | 15 | 3-year | 42%; 95% CI: 31–57 | NR | | | Patients diagnosed with NSCLC in 2007-2012 | | 14 | 5-year | 24%; 95% CI: 15–38 | NR | |
 Patients diagnosed with NSCLC in 2013-2017 | | 0 | 5-year | 0%; 95% CI: NA | NR | | | Patients diagnosed with NSCLC in 2007-2012 | | 27 | 1-year | 33%; 95% CI: 24–.45 | NR | | | Patients diagnosed with NSCLC in 2013-2017 | Stage II NSCLC | 25 | 1-year | 50%; 95% CI: 38–65 | NR | | | Patients diagnosed with NSCLC in 2007-2012 | diagnosed with | 11 | 3-year | 14%; 95% CI: 08–24 | NR | | | Patients diagnosed with NSCLC in 2013-2017 | | <6 | 3-year | 9%; 95% CI: 03–31 | NR | | | Patients diagnosed with NSCLC in 2007-2012 | | 7 | 5-year | 9%; 95% CI: 04–18 | NR | | Study name | Patient population | Stage at diagnosis | Sample size
(N) | Time point /
Variable | Survival rate results | p-value | |------------|--|--|--------------------|--------------------------|-----------------------|---------| | | Patients diagnosed with NSCLC in 2013-2017 | | 0 | 5-year | 0%; 95% CI: NA | NR | | | Patients diagnosed with NSCLC in 2007-2012 | | 23 | 1-year | 45%; 95% CI: 33–61 | NR | | | Patients diagnosed with NSCLC in 2013-2017 | C4 III A | 35 | 1-year | 74%; 95% CI: 63–87 | NR | | | Patients diagnosed with NSCLC in 2007-2012 | Stage IIIA, non-squamous Stage II NSCLC without pathological diagnosis | 14 | 3-year | 27%; 95% CI: 18–43 | NR | | | Patients diagnosed with NSCLC in 2013-2017 | | <6 | 3-year | 35%; 95% CI: 22–58 | NR | | | Patients diagnosed with NSCLC in 2007-2012 | | 9 | 5-year | 18%; 95% CI: 10–32 | NR | | | Patients diagnosed with NSCLC in 2013-2017 | | 0 | 5-year | 0%; 95% CI: NA | NR | | | Patients diagnosed with NSCLC in 2007-2012 | | 41 | 1-year | 45%; 95% CI: 36–57 | NR | | | Patients diagnosed with NSCLC in 2013-2017 | | 29 | 1-year | 54%; 95% CI: 43–68 | NR | | | Patients diagnosed with NSCLC in 2007-2012 | Stage IIIA, | 12 | 3-year | 13%; 95% CI: 08–22 | NR | | | Patients diagnosed with NSCLC in 2013-2017 | squamous | <6 | 3-year | 21%; 95% CI: 10–42 | NR | | | Patients diagnosed with NSCLC in 2007-2012 | | 10 | 5-year | 11%; 95% CI: 06–20 | NR | | | Patients diagnosed with NSCLC in 2013-2017 | | 0 | 5-year | 0%; 95% CI: NA | NR | | | Patients diagnosed with NSCLC in 2007-2012 | | 16 | 1-year | 21%; 95% CI: 13–32 | NR | | | Patients diagnosed with NSCLC in 2013-2017 | Stage III NSCLC | 7 | 1-year | 20%; 95% CI: 12–36 | NR | | | Patients diagnosed with NSCLC in 2007-2012 | clinically diagnosed with | <6 | 3-year | 05%; 95% CI: 02–13 | NR | | | Patients diagnosed with NSCLC in 2013-2017 | unknown
pathology | 0 | 3-year | 0%; 95% CI: NA | NR | | | Patients diagnosed with NSCLC in 2007-2012 | | 0 | 5-year | 0%; 95% CI: NA | NR | | Study name | Patient population | Stage at diagnosis | Sample size
(N) | Time point /
Variable | Survival rate results | p-value | |------------|--|---------------------------------|--------------------|--------------------------|-----------------------|---------| | | Patients diagnosed with NSCLC in 2013-2017 | _ | 0 | 5-year | 0%; 95% CI: NA | NR | | | Patients diagnosed with NSCLC in 2007-2012 | | 68 | 1-year | 20%; 95% CI: 16–25 | NR | | | Patients diagnosed with NSCLC in 2013-2017 | | 72 | 1-year | 26%; 95% CI: 21–31 | NR | | | Patients diagnosed with NSCLC in 2007-2012 | Stage IIIB-IV, | 19 | 3-year | 06%; 95% CI: 04–09 | NR | | | Patients diagnosed with NSCLC in 2013-2017 | non-squamous | 8 | 3-year | 06%; 95% CI: 04–11 | NR | | | Patients diagnosed with NSCLC in 2007-2012 | | 11 | 5-year | 03%; 95% CI: 02–07 | NR | | | Patients diagnosed with NSCLC in 2013-2017 | | 0 | 5-year | 0%; 95% CI: NA | NR | | | Patients diagnosed with NSCLC in 2007-2012 | | 56 | 1-year | 24%; 95% CI: 19–31 | NR | | | Patients diagnosed with NSCLC in 2013-2017 | | 37 | 1-year | 25%; 95% CI: 19–32 | NR | | | Patients diagnosed with NSCLC in 2007-2012 | Stage IIIB-IV, | 12 | 3-year | 05%; 95% CI: 03–09 | NR | | | Patients diagnosed with NSCLC in 2013-2017 | squamous | 6 | 3-year | 08%; 95% CI: 04–15 | NR | | | Patients diagnosed with NSCLC in 2007-2012 | | 8 | 5-year | 04%; 95% CI: 02–07 | NR | | | Patients diagnosed with NSCLC in 2013-2017 | _ | 0 | 5-year | 0%; 95% CI: NA | NR | | | Patients diagnosed with NSCLC in 2007-2012 | | 30 | 1-year | 08%; 95% CI: 06–11 | NR | | | Patients diagnosed with NSCLC in 2013-2017 | Stage IIIB-IV | 14 | 1-year | 06%; 95% CI: 04–09 | NR | | | Patients diagnosed with NSCLC in 2007-2012 | NSCLC clinically diagnosed with | 8 | 3-year | 02%; 95% CI: 1–5 | NR | | | Patients diagnosed with NSCLC in 2013-2017 | unknown
pathology | <6 | 3-year | 01%; 95% CI: 00–04 | NR | | | Patients diagnosed with NSCLC in 2007-2012 | | <6 | 5-year | 01%; 95% CI: 00–02 | NR | | Study name | Patient population | Stage at diagnosis | Sample size (N) | Time point /
Variable | Survival rate results | p-value | | |----------------------|---|--------------------|-----------------|--------------------------|--------------------------------|----------|--| | | Patients diagnosed with NSCLC in 2013-2017 | | 0 | 5-year | 0%; 95% CI: NA | NR | | | | | Stage I | 174 | 1-year | n (%): 143 (92); 95% CI: 88–96 | NR | | | | | Stage I | 174 | 2-Year | n (%): 91 (80); 95% CI: 74–87 | NR | | | | Diagnosed with NSCLC between | Stage II | 86 | 1-year | n (%): 54 (71); 95% CI: 62–82 | NR | | | | 2012-2016 | Stage II | 86 | 2-Year | n (%): 31 (50); 95% CI: 40–63 | NR | | | | | Stage III A | 235 | 1-year | n (%): 147 (69); 95% CI: 63–75 | NR | | | | | Stage III A | 235 | 2-Year | n (%): 81 (46); 95% CI: 40–53 | NR | | | Soares 2021 (43) | Patients diagnosed in 2015-2016-NSQ carcinoma | Stage I or II | 68 | 1-year | 89%; 95% CI: 81–97 | NR | | | | Patients diagnosed in 2015-2016-SQ carcinoma | Stage I or II | 28 | 1-year | 76%; 95% CI: 60–95 | NR | | | | Patients diagnosed in 2015-2016-NSQ carcinoma | Stage IIIA | 41 | 1-year | 86%; 95% CI: 75–98 | NR | | | | Patients diagnosed in 2015-2016-SQ carcinoma | Stage IIIA | 33 | 1-year | 49%; 95% CI: 34–70 | NR | | | | Elderly patients (>70 years) diagnosed between 2005-2007 | | NR | 1-year | 18.0% (95% CI: 11%–25%) | 0.29 vs. | | | S: | Elderly patients (>70 years) diagnosed between 2015-2016 | C4 IV | NR | 1-year | 31.0% (95% CI: 22%–39%) | elderly | | | Suipyte 2019 (44) | Young patients (<70 years) diagnosed between 2005-2007 | Stage IV | NR | 1-year | 34.0% (95% CI: 27%–42%) | 0.049 vs | | | | Young patients (<70 years) diagnosed
between 2015-2016 | | NR | 1-year | 52.0% (955 CI: 43%– 61%) | young | | | | Newly diagnosed patients with stage Ia | Stage Ia | NR | 1-year | 86.3% | NR | | | | Newly diagnosed patients with stage Ib | Stage Ib | NR | 1-year | 73.1% | NR | | | Vachani 2021
(45) | Newly diagnosed patients with stage IIa | Stage IIa | NR | 1-year | 77.5% | NR | | | | Newly diagnosed patients with stage IIb | Stage IIb | NR | 1-year | 64% | NR | | | | Newly diagnosed patients with stage IIIa | Stage IIIa | NR | 1-year | 53.8% | NR | | | | Newly diagnosed patients with stage IIIb | Stage IIIb | NR | 1-year | 38.3% | NR | | | Study name | Patient population | Stage at diagnosis | Sample size
(N) | Time point /
Variable | Survival rate results | p-value | | |-----------------------|--|--------------------|--------------------|--------------------------|--------------------------|---------|--| | | Newly diagnosed patients with stage IV | Stage IV | NR | 1-year | 22.6% | NR | | | RCC | | | | | | | | | | Patients with newly diagnosed localized RCC: Intermediate-high risk | | 629 | 5-year | 69% | NR | | | | T3G1-G2 (intermediate-high risk subgroup) | | 297 | 5-year | 77% | NR | | | Haas 2022 (47) | T3G3 (intermediate-high risk subgroup) | | 250 | 5-year | 65% | NR | | | | T3G4 (intermediate-high risk subgroup) | | 64 | 5-year | 37% | NR | | | | High risk | | 14 | 5-year | 36% | NR | | | | Intermediate-high risk | | NR | 5-year | 69% | NR | | | | High risk | Localized | NR | 5-year | 58% | NR | | | | Patients without recurrence among intermediate-high risk and high risk RCC | | NR | 5-year | | | | | Haas 2022b (48) | Patients with recurrence among intermediate-high risk and high risk RCC | | NR | 5-year | 57% | NR | | | | Patients with recurrence among intermediate-high risk RCC | | NR | 5-year | 58% | NR | | | | Patients with recurrence among high risk RCC | | NR | 5-year | 57% | NR | | | | | Overall | 23559 | 5-year | 80.3%; 95% CI:78.9, 81.7 | NR | | | | DCC WILL (C DCM) | Localized | 16,878 | 5-year | 90.3%; 95% CI:89.0, 91.5 | NR | | | | ccRCC: White (after PSM) | Regional | 4,351 | 5-year | 70%; 95% CI:65.8, 74.6 | NR | | | Li 2021 | | Distant | 2330 | 5-year | 34.1%; 95% CI:26.7, 43.5 | NR | | | (49) | | Overall | 1586 | 5-year | 81.2%; 95% CI:78.8, 83.7 | NR | | | | DCC A ' (C DCM) | Localized | 1164 | 5-year | 91.9%; 95% CI:89.8, 94.1 | NR | | | | ccRCC: Asian (after PSM) | Regional | 261 | 5-year | 71.5%; 95% CI:64.7, 79.0 | NR | | | | | Distant | 161 | 5-year | 20.3%; 95% CI:13.1, 31.4 | NR | | | TNBC | | | | | | | | | Cabruantes 2010 | Percentage alive at 1 year | Stage III and IV | 1244 | 1-year | 60% (95% CI: 57%–63%) | NR | | | Schwartz 2018
(12) | Percentage alive at 3 years | Stage III and IV | 1244 | 3-years | 33% (95% CI: 30%–36%) | NR | | | (12) | All AJCC stage III cases | Stage III | 828 | 1-year | 76% (95% CI: 73%–78%) | NR | | | Study name | Patient population | Stage at diagnosis | Sample size
(N) | Time point /
Variable | Survival rate results | p-value | |-----------------------|--|--------------------|--------------------|--------------------------|-----------------------|---------| | | All AJCC stage III cases | Stage III | 828 | 3-years | 44% (95% CI: 41%–48%) | NR | | | All AJCC stage IV cases | Stage IV | 416 | 1-year | 29% (95% CI: 25%–34%) | NR | | | All
AJCC stage IV cases | Stage IV | 416 | 3-years | 11% (95% CI: 8%–14%) | NR | | | Overall | Overall | 180 | 5-year | 56% | NR | | | Stage I | Stage I | 14 | 5-year | 92.3% | NR | | Yousefi 2017 (54) | Stage II | Stage II | 88 | 5-year | 86.5% | NR | | | Stage III | Stage III | 57 | 5-year | 57.8% | NR | | | Stage IV | Stage IV | 8 | 5-year | 9% | NR | | Gogate 2022 (51) | All systemically treated patients diagnosed at early stage | Early stage | 462 | 36 months | 85.7% (SE: 1.8) | NR | | Lehrberg 2021
(52) | Overall African American and White-
American patients | Early stage | 286 | 5-year | 82% (95% CI: 77%–87%) | NR | ^a Defined as "survival relative to the total population of England. Abbreviations: 1L: First line; 2L: Second line; AJCC: American Joint Committee on Cancer; CI: Confidence interval; EGFR: Estimated glomerular filtration rate; NA: Not available; NR: Not reported; NSCLC: Non-small cell lung cancer; NSQ: Non-squamous; OS: Overall survival; RCC: Renal cell carcinoma; SD: Standard deviation; SE: Standard error; SEER: Surveillance, Epidemiology, and End Results; SQ: Squamous; TNBC: Triple negative breast cancer; TNM: Tumor (T), nodes (N), and metastases (M) ^b Cumulative OS ^c Median all-cause survival #### 10 Risk of bias results # Quality assessment of included studies – Newcastle-Ottawa Quality Assessment Scale (cohort studies) | | | \$ | Selection | | Comparability | Outcome | | | | | |-------------------------------|--|--|--|--|--|-------------------------------------|--|---|----------------|--------------------| | Study
name | Question 1: Represent ativeness of the exposed cohort1 | Question
2:
Selection
of the non-
exposed
cohort2 | Question 3: Ascertain ment of exposure 3 | Question 4:
Demonstration
that outcome of
interest was not
present at start of
study4 | Question 1:
Comparability of
cohorts on the
basis of the design
or analysis5 | Question 1: Assessme nt of outcome6 | Question 2:
Was follow-
up long
enough for
outcomes to
occur7 | Question 3:
Adequacy
of follow
up of
cohorts8 | Total
score | Interpretat
ion | | Bladder can | | | | | | | | | | | | Aly 2019
(57) | a) * | a) * | a) * | b) | c) | b) * | a) * | d) | **** | Medium
quality | | Amiri
2020 (13) | a) * | c) | a) * | b) | c) | b) * | b) | a) * | **** | Medium
quality | | Aragon-
Ching
2021 (14) | a) * | c) | a) * | b) | c) | b) * | a) * | d) | **** | Medium
quality | | Davies 2020 (15) | a) * | c) | a) * | b) | c) | b) * | a) * | d) | **** | Medium
quality | | Fisher 2018 (1) | a) * | a) * | a) * | b) | a) ** | b) * | a) * | d) | ***** | Medium
quality | | Omland
2021
(16) | a) * | a) * | a) * | b) | c) | b) * | a) * | b) * | ***** | Medium
quality | | Sorup
2021 (17) | a) * | c) | a) * | b) | c) | b) * | a) | d) | *** | Low quality | | Yu 2019
(56) | a) * | c) | b) * | b) | c) | d) | b) | d) | ** | Low quality | | Gastric can | eer | | | | | | | | | | | Dijksterhui
s 2022 (18) | b) * | c) | a) * | b) | c) | b) * | b) | d) | *** | Low quality | | Qiu 2018
(19) | a) * | a) * | a) * | a) * | c) | b) * | b) | d) | **** | Medium quality | | | | \$ | Selection | | Comparability | | Outcome | | | | |--------------------------------|--|--|--|--|--|-------------------------------------|--|---|----------------|--------------------| | Study
name | Question 1: Represent ativeness of the exposed cohort1 | Question
2:
Selection
of the non-
exposed
cohort2 | Question 3: Ascertain ment of exposure 3 | Question 4:
Demonstration
that outcome of
interest was not
present at start of
study4 | Question 1:
Comparability of
cohorts on the
basis of the design
or analysis5 | Question 1: Assessme nt of outcome6 | Question 2:
Was follow-
up long
enough for
outcomes to
occur7 | Question 3:
Adequacy
of follow
up of
cohorts8 | Total
score | Interpretat
ion | | Head and no | eck cancer | | | | | | | | | | | Amarillo 2021 (20) | b) * | c) | d) | b) | c) | d) | a) * | d) | ** | Low quality | | Ho 2019
(2) | a) * | c) | a) * | a) * | c) | b) * | a) * | d) | **** | Medium quality | | Hochfelder
2020 (21) | a) * | a) * | a) * | b) | c) | b) * | a) * | d) | **** | Medium
quality | | Neto 2021
(22) | a) * | c) | a) * | b) | c) | b) * | a) * | d) | **** | Medium
quality | | Sargeran
2009 (24) | b) * | c) | a) * | b) | c) | b) * | a) * | b) * | **** | Medium
quality | | Sargeran
2008 (23) | b) * | c) | a) * | b) | c) | b) * | a) * | b) * | **** | Medium
quality | | Melanoma | | | | | | | | | | | | Ngo 2020
(25) | d) | c) | d) | b) | c) | d) | a) * | d) | * | Low quality | | Ramond 2021 (26) | a) * | c) | a) * | b) | c) | b) * | a) * | d) | **** | Medium quality | | Song 2015
(4) | a) * | c) | a) * | b) | c) | b) * | a) * | d) | **** | Medium
quality | | Tjokrowidj
aja 2021
(27) | a) * | c) | a) * | b) | c) | b) * | a) * | d) | **** | Medium
quality | | Wilson
2019
(6) | a) * | c) | a) * | b) | c) | b) * | a) * | d) | **** | Medium
quality | | Winge-
Main 2020
(28) | a) * | c) | a) * | b) | c) | b) * | a) | d) | *** | Low quality | | Toscano
2020
(5) | b) * | c) | b) * | b) | c) | c) | b) | d) | ** | Low quality | # Supplementary Material | | | S | Selection | | Comparability | | Outcome | | | | |-------------------------|--|--|--|--|--|-------------------------------------|--|---|----------------|--------------------| | Study
name | Question 1: Represent ativeness of the exposed cohort1 | Question
2:
Selection
of the non-
exposed
cohort2 | Question 3: Ascertain ment of exposure 3 | Question 4:
Demonstration
that outcome of
interest was not
present at start of
study4 | Question 1:
Comparability of
cohorts on the
basis of the design
or analysis5 | Question 1: Assessme nt of outcome6 | Question 2:
Was follow-
up long
enough for
outcomes to
occur7 | Question 3:
Adequacy
of follow
up of
cohorts8 | Total
score | Interpretat
ion | | NSCLC | | | | | | | | | | | | Abrão
2021 (29) | a) * | c) | a) * | a) * | c) | b) * | a) * | a) * | ***** | Medium
quality | | Abrão
2022 (30) | a) * | c) | a) * | b) | c) | b) * | a) * | a) * | **** | Medium quality | | Azzouqa
2019
(31) | a) * | a) * | a) * | b) | c) | b) * | a) * | d) | **** | Medium
quality | | Berglund
2012
(7) | a) * | c) | a) * | a) * | c) | b) * | a) * | d) | **** | Medium
quality | | Buck 2015 (58) | a) * | c) | a) * | b) | c) | b) * | b) | d) | *** | Low quality | | Cerqueira 2022 (32) | a) * | c) | a) * | b) | c) | b) * | a) * | d) | **** | Medium
quality | | Ehrenstein 2022 (8) | a) * | a) * | a) * | b) | c) | b) * | a) * | d) | **** | Medium
quality | | Ekman 2019 (33) | a) * | a) * | a) * | b) | c) | b) * | a) * | d) | **** | Medium
quality | | Flores
2021
(9) | a) * | c) | a) * | a) * | c) | b) * | a) * | d) | **** | Medium
quality | | Gildea
2017
(59) | a) * | c) | a) * | b) | c) | b) * | a) * | d) | **** | Medium
quality | | Greystoke
2021 (34) | a) * | c) | a) * | b) | c) | b) * | a) * | d) | **** | Medium
quality | | Jazieh
2021 (35) | a) * | a) * | a) * | b) | c) | b) * | b) | c) | **** | Medium
quality | | Kalilani
2022 (36) | a) * | c) | a) * | b) | c) | b) * | a) * | d) | **** | Medium quality | | | | S | Selection | | Comparability | | Outcome | | | | |----------------------|--|--|--|--|--|-------------------------------------|--|---|----------------|--------------------| | Study
name | Question 1: Represent ativeness of the exposed cohort1 | Question
2:
Selection
of the non-
exposed
cohort2 | Question 3: Ascertain ment of exposure 3 | Question 4:
Demonstration
that outcome of
interest was not
present at start of
study4 | Question 1:
Comparability of
cohorts on the
basis of the design
or analysis5 | Question 1: Assessme nt of outcome6 | Question 2:
Was follow-
up
long
enough for
outcomes to
occur7 | Question 3:
Adequacy
of follow
up of
cohorts8 | Total
score | Interpretat
ion | | Klarenbeek 2022 (37) | a) * | c) | a) * | a) * | c) | b) * | a) * | a) * | ***** | Medium quality | | Komiya
2020 (38) | a) * | a) * | a) * | b) | c) | b) * | a) * | d) | **** | Medium quality | | Luciano
2020 (39) | a) * | a) * | a) * | b) | c) | b) * | b) | d) | **** | Medium
quality | | Martin 2022 (40) | b) * | c) | a) * | a) * | c) | b) * | a) * | d) | **** | Medium
quality | | Monteiro 2022 (10) | b) * | a) * | a) * | b) | c) | b) * | a) * | d) | **** | Medium
quality | | Potter 2022 (41) | a) * | c) | a) * | a) * | b) * | b) * | b) | d) | ***** | Medium
quality | | Ritberg 2021 (42) | d) | c) | d) | b) | c) | d) | a) * | d) | * | Low quality | | Snee 2021
(11) | a) * | a) * | a) * | b) | c) | b) * | a) * | d) | **** | Medium
quality | | Soares 2021 (43) | a) * | a) * | a) * | b) | c) | b) * | a) * | c) | **** | Medium
quality | | Suipyte
2019 (44) | b) * | a) * | d) | b) | c) | d) | a) * | d) | *** | Low quality | | Vachani
2021 (45) | a) * | a) * | a) * | b) | c) | b) * | a) * | d) | **** | Medium
quality | | Van Dao
2022 (46) | a) * | a) * | a) * | b) | c) | b) * | a) * | b) * | ***** | Medium
quality | | Tjong
2021 (55) | a) * | c) | a) * | b) | c) | b) * | a) * | d) | **** | Medium
quality | | RCC | | | | | | | | | | | | Haas
2022a (47) | a) * | c) | a) * | b) | c) | b) * | a) | d) | *** | Low quality | | Haas
2022b (47) | a) * | c) | a) * | b) | c) | b) * | a) * | d) | **** | Medium
quality | | | | S | Selection | | Comparability | Outcome | | | | | |---------------------------|--|---|--|--|--|-------------------------------------|--|---|----------------|--------------------| | Study
name | Question 1: Represent ativeness of the exposed cohort1 | Question 2: Selection of the non- exposed cohort2 | Question 3: Ascertain ment of exposure 3 | Question 4:
Demonstration
that outcome of
interest was not
present at start of
study4 | Question 1:
Comparability of
cohorts on the
basis of the design
or analysis5 | Question 1: Assessme nt of outcome6 | Question 2:
Was follow-
up long
enough for
outcomes to
occur7 | Question 3:
Adequacy
of follow
up of
cohorts8 | Total
score | Interpretat
ion | | Li 2021
(49) | a) * | c) | a) * | b) | c) | b) * | a) * | a) * | **** | Medium
quality | | TNBC | | | | | | | | | | | | Aly 2019a (50) | a) * | a) * | a) * | b) | c) | b) * | a) * | d) | **** | Medium quality | | Gogate 2022 (51) | a) * | c) | a) * | b) | c) | b) * | a) * | b) * | **** | Medium
quality | | Haiderali
2021
(60) | a) * | a) * | a) * | b) | c) | b) * | a) * | d) | **** | Medium
quality | | Lehrberg 2021 (52) | b) * | c) | a) * | a) * | c) | b) * | a) * | a) * | ***** | Medium
quality | | Schwartz
2018 (12) | a) * | c) | a) * | b) | c) | b) * | a) * | d) | **** | Medium
quality | | Sieluk
2020 (53) | a) * | a) * | a) * | b) | a) ** | b) * | b) | d) | **** | Medium
quality | | Yousefi
2017 (54) | a) * | c) | a) * | b) | c) | b) * | a) * | a) * | **** | Medium quality | a) truly representative of the average ____ (describe) in the community (*); b) somewhat representative of the average ____ in the community (*); c) selected group of users e.g., nurses, volunteers; d) no description of the derivation of the cohort Abbreviations: NSCLC: Non-small cell lung cancer; RCC: Renal cell carcinoma; TNBC: Triple negative breast cancer ² a) drawn from the same community as the exposed cohort (*); b) drawn from a different source; c) no description of the derivation of the non-exposed cohort ³ a) secure record (*); b) structured interview (*); c) written self-report; d) no description ⁴ a) yes (*); b) no ⁵ a) study controls for ___ (select the most important factor) (**); b) study controls for any additional factor (*); c) Cohort are not comparable on the basis of design or analysis controlled for confounders ⁶ a) independent blind assessment (*); b) record linkage (*); c) self-report; d) no description ⁷ a) yes (*); b) no ⁸ a) complete follow up - all subjects accounted for (*); b) subjects lost to follow up unlikely to introduce bias - small number lost - > _____ % follow up, or description provided of those lost) (*) c) follow up rate < ____ % and no description of those lost; d) no statement ### $\label{eq:Quality} \textbf{Quality assessment of included studies} - \textbf{Cost of Illness study checklist}$ | Study name | | Study name | | |--|---|---|--| | Study name | | Cost-of-Illness Study checklist | Singh 2021 | | (1) Analytical | (a) What was the motiv | vation and perspective of the study? | This study was
performed from a
health care
provider's
perspective | | framework: | b) Was the appropriate | epidemiologic approach taken? | Yes | | what costs
should have | | (i) Were all relevant, non-trivial cost components and their stakeholders identified? | Yes | | been measured? | (c) Was the study | (ii) Were necessary timeframes specified? | Yes | | | question well specified? | (iii) Was a case of disease or risk factor adequately and appropriately defined? | Yes | | | | (iv) Was the counterfactual population occurrence plausible and meaningful? | Unclear | | | (-) W: | (i) additional, or excess, costs were measured? | Yes | | | (a) Was an appropriate method(s) of | (ii) only costs specific to (caused by) the health problem were included (confounders controlled)? | Yes | | | quantification used, | (iii) all important effects were captured? | Yes | | (2) Methodology
and data: how
well were
resource use
and
productivity | such that | (iv) important differences across subpopulations were accounted for? | Yes | | | | (v) the required level of detail could be provided? | Yes | | | (b) Was the resource
quantification
method(s) well
executed? | (i) For population-based studies, were cost allocation methods, data and assumptions valid? | | | | | (ii) For person-based studies, were appropriate statistical tests performed and reported? | Yes | | losses
measured? | | (iii) Were data representative of the study population? | Yes | | measureu. | | (iv) Were there any other relevant resource quantification issues? | Unclear | | | c) Were healthcare res | No | | | | (d) Was the approach t | for valuing production losses justified, and assumptions valid? | Unclear | | | (e) Was the inclusion of intangible costs | (i) Was double counting of mortality-related production losses avoided? | NR | | | appropriate: | (ii) Were losses valued appropriately, given the study's perspective? | NR | | | | dress the study question? | Yes | | | (b) Was a range of esti | | Yes | | | (c) Were the main unce | | Yes | | | d) Was a sensitivity | (i) important (uncertain) parameter estimates? (ii) key assumptions? (including the counterfactual) | Yes
Unclear | | | analysis performed on: | (iii) point estimates? (based on confidence or credible intervals) | Unclear | | (3) Analysis and reporting | e) Was adequate docur
and sources, assumption | nentation and justification given for cost components, data | Yes | | | f) Was uncertainty aro | und the estimates and its implications adequately discussed? | Yes | | | (g) Were important lin
assumptions and metho | nitations discussed regarding the cost components, data, | Yes | | | (h) Were the results pr
question (cost compon
cost bearers)? | Yes | | #### 11 References - 1. Fisher MD, Shenolikar R, Miller PJ, Fenton M, Walker MS. Treatment Patterns and Outcomes in Stage IV Bladder Cancer in a Community Oncology Setting: 2008-2015. Clin Genitourin Cancer. 2018;16(6):e1171-e9; doi:10.1016/j.clgc.2018.07.025. - 2. Ho PS, Wang WC, Huang YT, Yang YH. Finding an oral potentially malignant disorder in screening program is related to early diagnosis of oral cavity cancer Experience from real world evidence. Oral Oncol. 2019;89:107-14; doi:10.1016/j.oraloncology.2018.12.007. - 3. Singh AG, Chaukar D, Gupta S, Pramesh CS, Sullivan R, Chaturvedi P, et al. A prospective study to determine the cost of illness for oral cancer in India. Ecancermedicalscience. 2021;15:1252; doi:10.3332/ecancer.2021.1252. - 4. Song X, Zhao Z, Barber B, Farr AM, Ivanov B, Novich M. Overall survival in patients with metastatic melanoma. Curr Med Res Opin. 2015;31(5):987-91; doi:10.1185/03007995.2015.1021904. - 5. Toscano A, Blanchin M, Bourdon M, Bonnaud Antignac A, Sebille V. Longitudinal associations between coping strategies, locus of control and health-related quality of life in patients with breast cancer or melanoma. Qual Life Res. 2020;29(5):1271-9; doi:10.1007/s11136-019-02401-8. - 6. Wilson MA, Zhong J, Rosenbaum BE, Utter K, Moran U, Darvishian F, et al. Impact of initial stage on metastatic melanoma survival. Melanoma Res. 2019;29(3):281-8; doi:10.1097/CMR.000000000000526. - 7. Berglund A, Lambe M, Luchtenborg M, Linklater K, Peake MD, Holmberg L, et al. Social differences in lung cancer management and survival in South East England: a cohort study. BMJ Open. 2012;2(3); doi:10.1136/bmjopen-2012-001048. - 8.
Ehrenstein V, Eriksen K, Taylor A, Servidio L, Jakobsen E. Characteristics and overall survival of patients with early-stage non-small cell lung cancer: A cohort study in Denmark. Cancer Med. 2022; doi:10.1002/cam4.4946. - 9. Flores R, Patel P, Alpert N, Pyenson B, Taioli E. Association of Stage Shift and Population Mortality Among Patients With Non-Small Cell Lung Cancer. JAMA Netw Open. 2021;4(12):e2137508; doi:10.1001/jamanetworkopen.2021.37508. - 10. Monteiro AS, Araujo SRC, Araujo LH, Souza MC. Impact of microvascular invasion on 5-year overall survival of resected non-small cell lung cancer. J Bras Pneumol. 2022;48(3):e20210283; doi:10.36416/1806-3756/e20210283. - 11. Snee M, Cheeseman S, Thompson M, Riaz M, Sopwith W, Lacoin L, et al. Treatment patterns and survival outcomes for patients with non-small cell lung cancer in the UK in the preimmunology era: a REAL-Oncology database analysis from the I-O Optimise initiative. BMJ Open. 2021;11(9):e046396; doi:10.1136/bmjopen-2020-046396. - 12. Schwartz KL, Simon MS, Bylsma LC, Ruterbusch JJ, Beebe-Dimmer JL, Schultz NM, et al. Clinical and economic burden associated with stage III to IV triple-negative breast cancer: A SEER-Medicare historical cohort study in elderly women in the United States. Cancer. 2018;124(10):2104-14; doi:10.1002/cncr.31299. - 13. Amiri M, Heshmatollah S, Esmaeilnasab N, Khoubi J, Ghaderi E, Roshani D. Survival rate of patients with bladder cancer and its related factors in Kurdistan Province (2013-2018): a population-based study. BMC Urol. 2020;20(1):195; doi:10.1186/s12894-020-00769-1. - 14. Aragon-Ching JB, Wang H. Comparative analyses of survival differences in patients with urothelial versus non-urothelial upper tract carcinomas: Results from the National Cancer Database (NCDB). Journal of Clinical Oncology. 2021;39(15_suppl):e16582-e; doi:10.1200/JCO.2021.39.15 suppl.e16582. - 15. Davies FJ, Knott C, Kerr C, Adedokun L, Lockhat DM. Utilising Public Health England Datasets to Establish a Standing Cohort of Patients with Metastatic Bladder Cancer: Initial Results and Algorithm Defining Disease Progression. Value Health. 2020;23(Suppl. 2):S480-S1. - 16. Omland LH, Lindberg H, Carus A, Als AB, Jensen NV, Taarnhøj GA, et al. Real-world Treatment Patterns and Overall Survival in Locally Advanced and Metastatic Urothelial Tract Cancer Patients Treated with Chemotherapy in Denmark in the Preimmunotherapy Era: A Nationwide, Population-based Study. Eur Urol Open Sci. 2021;24:1-8; doi:10.1016/j.euros.2020.12.002. - 17. Sørup S, Darvalics B, Kearney M, Mahmoudpour SH, Oksen D, Kolitsopoulos F, et al. Treatment Patterns, Clinical Outcomes, And Healthcare Resource Use Among Patients With Stage IV Urothelial Cancer: Findings From A Nationwide Cohort Study In Denmark. Value in Health. 2021;24(S65); doi:10.1016/j.jval.2021.04.332. - 18. Dijksterhuis WPM, Kroese TE, Verhoeven RHA, van Rossum PSN, Mook S, Haj Mohammad N, et al. A population-based study on treatment and outcomes in patients with gastric adenocarcinoma diagnosed with distant interval metastases. Eur J Surg Oncol. 2022;48(9):1964-71; doi:10.1016/j.ejso.2022.03.003. - 19. Qiu MZ, Shi SM, Chen ZH, Yu HE, Sheng H, Jin Y, et al. Frequency and clinicopathological features of metastasis to liver, lung, bone, and brain from gastric cancer: A SEER-based study. Cancer Med. 2018;7(8):3662-72; doi:10.1002/cam4.1661. - 20. Amarillo D, Herrera G, Lara G, Muñóz E, Sanchez S, Sommer P, et al. P-216 Impact of delay in treatment initiation in Overall Survival in Head and Neck Cancer. Oral Oncology. 2021;118:3; doi:10.1016/S1368-8375(21)00499-1. - 21. Hochfelder GC, McGinn AP, Mehta V, Castellucci E, Kabarriti R, Julian Ow T. First-Line Surgery Is Associated with Longer Overall Survival in Locoregionally Advanced Hypopharyngeal Cancer in the National Cancer Database. Journal of the American College of Surgeons. 2020;231(4):S190; doi:10.1016/j.jamcollsurg.2020.07.313. - 22. Neto FL, Sousa LG, Johnson FM, Lee JJ, Frank SJ, Moreno AC, et al. Comparative assessment of the eighth and seventh AJCC staging edition prognostic performance of patients with p16 positive oropharynx cancer. Journal of Clinical Oncology. 2021;39(15_suppl):6067-; doi:10.1200/JCO.2021.39.15_suppl.6067. - 23. Sargeran K, Murtomaa H, Safavi SMR, Vehkalahti MM, Teronen O. Survival after diagnosis of cancer of the oral cavity. Br J Oral Maxillofac Surg. 2008;46(3):187-91; doi:10.1016/j.bjoms.2007.11.004. - 24. Sargeran K, Murtomaa H, Safavi SMR, Vehkalahti MM. Survival After Lip Cancer Diagnosis. The Journal of Craniofacial Surgery. 2009;20(1); doi:10.1097/SCS.0b013e31818431bd. - 25. Ngo P, Ko J, Sussman TA, Li H, Hobbs B, Gastman B, et al. Survival and recurrence patterns of stage II and III cutaneous melanoma by AJCC 8th edition staging. Pigment Cell and Melanoma Research. 2020;33(1):213. - 26. Ramond A, Carroll R, Vekeria S, Nordstrom B. Investigating Secular Trends in the Survival of Melanoma Patients in England. The International Society for Pharmacoeconomics and Outcomes Research (ISPOR). 2021;24(1); doi:10.1016/j.jval.2021.04.206. - 27. Tjokrowidjaja A, Browne L, Soudy H. External validation of the American Joint Committee on Cancer melanoma staging system eighth edition using the surveillance, epidemiology, and end results program. Asia Pac J Clin Oncol. 2022;18(5):e280-e8; doi:10.1111/ajco.13689. - 28. Winge-Main A, Robsahm TE, Nyakas MS, Festervoll G, Torkilseng E, Thybo S, et al. Long-term outcomes of stage IIB-IV melanoma patients: Nationwide data from Norway. Annals of Oncology. 2020;31(Suppl. 4):S766-S7; doi:10.1016/j.annonc.2020.08.1273. - 29. Abrao FC, Peres SV, de Abreu I, Younes RN. Prognostic factors and patients' profile in treated stage I and II lung adenocarcinoma: a Hospital's Cancer Registry-based analysis. J Thorac Dis. 2021;13(11):6294-303; doi:10.21037/jtd-21-1071. - 30. Abrao FC, de Abreu I, Silva VG, Rosamilia GA, Peres SV, Hanriot RM, et al. Overall survival and prognostic factors in Stage I lung adenocarcinoma treated with curative intent: A real-life 19-year cohort study. J Surg Oncol. 2022;126(6):1114-22; doi:10.1002/jso.27015. - 31. Azzouqa A-G, Chen R, Lou Y, Ailawadhi S, Manochakian R. Impact of time to treatment initiation (TTI) on survival of patients with newly diagnosed non-small cell lung cancer (NSCLC). Journal of Clinical Oncology. 2019;37(15_suppl):9058-; doi:10.1200/JCO.2019.37.15_suppl.9058. - 32. Cerqueira ER, Padula AC, Alencar Junior FO, Rego MADC, Almeida M, de Mendonça Batista P, et al. Characterization of Clinical Features and Treatment of Non-Small Cell Lung Cancer (NSCLC) STAGE III and IV in Brazil- a Retrospective DATA-Base Study. Value in Health. 2022;25(7):S443-S4; doi:10.1016/j.jval.2022.04.803. - 33. Ekman S, Sørensen JB, Brustugun OT, Horvat P, Patel D, Rosenlund M, et al. Treatment (Tx) patterns and overall survival (OS) in patients (pts) with NSCLC in Sweden: A SCAN-LEAF study analysis from the I-O Optimise initiative. Annals of Oncology. 2019;30(Suppl 2):II17; doi:10.1093/annonc/mdz070.005. - 34. Greystoke A, Nawaz A, Ferguson S, Pabla M, Sanjeevi P, Bar-Ziv O. P09.23 Real-World Treatment Patterns and Outcomes in Patients with NSCLC in England (ROSANNE): A Retrospective Study. Journal of Thoracic Oncology. 2021;16:S299-S300; doi:10.1016/j.jtho.2021.01.451. - 35. Jazieh AR, Onal HC, Tan DSW, Soo RA, Prabhash K, Kumar A, et al. Real-World Treatment Patterns and Clinical Outcomes in Patients With Stage III NSCLC: Results of KINDLE, a Multicountry Observational Study. J Thorac Oncol. 2021;16(10):1733-44; doi:10.1016/j.jtho.2021.05.003. - 36. Kalilani L, Chao J, Hogea C, Stojadinovic A, Giove TJ, Sun X, et al. Recent Estimates of Survival in Patients with Advanced Non-Small Cell Lung Cancer (NSCLC) in the US (2010-2020). The International Society for Pharmacoeconomics and Outcomes Research (ISPOR). 2022;25(Suppl 4); doi:10.1016/j.jval.2021.11.015. - 37. Klarenbeek SE, Aarts MJ, van den Heuvel MM, Prokop M, Tummers M, Schuurbiers OCJ. Impact of time-to-treatment on survival for advanced non-small cell lung cancer patients in the Netherlands: a nationwide observational cohort study. Thorax. 2022;78(5):467-75; doi:10.1136/thoraxjnl-2021-218059. - 38. Komiya T, Powell E, Vu C, Guddati AK. Role of T0 status in overall survival for unresectable stage III non-small cell lung cancer. Journal of Clinical Oncology. 2020;38(15_suppl):9026-; doi:10.1200/JCO.2020.38.15_suppl.9026. - 39. Luciano S, Haudenschild C, Kuranz S. Using real world data to examine outcomes in immunotherapy-treated patients with metastatic non-small cell lung cancer. Journal of Clinical Oncology. 2020;38(15 suppl):e21715-e; doi:10.1200/JCO.2020.38.15 suppl.e21715. - 40. Martin CM, Puello-Guerrero A, Mas-Lopez LA, Campos-Gomez S, Orlando-Orlandi FJ, Tejado Gallegos LF, et al. Real-world KINDLE-Latin America subset data on treatment patterns and clinical outcomes in patients with stage III non-small-cell lung cancer. Cancer Med. 2022;12(2):1247-59; doi:10.1002/cam4.4990. - 41. Potter AL, Rosenstein AL, Kiang MV, Shah SA, Gaissert HA, Chang DC, et al. Association of computed tomography screening with lung cancer stage shift and survival in the United States: quasi-experimental study. BMJ. 2022;376:e069008; doi:10.1136/bmj-2021-069008. - 42. Rittberg R, Bucher O, Xue L, Aurangzeb Z, Banerji SO, Dawe D. Population-based impacts of new therapies on outcomes for stage IV non-small cell lung cancer. Journal of Clinical Oncology. 2021;39(15_suppl):9120-; doi:10.1200/JCO.2021.39.15_suppl.9120. - 43. Soares M, Antunes L, Redondo P, Borges M, Hermans R, Patel D, et al. Treatment and outcomes for early non-small-cell lung cancer: a retrospective analysis of a Portuguese hospital database. Lung Cancer Manag. 2021;10(2):LMT46; doi:10.2217/lmt-2020-0028. - 44. Suipyte J, Schmidt S, Herrmann C, Mousavi M, Hitz F, Fruh M. Does progress achieved in the treatment of patients with metastatic non-small cell lung cancer (NSCLC) reach the
elderly population? Annals of Oncology. 2019;30(Suppl 5):v650; doi:10.1093/annonc/mdz260.100. - 45. Vachani A, Johnson B, Johnston S, Johnson W, Chandran U, Sengupta N, et al. ASSOCIATION OF STAGE AT DIAGNOSIS OF NON-SMALL CELL LUNG CANCER WITH OVERALL SURVIVAL AND ONE-YEAR HEALTHCARE EXPENDITURES: AN ANALYSIS OF THE SEER-MEDICARE DATABASE. Chest. 2021;160(4):A1608-A9; doi:10.1016/j.chest.2021.07.1468. - 46. Van Dao T, Diep TB, Le Phuong T, Huggenberger R, Kumar A. Real-World Treatment Patterns and Clinical Outcomes in Patients With Stage III Non-Small-Cell Lung Cancer: Results of KINDLE-Vietnam Cohort. Front Oncol. 2022;12:842296; doi:10.3389/fonc.2022.842296. - 47. Haas NB, Bhattacharya R, Song Y, Rogerio J, Zhang S, Carley C, et al. Variation in recurrence rate and overall survival (OS) outcomes by disease stage and incremental impact of time to recurrence on OS in localized renal cell carcinoma (RCC). Journal of Clinical Oncology. 2022;40(16_suppl):4543-; doi:10.1200/JCO.2022.40.16_suppl.4543. - 48. Haas NB, Bhattacharya R, Ogbomo AS, Imai K, Gautam S, Rogerio J, et al. Disease-free and overall survival outcomes for localized RCC patients by disease stage. Journal of Clinical Oncology. 2022;40(16 suppl):e16526-e; doi:10.1200/JCO.2022.40.16 suppl.e16526. - 49. Li X, Xu Z, Xu T, Qi F, Song N. Basic Characteristics and Survival Outcomes of Asian-American Patients with Clear Cell Renal Cell Carcinoma and Comparisons with White Patients: A Population-Based Analysis. Int J Gen Med. 2021;14:7869-83; doi:10.2147/IJGM.S340284. - 50. Aly A, Shah R, Hill K, Botteman MF. Overall survival, costs and healthcare resource use by number of regimens received in elderly patients with newly diagnosed metastatic triple-negative breast cancer. Future Oncol. 2019;15(9):1007-20; doi:10.2217/fon-2018-0407. - 51. Gogate A, Crosbie A, Le TK, Zhang Y, Das R, Davis C. Clinical characteristics, treatment patterns, and survival outcomes in women with early triple-negative (TN) or hormone receptor-positive/human epidermal growth factor receptor-2 negative (HR(+)/HER2-) breast cancer (BC) in the real-world (RW) setting. Cancer Res. 2022;82(4_Supplement):P3-12-5; doi:10.1158/1538-7445.SABCS21-P3-12-15. - 52. Lehrberg A, Davis MB, Baidoun F, Petersen L, Susick L, Jenkins B, et al. Outcome of African-American compared to White-American patients with early-stage breast cancer, stratified by phenotype. Breast J. 2021;27(7):573-80; doi:10.1111/tbj.14225. - 53. Sieluk J, Haiderali A, Huang M, Yang L, Tryfonidis K, Hirshfield KM. SEER-Medicare study of early-stage triple-negative breast cancer: Real-world treatment patterns, survival, and expenditures 2010 to 2016. Journal of Clinical Oncology. 2020;38(15); doi:10.1200/JCO.2020.38.15 suppl.e1251. - 54. Yousefi Kashi AS, Yazdanfar S, Akbari M-E, Rakhsha A. Triple Negative Breast Cancer in Iranian Women: Clinical Profile and Survival Study. International Journal of Cancer Management. 2017;10(8):e10471; doi:10.5812/ijcm.10471. - 55. Tjong MC, Doherty M, Tan H, Chan WC, Zhao H, Hallet J, et al. Analysis of Patient Reported Outcomes for Stage IV Non-Small Cell Lung Cancer Patients in Ontario. International Journal of Radiation Oncology*Biology*Physics. 2021;111(3, Supplement):e164-e5; doi:10.1016/j.ijrobp.2021.07.640. - 56. Yu EY, Nekeman D, Billingham LJ, James ND, Cheng KK, Bryan RT, et al. Health-related quality of life around the time of diagnosis in patients with bladder cancer. BJU Int. 2019;124(6):984-91; doi:10.1111/bju.14804. - 57. Aly A, Johnson C, Doleh Y, Shenolikar R, Hussain A, editors. Lifetime costs of urothelial carcinoma by stage at diagnosis. Journal of Managed Care and Specialty Pharmacy; 2019. - 58. Buck PO, Saverno KR, Miller PJ, Arondekar B, Walker MS. Treatment Patterns and Health Resource Utilization Among Patients Diagnosed With Early Stage Resected Non-Small Cell Lung Cancer at US Community Oncology Practices. Clin Lung Cancer. 2015;16(6):486-95; doi:10.1016/j.cllc.2014.12.010. - 59. Gildea TR, DaCosta Byfield S, Hogarth DK, Wilson DS, Quinn CC. A retrospective analysis of delays in the diagnosis of lung cancer and associated costs. Clinicoecon Outcomes Res. 2017;9:261-9; doi:10.2147/CEOR.S132259. - 60. Haiderali A, Rhodes WC, Gautam S, Huang M, Sieluk J, Skinner KE, et al. Real-world treatment patterns and effectiveness outcomes in patients with early-stage triple-negative breast cancer. Future Oncol. 2021;17(29):3819-31; doi:10.2217/fon-2021-0530. 61. Jazieh AR, Onal HC, Tan DS-W, Soo RA, Prabhash K, Kumar A, et al. Contemporary management and associated outcomes of 3,151 patients with stage III non-small cell lung cancer (NSCLC) in a real-world setting: Results of KINDLE, a multicountry observational study. Journal of Clinical Oncology. 2020;38(15_suppl):9043-; doi:10.1200/JCO.2020.38.15_suppl.9043.