

Supplementary Material

A review of properties, occurrence, fate, and transportation mechanisms of contaminants of emerging concern (CECs) in sewage sludge, biosolids, and soils: recent advances and future trends

Emile Habimana¹, Sébastien Sauvé^{1*}

¹Department of Chemistry, Université de Montréal, Montreal, QC, Canada

* Correspondence: Corresponding Author sebastien.sauve@umontreal.ca

1 Supplementary Data

List of Tables

Table S1: Occurrence of pharmaceutical products (PPs) in sewage sludge and biosolids	3
Table S2: Occurrence of personal care products (PCPs) in sewage sludge and soil	4
Table S3: Occurrence of hormones in sewage sludge and biosolids	5
Table S4: Occurrence of bisphenols in sewage sludge and soils	6
Table S5: Occurrence of phthalates in sewage sludge and soils	7
Table S6: Substituted diphenylamines (S-DPAs) in biosolids	8
Table S7: Substituted diphenylamines (S-DPAs) in dust	9
Table S8: Substituted p-phenylenediamines (S-PPDs) in biosolids	10
Table S9: Substituted p-phenylenediamines (S-PPDs) in indoor and playground dust	11
Table S10: Physicochemical properties of neonicotinoid insecticides (Lewis, 2006, Tomlin and Council, 2000, Kim et al., 2016)	.12
Table S11: Occurrence of neonicotinoid insecticides in various soil types and uses	.12

Table S1: Occurrence of pharmaceutical products (PPs) in sewage sludge and biosolids

	S	ewage slud	lge		Biosolids		References
Contaminants	Min-Max	Median	Mean ± STD	Min-Max	Median	Mean ±	(Author, publication
Containmants	(ng/g)	(ng/g)	(ng/g)	(ng/g)	(ng/g)	STD (ng/g)	year)
Σ_{12} analgesics (nonnarcotic and narcotic	2,768-	2,909	4989±4580	2,943-16,426	147	319±346	Silva et al. (2021);
analgesics, antipyretics, NSAIDs,	15,474						Mercl et al. $(2021);$
stimulants, and metabolites	1.2(0	c 707	7 (00) 4 440	1 207 2 200	1.007	1.024+506	Riva et al. (2021) ;
Σ_{23} antibiotics (sulfonamides and	4,360-	5,787	7,689± 4,442	1,397-2,298	1,807	1,824±596	Mosko et al. (2021);
potentiators, quinolones and	13,663						(2019) · Guironnet et
fluoroquinoiones, p-lactams, macrolides,							(2017), Guironnet et al $(2022a)$.
Tetracyclines, etc.) Scantiaconvulsanta and antioniloptics	85 0 352 5	108.7	153+84	3/ 377	123	1/6+136	Guironnet et al.
Z ₆ anticonvulsants and antiephieptics	85.0-552.5	2.101	155± 64	34-322	123	140±130	(2022b); Camotti
Σ_{23} antidepressants, antipsychotics, and	368.0-5,913	2,191	2,60/± 2,391	98-2,662	496	$1,0/3\pm1,415$	Bastos et al. (2020);
antianxiety (benzodiazepines, SSRI, and							Malvar et al.
$\Gamma(A, \text{etc.})$	295 5 199	1 250	1 722+1 455	525 8 172	1.061	2 501+2 995	(2020a); Malvar et
2_{25} cardiac care medications	363-3,166	1,550	$1,725\pm1,455$	555-6,175	1,901	5,501±5,005	al. (2020b); Gewurtz
antiplateret, antiplateret, antiplateret, antiplateret,							et al. (2022) ;
calcium channel blockers)							Castro et al. (2018) ;
Σ_4 antifungals (morpholine azoles	186.4-3.009	1.598	1.597±1.996	6.882-10.384	8,633	8.633±2.477	Svann and Bjorklund (2010) . Cross at al
imidazoles)		-,	-,-,-,-,-,-	-,	-,	-,	(2019); Gros et al. (2020); Páraz Lamus
Σ_9 lipid regulators (statins, fibrates)	74-93	82.40	83±12	2-3,175	102	622±1,142	et al. (2020); Rashid
Σ_3 antihistamines	94-99	96.45	96±4	1-5	3	3±3	et al. (2020); Magee
Σ_7 other PPs	10-11	10.55	10± 1	27-512	163	203±203	et al. (2018); Costa
Σ DD positively (NLOD) detected	8 330	1/ 133	18 87/+	11 018	13 /37	16 32/+	Junior et al. (2020);
2 ₁₁₂ rrs positively (>LOD) detected	43 803	14,155	14 965	43 960	15,457	10,524±	Li et al. (2021) ; Abril
	-5,005		17,705	ч3,900		10,201	et al. (2018);
							Abril et al. (2020).

Table S2: Occurrence of personal care products (PCPs) in sewage sludge and soil

Matrix	Sewage sludge Soils				References		
Contaminants	Min-Max (ng/g)	Median (ng/g)	Mean ± STD (ng/g)	Min-Max (ng/g)	Median (ng/g)	Mean ± STD (ng/g)	(Author, publication year)
Methyl paraben (MeP)	5-630	47	107±192	<lod-4.50< td=""><td>2.42</td><td>2.21±1.27</td><td>Moško et al.</td></lod-4.50<>	2.42	2.21±1.27	Moško et al.
Ethyl paraben (EtP)	0-170	10	34±58	<lod-0.22< td=""><td>0.04</td><td>0.05 ± 0.10</td><td>(2021) ;</td></lod-0.22<>	0.04	0.05 ± 0.10	(2021) ;
Propyl paraben (PrP)	4-216	9	34±57	<lod-1.34< td=""><td>0.53</td><td>0.49 ± 0.48</td><td>(2020a):</td></lod-1.34<>	0.53	0.49 ± 0.48	(2020a):
Isopropyl paraben (iso-PrP)	90-172	131	131 ±58	<lod-0.36< td=""><td>0.07</td><td>0.10± 0.16</td><td>Malvar et al.</td></lod-0.36<>	0.07	0.10± 0.16	Malvar et al.
Butyl paraben (BuP)	0-12	8	8±3	<lod-0.02< td=""><td>0.01</td><td>0.01 ± 0.01</td><td>(2020b) ;</td></lod-0.02<>	0.01	0.01 ± 0.01	(2020b) ;
Isobutyl-paraben (iso-BuP)	<lod<sup>1</lod<sup>	$n.a.^2$	n.a.	<lod-0.05< td=""><td><loq< td=""><td>0.01 ± 0.03</td><td>Zhu et al. $(2019) \cdot M_2$</td></loq<></td></lod-0.05<>	<loq< td=""><td>0.01 ± 0.03</td><td>Zhu et al. $(2019) \cdot M_2$</td></loq<>	0.01 ± 0.03	Zhu et al. $(2019) \cdot M_2$
Heptyl paraben (HepP)	5-5	5	5	<lod-0.88< td=""><td><loq< td=""><td>0.02 ± 0.61</td><td>(2019), Ma et al.</td></loq<></td></lod-0.88<>	<loq< td=""><td>0.02 ± 0.61</td><td>(2019), Ma et al.</td></loq<>	0.02 ± 0.61	(2019), Ma et al.
Benzyl paraben (BzP)	1-12	5	6±4	<lod-0.07< td=""><td><loq< td=""><td>0.00±0.04</td><td>(2018);</td></loq<></td></lod-0.07<>	<loq< td=""><td>0.00±0.04</td><td>(2018);</td></loq<>	0.00±0.04	(2018);
Methyl protocatechuate (OH-MeP)	9-139	13	54±74	<loq< td=""><td><loq< td=""><td><loq< td=""><td>Abril et al.</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>Abril et al.</td></loq<></td></loq<>	<loq< td=""><td>Abril et al.</td></loq<>	Abril et al.
3,4-dihydroxybenzoic acid (3,4-DHB)	33-54	86	124±115	<lod< td=""><td><lod< td=""><td><lod< td=""><td>(2018) ; Pérez-</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>(2018) ; Pérez-</td></lod<></td></lod<>	<lod< td=""><td>(2018) ; Pérez-</td></lod<>	(2018) ; Pérez-
4-hydroxybenzoic acid (4-HB)	98-1,150	100	449±607	8.10-45.0	36.00	29.70±19.24	Lemus et al.
Ethyl protocatechuate (OH-EtP)	2.2-2.2	2	2± 0	n.m. ³	n.m.	n.m.	(2020); Li
Triclosan / Irgasan (TCS)	25-6,165	1165	1748±1,889	<loq< td=""><td>n.a.</td><td>n.a.</td><td>et al.</td></loq<>	n.a.	n.a.	et al.
Triclocarban (TCC)	1- 43,300	1710	8,046±13,913	<loq< td=""><td>n.a.</td><td>n.a.</td><td>(2021); (Chen et al</td></loq<>	n.a.	n.a.	(2021); (Chen et al
2'-hydroxy-triclocarban (2-OH-TCC)	21-2,340	180	644 ± 966	n.m.	n.m.	n.m.	2019)
3'-hydroxy-triclocarban (3-OH-TCC)	1-1,250	74	320± 528	n.m.	n.m.	n.m.	
Carbanilide (CBN)	3-1,340	91	384 ± 560	n.m.	n.m.	n.m.	
Monocarbanilide (MCC)	13-120	32	48± 42	n.m.	n.m.	n.m.	
Dichlorocarbanilide (DCC)	40-23,890	520	5,609±10,368	n.m.	n.m.	n.m.	
3,3',4,4'-tetrachlorocarbanilide (TCCC)	2-580	102	193±222	n.m.	n.m.	n.m.	
Σ_{20} PCPs	380-81,747	4,291	17,948± 29,657	8.10-52.43	39.07	32.58 ± 21.94	

¹ <LOD: below the detection limit.
² n.a.: not applicable.
³ n.m.: not measured (not analyzed)

 Table S3: Occurrence of hormones in sewage sludge and biosolids

Matrix	Sewage sludge			Biosolids			References
Contaminants	Min-Max (ng/g)	Median (ng/g)	Mean ± STD (ng/g)	Min-Max (ng/g)	Median (ng/g)	Mean ± STD (ng/g)	(Author, publ. year)
Androstenedione (A4)	n.m.	n.m.	n.m.	2.9-312.0	20.5	72.2±120.2	Silva et al.
Androsterone (AN)	n.m.	n.m.	n.m.	33.0-97.0	54.0	55.5±23.6	(2021); Riva et al (2021) .
Cortisone (E)	<lod< td=""><td>n.a.</td><td>n.a.</td><td>n.m.</td><td>n.m.</td><td>n.m.</td><td>Moško et al.</td></lod<>	n.a.	n.a.	n.m.	n.m.	n.m.	Moško et al.
Estrone (E1)	7.9-25.1	17.0	16.7±8.5	2.9-297.0	4.0	70.5±119.1	(2021);
17 β-estradiol (E2)	14.3-29.0	16.2	19.8±8.0	3.4-12.0	6.9	6.9±3.2	(2019);
17 α-estradiol (17 α-E2)	n.m.	n.m.	n.m.	3.2-11.0	4.0	5.7±3.2	Gewurtz et al.
Estriol (E3)	<lod< td=""><td>n.a.</td><td>n.a.</td><td>13.0-690.0</td><td>95.0</td><td>191.5±255.7</td><td>(2022); Svahn</td></lod<>	n.a.	n.a.	13.0-690.0	95.0	191.5±255.7	(2022); Svahn
Progesterone (P)	n.m.	n.m.	n.m.	3.0-6,110.0	28.5	1,113.5±2,455.6	(2019).
Testosterone (T)	2.9-6.4	3.5	4.1±1.6	0.8-88.0	5.7	20.9±33.7	
Equilin (EQL)	n.m.	n.m.	n.m.	6.4-25.0	8.0	11.6±7.4	
Equilenin (EQN)	n.m.	n.m.	n.m.	0.6-4.6	0.8	1.6±1.6	
17 α-Ethinylestradiol (EE2)	<lod< td=""><td>n.a.</td><td>n.a.</td><td>4.0-40.0</td><td>5.8</td><td>13.4±14.4</td><td></td></lod<>	n.a.	n.a.	4.0-40.0	5.8	13.4±14.4	
Altrenogest (ALT)	n.m.	n.m.	n.m.	0.5-1.8	0.8	0.9±0.5	
Desogestrel (DSG)	n.m.	n.m.	n.m.	65.0-1,050.0	252.0	455.7±523.1	
Diethylstilbestrol (DES)	<lod< td=""><td>n.a.</td><td>n.a.</td><td>n.m.</td><td>n.m.</td><td>n.m.</td><td></td></lod<>	n.a.	n.a.	n.m.	n.m.	n.m.	
Gestodene (GST)	25.0-56.3	40.6	40.6±22.1	n.m.	n.m.	n.m.	
Melengestrol acetate (MGA)	n.m.	n.m.	n.m.	0.74-7.60	1.10	2.4±2.7	
Mestranol (EEME)	n.m.	n.m.	n.m.	20.00-9,010.00	175.5	1,732.1±3,582.9	
Norethindrone (NRT)	n.m.	n.m.	n.m.	3.30-8.20	6.4	6.0±2.0	
Norgestrel (NRG)	n.m.	n.m.	n.m.	3.30-22.00	6.5	8.6±6.9	
17 α-dihydro Equilin (2H- EQL)	n.m.	n.m.	n.m.	3.40-28.00	5.6	9.7±9.5	
Σ ₁₉ HORMONES	50.1-116.8	77.3	81.3±40.3	169.4-17,814.2	681.2	3,778.8±7,165.6	

Table S4: Occurrence of bisp	henols in sewage sludge and soils
------------------------------	-----------------------------------

Matrix	Sewage sludge				References		
Contaminants	Min-Max	Median	Mean ± STD	Min-Max	Median	Mean ± STD	(Author,
	(ng/g)	(ng/g)	(ng/g)	(ng/g)	(ng/g)	(ng/g)	publ. year)
Bisphenol A (BPA)	3.6-1,699.0	178.9	353.5±404.8	0.2-166.0	2.3	21.6±36.3	(Xu et al.,
Bisphenol AF (BPAF)	0.2-223.9	5.3	32.6±58.4	0.2-0.2	0.2	0.2±0.0	2021); (Peng et al.,
Bisphenol AP (BPAP)	n.m.	n.m.	n.m.	0.3-2.6	0.3	$0.5{\pm}0.5$	2020);
Bisphenol B (BPB)	0.5-82.1	30.0	35.6±38.9	0.3-0.5	0.4	0.4±0.1	(Huang et al 2020)
Bisphenol BP (BPBP)	n.m.	n.m.	n.m.	0.3-0.5	0.4	0.4±0.1	(Sun et al.,
Bisphenol C (BPC)	0.1-0.5	0.3	0.3±0.1	n.m.	n.m.	n.m.	2018);
Bisphenol CI (BPCI)	<lod< td=""><td>n.a.</td><td>n.a.</td><td>n.m.</td><td>n.m.</td><td>n.m.</td><td>Piñero et al.,</td></lod<>	n.a.	n.a.	n.m.	n.m.	n.m.	Piñero et al.,
Bisphenol E (BPE)	0.5-3.2	0.9	1.2±0.9	<lod< td=""><td>n.a.</td><td>n.a.</td><td>2020); (Zhu</td></lod<>	n.a.	n.a.	2020); (Zhu
Bisphenol F (BPF)	7.5-1,058.0	165.0	199.3±242.0	1.3-212.9	3.4	33.5±73.5	et al., 2019);
Bisphenol FL (BPFL)	n.m.	n.m.	n.m.	0.4-0.5	0.5	$0.5{\pm}0.0$	(Abili et al., 2018);
Bisphenol G (BPG)	0.4-0.5	0.4	0.4±0.1	n.m.	n.m.	n.m.	(Pérez-
Bisphenol M (BPM)	<lod< td=""><td>n.a.</td><td>n.a.</td><td>n.m.</td><td>n.m.</td><td>n.m.</td><td>Lemus et al., 2020):</td></lod<>	n.a.	n.a.	n.m.	n.m.	n.m.	Lemus et al., 2020):
Bisphenol P (BPP)	0.5-0.5	0.4	0.4±0.0	0.3-78.2	1.0	10.1±24.2	(Moško et
Bisphenol PH (BPPH)	1.0-3.5	2.4	2.4±0.8	0.6	0.7	$0.7{\pm}0.1$	al., 2021)
Bisphenol S (BPS)	0.3-88.6	1.3	12.1±26.2	0.2-0.6	0.3	0.3±0.1	
Bisphenol TMC (BP-TMC)	0.1	0.2	1.3±2.4	n.m.	n.m.	n.m.	
Bisphenol Z (BPZ)	<lod< td=""><td>n.a.</td><td>n.a.</td><td>0.00</td><td>n.a.</td><td>n.a.</td><td></td></lod<>	n.a.	n.a.	0.00	n.a.	n.a.	
Tetrabromobisphenol A (TBBPA)	0.9-10.0	2.77	4.6±4.8	n.m.	n.m.	n.m.	
Tetrachlorobisphenol A (TCBPA)	<lod< td=""><td>n.a.</td><td>n.a.</td><td>n.m.</td><td>n.m.</td><td>n.m.</td><td></td></lod<>	n.a.	n.a.	n.m.	n.m.	n.m.	
Tetrabromobisphenol S (TBBPS)	<lod< td=""><td>n.a.</td><td>n.a.</td><td>n.m.</td><td>n.m.</td><td>n.m.</td><td></td></lod<>	n.a.	n.a.	n.m.	n.m.	n.m.	
Σ ₂₀ BISPHENOLS	15.0-3,174.3	387.0	642.5±779.3	4.1-462.9	9.56	68.25±134.95	

	Table S5:	Occurrence of	phthalates in	n sewage slu	dge and soi	ls
--	-----------	---------------	---------------	--------------	-------------	----

Matrix	S	ewage slud	ge		Soils		References
Contaminants	Min-Max	Median	Mean ± STD	Min-Max	Median	Mean ± STD	(Author,
	(µg/g)	(µg/g)	(µg/g)	(µg/g)	(µg/g)	(µg/g)	publ. year)
Dimethyl phthalate (DMP)	0.03-6.10	2.07	2.97±2.51	0.007-3.62	0.13	$0.57{\pm}1.07$	(Wang et al.,
Diethyl phthalate (DEP)	0.07-11.15	3.45	3.68±3.12	0.003-2.43	0.04	$0.26{\pm}0.57$	2022); (Zhou et al., 2021a):
Dibutyl phthalate (DBP)	0.44-1,248.58	181.55	386.29±467.28	0.214-1.41	0.29	0.64 ± 0.67	(Brodskiy et
Diisobutyl phthalate (DiBP)	0.52-0.77	0.67	0.65±	0.023-179.20	0.53	11.42±41.98	al., 2019);
Di(2-ethoxy ethyl) phthalate (DEEP)	n.m.	n.m.	n.m.	0.007-0.39	0.05	0.11±0.14	(Lee et al., 2019);
Di-n-hexyl phthalate (DHP)	n.m.	n.m.	n.m.	0.001-0.01	<lod< td=""><td>n.a.</td><td>al., 2018);</td></lod<>	n.a.	al., 2018);
Butylbenzyl phthalate (BBzP)	0.10-621.81	201.84	228.29±216.95	0.003-0.69	0.02	0.09±0.19	(Wei et al., 2020)
Di(hexyl-2- ethylhexyl)phthalate (DHEHP)	n.m.	n.m.	n.m.	0.002-0.04	0.01	0.01±0.01	
Di(2-butoxyethyl) phthalate (DBEP)	n.m.	n.m.	n.m.	0.003-0.80	0.03	0.18±0.26	
Bis(2-ethylhexyl) phthalate (DEHP)	39.96-481.27	223.52	217.05±141.71	0.012-444.00	1.73	36.10±105.57	
Di-n-octyl phthalate (DOP)	43.64-214.30	94.92	111.21±52.87	0.004-0.61	0.07	$0.14{\pm}0.18$	
Di-n-nonyl phthalate (DNP)	n.m.	n.m.	n.m.	0.004-0.14	0.01	$0.04{\pm}0.05$	
Diisononyl phthalate (DiNP)	22.00-26.00	22.00	23.33±2.31	n.m.	n.m.	n.m.	
Diisodecyl phthalate (DiDP)	0.71-8.40	4.10	4.40±3.85	n.m.	n.m.	n.m.	
Bis(2-methoxyethyl) phthalate (DMEP)	n.m.	n.m.	n.m.	<lod -0.82<="" td=""><td>0.09</td><td>0.30±0.45</td><td></td></lod>	0.09	0.30±0.45	
Σ_{15} PHTHALATES (µg/g)	107.46- 2.618.38	734.10	866.66± 890.73	0.28-634.15	2.99	49.88±151.16	
Σ ₁₅ PHTHALATES (ng/g)	107,46 - 2,618,380	734,100	866,657± 890,730	283.00- 634,154	2,989.60	49,875.39± 151,158	

Table S6: Substituted diphenylamines (S-DPAs) in biosolids

S-DPAs	⁴ Min-Max (ng/g)	Median (ng/g)	Mean ± STD (ng/g)	95 th percentile (ng/g)	(Author, publication year)
Diphenylamine (DPA)	0.27-153.00	10.49	32.10 ±59.61	119.175	(Zhang et al., 2020b);
Isopropyl diphenylamine (IP-DPA)	0.27-153.00	4.94	27.22 ±53.25	105.675	(Zhang et al., 2021).
Dimethyl-acridan (DM-AD)	0.27-32.00	6.04	10.59 ±12.30	28.425	
Isopropyl-dimethyl-acridine (IPDM-AD)	0.27-17.70	3.75	5.83±6.91	15.5175	
Di isopropyl diphenylamine (DIP-DPA)	0.27-20.00	8.97	9.63±9.11	19.54	
Di isopropyl-dimethyl- acridine (DIPDM-AD)	0.27-17.70	8.97	8.98±8.72	16.827	
Σ ₆ PREPODs	1.64-375.40	43.15	94.33±149.89	305.16	
Styrenated diphenylamine (S-DPA1)	0.27-176.00	37.69	61.71±73.89	161.5	
Styrenated diphenylamine (S-DPA2)	0.27-169.00	37.79	60.68±71.62	156.25	
Isooctyl-diphenylamine (TO-DPA)	0.27-435.00	86.19	121.98±160.7 2	355.75	
Isooctyl-styrenated diphenylamine (TOS-DPA1)	0.27-118.00	32.15	42.74±48.40	106.595	
Isooctyl-styrenated diphenylamine (TOS-DPA2)	0.27-118.00	39.34	47.74±51.52	110.5	
Isooctyl-styrenated diphenylamine (TOS-DPA3)	0.27-208.00	52.19	72.08±80.36	185.5	
Diisooctyl-styrenated diphenylamine (DTOS-DPA)	0.27-1269.00	65.69	253.63± 499.41	981.25	
Diisooctyl-diphenylamine (DTO–DPA)	0.27-265.00	57.19	83.34±99.48	228.25	
$\Sigma_{8} BNSTs$	2.14-2758.00	408.23	743.88± 1085.41	2285.60	
Σ ₁₄ S-DPAs	3.78-3133.40	451.38	838.22± 1235.29	2590.75	

³ The molecular occurrences (Min, Median, Max) from Zhang et al. (2020b) were assumed to be equal for each unique chemical entity under every UVCB group (PREPOD, BNST) and derived from the total Min and Max of each group.

S-DPAs	⁵ Min-Max	Median	Mean ±	95 th	(Author,
	(ng / g)	(ng/g)	STD (ng/g)	percentile	publication
				(ng / g)	year)
Diphenylamine	2.3-129.0	17.1	34.4	104.9	(Liu et al.,
(DPA)					2019)
Dicyclohexylamine	1.4-70.7	36.1	36.1	67.2	
(DChA)					
N-phenyl-1-	4.6-299.0	14.6	88.7	263.2	
naphthylamine (AO-A)					
N-phenyl-2-	3.3-170.0	15.9	66.2	163.4	
naphthylamine (AO-D)					
4,4'-di-tert-	3.2-8,070.0	10.7	1,641.5	6,479.8	
butyldiphenylamine					
(di-t-butyl-DPA)					
4,4'-di-n-	9.0-4,590.0	74.2	1,186.8	3,913.2	
octylphenylamine (di-n-					
octyl-DPA)					
4,4'-bis(1,1-	3.4-290.0	46.1	119.7	282.8	
dimethylbenzyl)					
diphenylamine (diAMS)					
Σ7 OTHER S-DPAs	27.2-13,618.7	214.6	3,173.4	11,274.6	

Table S7: Substituted diphenylamines (S-DPAs) in dust

³ The molecular occurrences (Min, Median, Max) from Zhang et al. (2020b) were assumed to be equal for each unique chemical entity under every UVCB group (PREPOD, BNST) and derived from the total Min and Max of each group.

S-PPDs	Min-Max (ng/g)	Median (ng/g)	Mean ± STD (ng/g)	95th percentile (ng/g)	(Author, publication year)
N, N'-diphenyl-p-	1.6-105.0	14.6	31.6±40.8	91.4	(Zhang et
phenylenediamine (DPPD)					al., 2020b);
N-phenyl-N'-(o-tolyl)-p-	1.6-158.0	15.7	40.7 ± 60.5	131.1	(Zhang et
phenylenediamine (PTPD)					al., 2021).
N,N'-di(o-tolyl)-p-	1.6-103.0	14.8	31.3±40.0	89.9	
phenylenediamine (DTPD)					
Σ_3 S-PPDs	4.8-366.0	45.1	103.6±141.3	312.4	

Table S8: Substituted p-phenylenediamines (S-PPDs) in biosolids

S-PPDs	Min-Max (ng/g)	Median (ng/g)	$\frac{\text{Mean} \pm \text{STD}}{(ng/g)}$	95 th percentile	(Author, publication
		(8 8/		(ng/g)	year)
N-(1,4-dimethylpentyl)-N'-	0.3-2.0	1.1	1.2±1.2	1.92	(Liu et al.,
phenylbenzene-1,4-					2019);
diamine (77PD)					(Cao et al.,
N-isopropyl-N'-phenyl-p-	0.0-55.0	5.6	15.4±21.5	47.48	2022);
phenylenediamine (IPPD)	0.04.57.0	• •			(H1k1 and
N-phenyl-N'-cyclohexyl-p-	0.04-65.0	2.0	20.4±27.2	60.56	Y amamoto, 2022).
N ₋ (1.3-dimethylbutyl)-N'-	0.0	17.8	126 /+19/ 0	/00 75	(Huang et
n-(1.5-dimetriyibutyi)-iv -	0.0	17.0	120.4±194.0	499.75	(11000) = (110
phenylenediamine (6PPD)					(Klöckner et
N.N'-diphenvl-p-	0.0	5.5	11.5+13.2	33.8	al., 2021);
phenylenediamine (DPPD)		c.c	110_101_		(Li and
N-phenyl-N'-(o-tolyl)-p-	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>Kannan,</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>Kannan,</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>Kannan,</td></lod<></td></lod<>	<lod< td=""><td>Kannan,</td></lod<>	Kannan,
phenylenediamine (PTPD)					2024).
N,N'-di(o-tolyl)-p-	0.3	2.6	2.6±3.2	4.6	
phenylenediamine (DTPD)					
N,N'-di-2-naphthyl-p-	0.2	1.0	2.2 ± 2.2	5.0	
phenylenediamine (DNPD)					
N-isopropyl-N'-	0.0	1.5	1.5 ± 2.2	2.9	
phenyl-1,4-					
phenylenediamine-quinone					
(IPPD-Q)	0.04	1.0	1 (. 2 2	2.0	
N-phenylly -cyclonexyl-p-	0.04	1.0	1.6 ± 2.2	3.0	
(CPPD Q)					
(CFFD-Q)	0.02	32.2	131 2+226 6	185.6	
(1 3-dimethylbutyl)-N'-	0.02	52.2	131.2±220.0	405.0	
phenyl-p-					
phenylenediamine-quinone					
(6PPD-Q)					
N,N'-diphenyl-p-	0.0	30.1	30.1±42.5	57.2	
phenylenediamine-quinone					
(DPPD-Q)					
N,N'-di(o-tolyl)-p-	0.0	4.0	4.0 ±5.6	7.5	
phenylenediamine-quinone					
(DTPD-Q)					
Σ_{13} S-PPDs	1.2	105.1	348.0±541.6	1209.2	

Table S9: Substituted p-phenylenediamines (S-PPDs) in indoor and playground dust

Supplementary Material

Table S10: Physicochemical properties of neonicotinoid insecticides (Lewis, 2006, Tomlin and Council, 2000, Kim et al., 2016)

No	Compounds	рКа	Log Kow	Half-life degradation time
				(DT ₅₀)
1)	Acetamiprid	0.7	0.80	1-8 days
2)	Clothianidin	11.6	-0.90	148-1,155 days
3)	Dinotefuran	-0.45	-0.55	3-43 days
4)	Imidacloprid	11	0.57	39-997 days
5)	Nitenpyram	3.1	-0.66	1-15 days
6)	Thiacloprid	10.4	1.24	0.88-55.9 days
7)	Thiamethoxam	2.2	-0.13	7-353 days
8)	Fipronil	4.0	4.0	122-128 days

Table S11: Occurrence of neonicotinoid insecticides in various soil types and uses

CECs	Occurrence in soil				
NEOs	Min-Max (ng/g)	Median (ng/g)	Mean ± STD (ng/g)	References (Author, publication year)	
Imidacloprid (IMI)	0.003-162.00	2.64	9.71 ± 25.86	(Svahn and Björklund, 2019); (Zhang et al., 2020a); (Ying et al., 2022); (Zhou et al., 2018); (Zhou et al., 2021b);	
Thiamethoxam (THI)	0.001-38.50	2.20	3.12 ± 4.69		
Clothianidin (CLO)	0.003-21.63	1.51	2.82 ± 3.79		
Acetamiprid (ACE)	0.002-33.40	2.60	3.10 ± 3.69		
Thiacloprid (THA)	0.003-5.73	0.75	1.60 ± 1.92	(Bonmatin et al., 20210);	
Dinotefuran (DIN)	0.050-5.96	0.87	1.78 ± 1.73	(Bonmatin et al., 2021).	
Nitenpyram (NIT)	0.310-5.52	2.51	2.66 ± 1.86		
Imidaclothiz (IMT)	<lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td></td></lod<></td></lod<>	<lod< td=""><td></td></lod<>		
Σ ₈ NEOs	0.372-272.74	13.08	24.79 ± 43.55		

2 References

- ABRIL, C., SANTOS, J. L., MALVAR, J. L., MARTÍN, J., APARICIO, I. & ALONSO, E. 2018. Determination of perfluorinated compounds, bisphenol A, anionic surfactants and personal care products in digested sludge, compost and soil by liquid-chromatography-tandem mass spectrometry. *Journal of Chromatography A*, 1576, 34-41.
- ABRIL, C., SANTOS, J. L., MARTÍN, J., APARICIO, I. & ALONSO, E. 2020. Occurrence, fate and environmental risk of anionic surfactants, bisphenol A, perfluorinated compounds and personal care products in sludge stabilization treatments. *Science of The Total Environment*, 711, 135048.
- BONMATIN, J.-M., MITCHELL, E. A. D., GLAUSER, G., LUMAWIG-HEITZMAN, E., CLAVERIA, F., BIJLEVELD VAN LEXMOND, M., TAIRA, K. & SÁNCHEZ-BAYO, F. 2021. Residues of neonicotinoids in soil, water and people's hair: A case study from three agricultural regions of the Philippines. *Science of The Total Environment*, 757, 143822.
- BONMATIN, J.-M., NOOME, D. A., MORENO, H., MITCHELL, E. A. D., GLAUSER, G., SOUMANA, O. S., BIJLEVELD VAN LEXMOND, M. & SÁNCHEZ-BAYO, F. 2019. A survey and risk assessment of neonicotinoids in water, soil and sediments of Belize. *Environmental Pollution*, 249, 949-958.
- BRODSKIY, E. S., SHELEPCHIKOV, A. A., AGAPKINA, G. I., TIKHONOVA, M. O., PARAMONOVA, T. A. & LIPATOV, D. N. 2019. Content of phthalate esters in soils of Moscow-city. Vestnik Moskovskogo universiteta. Seriya, 17 Pochvovedenie 2019, 44-49.
- CAMOTTI BASTOS, M., SOUBRAND, M., LE GUET, T., LE FLOCH, É., JOUSSEIN, E., BAUDU,
 M. & CASELLAS, M. 2020. Occurrence, fate and environmental risk assessment of pharmaceutical compounds in soils amended with organic wastes. *Geoderma*, 375, 114498.
- CAO, G., WANG, W., ZHANG, J., WU, P., ZHAO, X., YANG, Z., HU, D. & CAI, Z. 2022. New Evidence of Rubber-Derived Quinones in Water, Air, and Soil. *Environ Sci Technol*, 56, 4142-4150.
- CASTRO, G., CARPINTEIRO, I., RODRÍGUEZ, I. & CELA, R. 2018. Determination of cardiovascular drugs in sewage sludge by matrix solid-phase dispersion and ultra-performance liquid chromatography tandem mass spectrometry. *Analytical and Bioanalytical Chemistry*, 410, 6807-6817.
- CHEN, J., MENG, X.-Z., BERGMAN, A. & HALDEN, R. U. 2019. Nationwide reconnaissance of five parabens, triclosan, triclocarban and its transformation products in sewage sludge from China. *Journal of Hazardous Materials*, 365, 502-510.
- COSTA JUNIOR, I. L., MACHADO, C. S., PLETSCH, A. L. & TORRES, Y. R. 2020. Simultaneous HPLC-PDA determination of commonly prescribed antidepressants and caffeine in sludge from sewage treatment plants and river sediments in the Itaipu reservoir region, Paraná, Brazil. *International Journal of Environmental Analytical Chemistry*, 100, 1004-1020.
- GEWURTZ, S. B., TESLIC, S., HAMILTON, M. C. & SMYTH, S. A. 2022. Influence of Conjugation on the Fate of Pharmaceuticals and Hormones in Canadian Wastewater Treatment Plants. *ACS ES&T Water*, 2, 329-338.
- GROS, M., AHRENS, L., LEVÉN, L., KOCH, A., DALAHMEH, S., LJUNG, E., LUNDIN, G., JÖNSSON, H., EVEBORN, D. & WIBERG, K. 2020. Pharmaceuticals in source separated

sanitation systems: Fecal sludge and blackwater treatment. *Science of The Total Environment*, 703, 135530.

- GUIRONNET, A., WIEST, L. & VULLIET, E. 2022a. Advantages of MS/MS/MS (MRM3) vs classic MRM quantification for complex environmental matrices: Analysis of beta-lactams in WWTP sludge. *Analytica Chimica Acta*, 1205, 339773.
- GUIRONNET, A., WIEST, L. & VULLIET, E. 2022b. Improvement of the QuEChERS extraction step by matrix-dispersion effect and application on beta-lactams analysis in wastewater sludge by LC-MS/MS. *Talanta*, 237, 122923.
- HIKI, K. & YAMAMOTO, H. 2022. Concentration and leachability of N-(1,3-dimethylbutyl)-N'phenyl-p-phenylenediamine (6PPD) and its quinone transformation product (6PPD-Q) in road dust collected in Tokyo, Japan. *Environmental Pollution*, 302, 119082.
- HUANG, W., SHI, Y., HUANG, J., DENG, C., TANG, S., LIU, X. & CHEN, D. 2021. Occurrence of Substituted p-Phenylenediamine Antioxidants in Dusts. *Environmental Science & Technology Letters*, 8, 381-385.
- HUANG, Z., ZHAO, J.-L., YANG, Y.-Y., JIA, Y.-W., ZHANG, Q.-Q., CHEN, C.-E., LIU, Y.-S., YANG, B., XIE, L. & YING, G.-G. 2020. Occurrence, mass loads and risks of bisphenol analogues in the Pearl River Delta region, South China: Urban rainfall runoff as a potential source for receiving rivers. *Environmental Pollution*, 263, 114361.
- KIM, S., THIESSEN, P. A., BOLTON, E. E., CHEN, J., FU, G., GINDULYTE, A., HAN, L., HE, J., HE, S., SHOEMAKER, B. A., WANG, J., YU, B., ZHANG, J. & BRYANT, S. H. 2016. PubChem Substance and Compound databases. *Nucleic Acids Res*, 44, D1202-13.
- KLÖCKNER, P., SEIWERT, B., WEYRAUCH, S., ESCHER, B. I., REEMTSMA, T. & WAGNER, S. 2021. Comprehensive characterization of tire and road wear particles in highway tunnel road dust by use of size and density fractionation. *Chemosphere*, 279, 130530.
- KUMIRSKA, J., ŁUKASZEWICZ, P., CABAN, M., MIGOWSKA, N., PLENIS, A., BIAŁK-BIELIŃSKA, A., CZERWICKA, M., QI, F. & PIOTR, S. 2019. Determination of twenty pharmaceutical contaminants in soil using ultrasound-assisted extraction with gas chromatography-mass spectrometric detection. *Chemosphere*, 232, 232-242.
- LEE, Y.-S., LEE, S., LIM, J.-E. & MOON, H.-B. 2019. Occurrence and emission of phthalates and non-phthalate plasticizers in sludge from wastewater treatment plants in Korea. *Science of The Total Environment*, 692, 354-360.
- LEWIS, K., TZILIVAKIS, J., GREEN, A., & WARNER, D. 2006. Pesticide Properties DataBase (PPDB). *Data set/Database*. UK: University of Hertfordshire.
- LI, J., SABOURIN, L., RENAUD, J., HALLORAN, S., SINGH, A., SUMARAH, M., DAGNEW, M. & RAY, M. B. 2021. Simultaneous quantification of five pharmaceuticals and personal care products in biosolids and their fate in thermo-alkaline treatment. *Journal of Environmental Management*, 278, 111404.
- LI, Z.-M. & KANNAN, K. 2024. Mass Loading, Removal, and Emission of 1,3-Diphenylguanidine, Benzotriazole, Benzothiazole, N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine, and Their Derivatives in a Wastewater Treatment Plant in New York State, USA. ACS ES&T Water, 4, 2721-2730.

- LIU, R., LI, Y., LIN, Y., RUAN, T. & JIANG, G. 2019. Emerging aromatic secondary amine contaminants and related derivatives in various dust matrices in China. *Ecotoxicology and Environmental Safety*, 170, 657-663.
- MA, W.-L., ZHAO, X., ZHANG, Z.-F., XU, T.-F., ZHU, F.-J. & LI, Y.-F. 2018. Concentrations and fate of parabens and their metabolites in two typical wastewater treatment plants in northeastern China. *Science of The Total Environment*, 644, 754-761.
- MAGEE, H. Y., MAURER, M. M., COBOS, A., PYCKE, B. F. G., VENKATESAN, A. K., MAGEE, D., SCOTCH, M. & HALDEN, R. U. 2018. U.S. nationwide reconnaissance of ten infrequently monitored antibiotics in municipal biosolids. *Science of The Total Environment*, 643, 460-467.
- MALVAR, J. L., SANTOS, J. L., MARTÍN, J., APARICIO, I. & ALONSO, E. 2020a. Comparison of ultrasound-assisted extraction, QuEChERS and selective pressurized liquid extraction for the determination of metabolites of parabens and pharmaceuticals in sludge. *Microchemical Journal*, 157, 104987.
- MALVAR, J. L., SANTOS, J. L., MARTÍN, J., APARICIO, I. & ALONSO, E. 2020b. Simultaneous pressurized liquid extraction and clean-up for the determination of metabolites in complex environmental solid matrices. *Microchemical Journal*, 152, 104370.
- MERCL, F., KOŠNÁŘ, Z., MARŠÍK, P., VOJTÍŠEK, M., DUŠEK, J., SZÁKOVÁ, J. & TLUSTOŠ, P. 2021. Pyrolysis of biosolids as an effective tool to reduce the uptake of pharmaceuticals by plants. *Journal of Hazardous Materials*, 405, 124278.
- MOŠKO, J., POHOŘELÝ, M., CAJTHAML, T., JEREMIÁŠ, M., ROBLES-AGUILAR, A. A., SKOBLIA, S., BEŇO, Z., INNEMANOVÁ, P., LINHARTOVÁ, L., MICHALÍKOVÁ, K. & MEERS, E. 2021. Effect of pyrolysis temperature on removal of organic pollutants present in anaerobically stabilized sewage sludge. *Chemosphere*, 265, 129082.
- PENG, G., LU, Y., YOU, W., YIN, Z., LI, Y. & GAO, Y. 2020. Analysis of five bisphenol compounds in sewage sludge by dispersive solid-phase extraction with magnetic montmorillonite. *Microchemical Journal*, 157, 105040.
- PÉREZ-LEMUS, N., LÓPEZ-SERNA, R., PÉREZ-ELVIRA, S. I. & BARRADO, E. 2020. Sample pre-treatment and analytical methodology for the simultaneous determination of pharmaceuticals and personal care products in sewage sludge. *Chemosphere*, 258, 127273.
- RASHID, A., MAZHAR, S. H., ZENG, Q., KIKI, C., YU, C.-P. & SUN, Q. 2020. Simultaneous analysis of multiclass antibiotic residues in complex environmental matrices by liquid chromatography with tandem quadrupole mass spectrometry. *Journal of Chromatography B*, 1145, 122103.
- RIVA, F., ZUCCATO, E., PACCIANI, C., COLOMBO, A. & CASTIGLIONI, S. 2021. A multiresidue analytical method for extraction and analysis of pharmaceuticals and other selected emerging contaminants in sewage sludge. *Analytical Methods*, 13, 526-535.
- SALAUDEEN, T., OKOH, O., AGUNBIADE, F. & OKOH, A. 2018. Fate and impact of phthalates in activated sludge treated municipal wastewater on the water bodies in the Eastern Cape, South Africa. *Chemosphere*, 203, 336-344.
- SÁNCHEZ-PIÑERO, J., BOWERBANK, S. L., MOREDA-PIÑEIRO, J., LÓPEZ-MAHÍA, P. & DEAN, J. R. 2020. The occurrence and distribution of polycyclic aromatic hydrocarbons, bisphenol A and organophosphate flame retardants in indoor dust and soils from public open spaces: Implications for human exposure. *Environmental Pollution*, 266, 115372.

- SILVA, S., RODRIGUES, J. A., COELHO, M. R., MARTINS, A., CARDOSO, E., CARDOSO, V. V., BENOLIEL, M. J. & ALMEIDA, C. M. M. 2021. Occurrence of pharmaceutical active compounds in sewage sludge from two urban wastewater treatment plants and their potential behaviour in agricultural soils. *Environmental Science: Water Research & Technology*, 7, 969-982.
- SUN, X., PENG, J., WANG, M., WANG, J., TANG, C., YANG, L., LEI, H., LI, F., WANG, X. & CHEN, J. 2018. Determination of nine bisphenols in sewage and sludge using dummy molecularly imprinted solid-phase extraction coupled with liquid chromatography tandem mass spectrometry. *Journal of Chromatography A*, 1552, 10-16.
- SVAHN, O. & BJÖRKLUND, E. 2019. Extraction Efficiency of a Commercial Espresso Machine Compared to a Stainless-Steel Column Pressurized Hot Water Extraction (PHWE) System for the Determination of 23 Pharmaceuticals, Antibiotics and Hormones in Sewage Sludge. *Applied Sciences*, 9, 1509.
- TOMLIN, C. & COUNCIL, B. C. P. 2000. *The Pesticide Manual: A World Compendium*, British Crop Protection Council.
- WANG, Q., LV, K.-N., WANG, A.-T., LIU, X., YIN, G., WANG, J., DU, X., LI, J. & YUAN, G.-L. 2022. Release of phthalate esters from a local landfill in the Tibetan Plateau: Importance of soil particle-size specific association. *Science of The Total Environment*, 806, 151281.
- WEI, L., LI, Z., SUN, J. & ZHU, L. 2020. Pollution characteristics and health risk assessment of phthalate esters in agricultural soil and vegetables in the Yangtze River Delta of China. *Science* of The Total Environment, 726, 137978.
- XU, Y., HU, A., LI, Y., HE, Y., XU, J. & LU, Z. 2021. Determination and occurrence of bisphenol A and thirteen structural analogs in soil. *Chemosphere*, 277, 130232.
- YING, Z., GUO, B., ZHANG, G., SUN, L., YANG, X. & ZHANG, Q. 2022. The Characteristics and Potential Risks of Neonicotinoid Residues in Soils of Different Types of Land Use in Hangzhou. *Ecotoxicology and Environmental Safety*, 245, 114091.
- ZHANG, C., YI, X., CHEN, C., TIAN, D., LIU, H., XIE, L., ZHU, X., HUANG, M. & YING, G.-G. 2020a. Contamination of neonicotinoid insecticides in soil-water-sediment systems of the urban and rural areas in a rapidly developing region: Guangzhou, South China. *Environment International*, 139, 105719.
- ZHANG, Z.-F., ZHANG, X., SVERKO, E., MARVIN, C. H., JOBST, K. J., SMYTH, S. A. & LI, Y.-F. 2020b. Determination of Diphenylamine Antioxidants in Wastewater/Biosolids and Sediment. *Environmental Science & Technology Letters*, 7, 102-110.
- ZHANG, Z.-F., ZHANG, X., ZHANG, X., SVERKO, E., SMYTH, S. A. & LI, Y.-F. 2021. Diphenylamine Antioxidants in wastewater influent, effluent, biosolids and landfill leachate: Contribution to environmental releases. *Water Research*, 189, 116602.
- ZHOU, B., ZHAO, L., SUN, Y., LI, X., WENG, L. & LI, Y. 2021a. Contamination and human health risks of phthalate esters in vegetable and crop soils from the Huang-Huai-Hai region of China. *Science of The Total Environment*, 778, 146281.
- ZHOU, Y., LU, X., FU, X., YU, B., WANG, D., ZHAO, C., ZHANG, Q., TAN, Y. & WANG, X. 2018. Development of a fast and sensitive method for measuring multiple neonicotinoid insecticide residues in soil and the application in parks and residential areas. *Analytica Chimica Acta*, 1016, 19-28.

- ZHOU, Y., LU, X., YU, B., WANG, D., ZHAO, C., YANG, Q., ZHANG, Q., TAN, Y., WANG, X.
 & GUO, J. 2021b. Comparison of neonicotinoid residues in soils of different land use types. Science of The Total Environment, 782, 146803.
- ZHU, Q., JIA, J., WANG, Y., ZHANG, K., ZHANG, H., LIAO, C. & JIANG, G. 2019. Spatial distribution of parabens, triclocarban, triclosan, bisphenols, and tetrabromobisphenol A and its alternatives in municipal sewage sludges in China. *Science of The Total Environment*, 679, 61-69.

