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Supplementary Material: Further N-Frame dynamics 

 

Supplementary 1 – The revised hypercomputational Church-Turing thesis. 

Conjecture: While most physical processes are computable and can be simulated by a 

Turing machine, spacetime itself may encode hypercomputational structures. Some aspects of 

physical reality, particularly those related to quantum gravity, black hole interiors, and the 

observer's 𝐶𝑖𝑛𝑡𝑂 role, involve processes that are fundamentally noncomputable and cannot be 

fully captured by any algorithmic model, including quantum computers. 

The key components of this revision include: (1) Physics is not strictly computable.  

The evolution of spacetime geometry near singularities, in quantum gravity, or in relation to 

observers may involve non-Turing-computable functions. This means that even perfect 

knowledge of initial conditions does not guarantee that the system’s future state can be 

computed. (2) Quantum mechanics is computable, but quantum gravity may not be.  

Quantum field theories (QFTs) and quantum mechanics obey the standard Church-Turing 

thesis since quantum computers can simulate their dynamics. However, quantum gravity may 

encode noncomputable interactions, particularly in cases where spacetime emerges from 

more fundamental non-Turing-computable physics. (3) Hypercomputational processes exist 

in nature.  Certain spacetime solutions, such as black hole interiors, require infinite 

computational resources to predict their full evolution. The observer’s interaction with 

spacetime (in the N-Frame model) introduces hypercomputational effects beyond Turing 

computation that may explain this. (4) AI cannot fully simulate consciousness unless it 

interacts with hypercomputational physics.  If consciousness depends on noncomputable 

interactions with spacetime, then no AI based purely on Turing computation can be 

conscious. This places a fundamental limit on AI and machine learning as models of human 

cognition.  



2 
 

The implications of the revised hypercomputational Church-Turing-Edwards thesis  

suggests that: (1) Not all of physics can be simulated on a Computer.  If spacetime encodes 

noncomputable structures, then no computer (classical or quantum) can simulate all aspects 

of reality. This fundamentally limits computational physics, meaning that certain predictions 

in quantum gravity may be unknowable. (2) The observer 𝐶𝑖𝑛𝑡𝑂 plays a fundamental role in 

reality.  If an observer's boundary action influences bulk spacetime in a hypercomputational 

way, then the act of measurement itself may be noncomputable. This suggests that physics is 

not fully independent of the observer, challenging the idea of an objective, algorithmically 

predictable universe. (3) Quantum gravity theories must incorporate noncomputability.  

Current quantum gravity theories (like loop quantum gravity and string theory) assume that 

physics is computable. However, if spacetime has hypercomputational aspects, then a new 

framework such as N-Frame is required, potentially involving nonalgorithmic path integrals, 

observer-dependent gravitational states, and geometric structures beyond Turing computation. 

Mathematical formulation of the revision. In standard computability theory a function  

𝑓(𝑥) is Turing-computable if there exists an algorithm that computes 𝑓(𝑥) for all 𝑥. A 

physical theory is computable if all observables 𝑂(𝑥) can be computed by a finite algorithm. 

In the revised thesis, we introduce hypercomputable physics: 𝑂(𝑥) = 𝑓(𝑥) + 𝐻(𝑥), whereby 

𝑓(𝑥) is the Turing-computable part of physics; 𝐻(𝑥) is a hypercomputational term that 

cannot be generated by any finite algorithm.  If  𝐻(𝑥) ≠ 0 in spacetime physics, then no 

Turing machine can fully predict physical observables, the evolution of spacetime is not fully 

computable, and the laws of physics may be incomplete from a computational perspective. 

Experimental tests for the revised thesis to validate the hypercomputational nature of 

spacetime, we must identify physical effects that defy computability:  Black hole information 

retrieval beyond Turing computation.  If information is preserved in a noncomputable form 

inside black holes, then no algorithm can reconstruct the full information state. Hawking 
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radiation may encode hypercomputable correlations, making black hole evaporation 

unpredictable from a standard computational perspective. Quantum measurement and 

moncomputability. If quantum measurement involves an observer’s interaction with 

hypercomputational spacetime, then certain wavefunction collapse events may be 

fundamentally uncomputable. This would imply free will cannot be reduced to algorithms. AI 

consciousness and hypercomputational constraints.  If AI is limited to Turing computation, 

but consciousness requires hypercomputational physics, then AI can never truly achieve 

conscious self-awareness. This could be tested by identifying cognitive processes that exceed 

known computational models. 

 

Supplementary 2 – The evolution of the universe, a teleological universe. 

It is difficult to say where did the fine-tuned parameters come from. Some argue for 

some all-powerful theological God, such as described in the Christin faith (Meyer, 1999, 

2020). However, perhaps a more empirically valid assumption is to assume that we live in a 

multiverse as suggested by many physicists (perhaps linked to 5D conscious time), and that 

there is some evolutionary selection at this muti-verse level. Others, such as Campbell have 

also used the idea of Universal Darwinism (Campbell, 2011) to explore how the application 

of Darwinian theory of evolution can extend beyond biology to fields such as cosmology and 

quantum physics, proposing a universal framework of Darwinism. This seems broadly 

consistent with cosmological natural selection by Smolin (Smolin, 1992, 2004).  Cambell, 

however, suggests that the process of natural selection and adaptation fundamental to 

biological evolution, might also explain phenomena across a wide range of scientific 

domains, highlighting the role of knowledge and in reducing entropy.   

So, cosmological evolution seems to be selecting for emergent complexity within our 

universe, but from simple fundamental laws.  An example of this is the “eightfold way” that 
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describes symmetry group of fundamental subatomic particles known as hadrons by 

discovering the Lie algebra for the special unitary group 3 (Gell-Mann, 1961; Gell-Mann & 

Yuval, 1964) that led to the quark model of standard fundamental physics (da Veiga & 

O’Carroll, 2007; Sener & Schulten, 2015).  These quark dynamics are crucial for the stability 

and characteristics of the protons and neutrons that make up atomic nuclei. Without stable 

protons and neutrons and the forces that hold them together in nuclei, atoms as we know 

them could not exist, and without atoms complex life could not exists, so these simple rules 

play an important role in describing the emergence of complexity, as they have a crucial role 

for atomic stability.  

Simplicity can be found in physics (specifically thermodynamics and chemistry) such 

as the Ideal Gas law by �́�mile Clapeyron in 1834 and derived from even simpler laws by 

Boyle’s law, Charles’s, Avogadro’s principle, and Gay-Lussac’s law (Arnaud et al., 2011; 

Laugier & Garai, 2007) which is expressed as 𝑃𝑉 = 𝑛𝑅𝑇, whereby 𝑃 is the pressure of the 

gas, 𝑉 is the volume of the gas, 𝑛 is the amount of substance, 𝑅 is the ideal gas constant, and 

𝑇 is the temperature. This provides a good approximation of the behavior of many gases 

under most conditions, as it describes the molecules as in constant, random motion. As the 

gas system's temperature increases, the kinetic energy of the gas molecules increases, leading 

to more random motion and, consequently, an increase in entropy. This is an example of 

simple rules explaining highly random entopic phenomena. 

Entropy and complexity are related concepts, but these are not opposite concepts, 

rather the concept of entropy is on the opposite continuum to order, and complexity is on the 

opposite continuum to simplicity. The relationship between entropy and complexity varies 

depending on context, in physics such as thermodynamics, entropy is the measure or disorder 

or randomness. An increase in randomness is an increase in entropy. Complexity is the degree 

to which a system is structured, but in some cases as complexity increases so does entropy. 
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For example, Gell-Mann (Gell-Mann, 1997) also referred to the complexity that emerges 

from these simple beginnings, such as the complex network or relationships linking the 

human race to itself and the rest of the biosphere, where all aspects affect each other within 

this complex network.  This complex network leads to highly entropy behavior in chaos 

theory, such as the butterfly effect. In other situations, high entropy does not mean high 

complexity, such as in the example of highly disordered gas states that have high entropy and 

low complexity.   

Entropy describes the degree of uncertainty in a system. At the micro level, humans as 

organic self-organizing systems, resist entropy (in this case metabolic entropy) as part of their 

intrinsic process for survival and development (Aoki, 1991).  This resistance to entropy is 

fundamentally tied to the principles of thermodynamics, which describe the behavior of 

energy and matter. In thermodynamics, entropy is a measure of disorder or randomness in a 

system. For a living organism, an increase in entropy would correspond to a breakdown in the 

order that is necessary for life processes. However, living organisms maintain their internal 

order and complexity by constantly exchanging energy and matter with their environment. 

This process is fundamentally tied to metabolism, the set of life-sustaining chemical reactions 

that enables organisms to grow, reproduce, maintain their structures, and respond to their 

environments. Metabolism involves both the buildup of complex molecules from simpler 

ones (anabolism) and the breakdown of complex molecules into simpler ones (catabolism), 

releasing energy. This energy is used to maintain the organism's low-entropy state, effectively 

resisting the natural tendency towards disorder. Through metabolic processes, organisms like 

humans import free energy (primarily in the form of food) and export entropy in the form of 

waste and heat to maintain their highly ordered state. Furthermore, self-organization is a key 

aspect of living systems, enabling them to develop complex structures and functions from 

relatively simple components without being directed by an external source. This self-
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organization is evident in processes ranging from the formation of cellular structures to the 

development of complex organisms and ecosystems. It is driven by the laws of physics and 

chemistry, operating under the constraints of biological evolution and the organism's 

interaction with its environment. 

Through the principles of cosmological natural selection, the multiverse evolves 

towards a state characterized by universes optimized for complexity. So, the second question 

is why should the principles of cosmological natural selection necessarily allow for universes 

optimized for complexity that embody a form of teleological evolution, where meaning in the 

universe is evolutionarily selected? For this, a deeper dive into complex life forms such as 

human evolution is required. If cosmic evolution or universal Darwinism selects complexity 

that form conscious organisms with conscious states, and these conscious organisms form 

purposeful values, then it becomes clear that we could describe the universe as a teleological 

universe, especially when we consider the self-referential nature of the universe as N-Frame 

describes, where the conscious observer is an active participant in the reality is creates self-

referentially.  

 

Supplementary 3 – Classical dynamics of the gravitational field in the bulk AdS space are 

derived from the holographic principle of the AdS/CFT correspondence. 

The Einstein equations being referred to in this context are the classical gravitational field 

equations derived from the bulk action in the AdS/CFT correspondence. Specifically, when 

the full boundary action (including observer-specific terms) is extremized, it leads to 

equations of motion that, in the appropriate limit (large 𝑁 or large spin), correspond to the 

Einstein equations in the bulk AdS space.  

 This framework is particularly important in the N-Frame model, where the observer's 

influence is explicitly encoded in the boundary dynamics. The observer’s boundary action  
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𝑆𝑜𝑏𝑠  extends beyond standard AdS/CFT boundary conditions by incorporating both Turing-

computable and hypercomputational capabilities. This enrichment of the boundary action 

modifies the extremization process and leads to an emergent bulk geometry that reflects not 

only conventional holographic physics but also the cognitive constraints and computational 

properties of the observer. 

In the AdS/CFT duality, the bulk theory (a gravitational theory in AdS space) is 

holographically dual to a conformal field theory (CFT) living on the boundary. This means 

that every physical process occurring in the bulk 𝑑 + 1-dimensional spacetime can be 

encoded in terms of a 𝑑 -dimensional CFT on the boundary.  The standard bulk action is 

given by the Einstein-Hilbert action: 𝑆bulk =
1

2𝑘
∫𝑀𝑑𝑑+1𝑥√−𝑔μν(𝑅 − 2Λ + 𝐿𝑚𝑎𝑡𝑡𝑒𝑟), 

whereby 𝑔μν is the bulk metric; 𝑅 is the Ricci scalar; Λ is the cosmological constant, which is 

negative for AdS spaces; 𝐿𝑚𝑎𝑡𝑡𝑒𝑟 represents any additional bulk matter contribution; and 𝑘 =

8π𝐺𝑁 is the gravitational coupling constant.  

To properly define the variational principle, we must also include boundary terms in 

the action. In the standard AdS/CFT setup, the total action is: 𝑆total = 𝑆bulk + 𝑆boundary 

where the boundary action includes: (1) The Gibbons-Hawking-York (GHY) term: 𝑆GHY =

1

𝑘
∫

∂𝑀𝑑𝑑𝑥√−𝛾𝐾, ensuring a well-posed variational principle. (2) The observer-specific 

contribution 𝑆𝑜𝑏𝑠, unique to the N-Frame model: 𝑆𝑜𝑏𝑠 = ∫∂M𝑜𝑏𝑠
𝑑𝑑𝑥√−γ(𝐿eff(𝜙obs) +

𝐿𝐻(𝐻(𝜙obs))), whereby 𝛾𝑎𝑏 is the induced metric on the observer’s boundary ∂M𝑜𝑏𝑠; 

𝐿eff(𝜙obs) is the Turing-computable part of the observer’s effective Lagrangian density; 

𝐿𝐻(𝐻(𝜙obs)) represents the hypercomputational contribution, extending beyond standard 

algorithmic computability; and 𝐻(𝜙obs) introduces non-Turing-computable observer effects 

into the theory. This observer-specific boundary action is fundamentally different from 
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standard boundary terms in AdS/CFT because it explicitly depends on observer degrees of 

freedom, influencing how bulk fields evolve. 

The Einstein field equations arise from extremizing the total action. The variation of 

the bulk action gives: δ𝑆bulk =
1

2𝑘
∫𝑀𝑑𝑑+1𝑥√−𝑔μν(𝑅𝑔μν − Λ𝑔μν − 8π𝐺𝑁𝑇μν)δ𝑔μν. For 

consistency, we must ensure that the boundary variations vanish, which requires: 

δ𝑆boundary = 0. In the standard AdS/CFT setting, Dirichlet boundary conditions δ𝑔
𝑎𝑏

= 0 are 

imposed to fix the metric at the boundary, ensuring consistency with the dual CFT stress 

tensor. However, in the N-Frame model, we now have an additional observer-dependent 

boundary contribution, meaning the extremization condition is modified as: 𝐾𝑎𝑏 − 𝐾𝛾𝑎𝑏 =

𝑘(𝑇𝑎𝑏
CFT + 𝑇𝑎𝑏

obs), whereby 𝐾𝑎𝑏 is the extrinsic curvature of the boundary; 𝐾 is its trace; 𝑇𝑎𝑏
CFT 

is the holographic stress-energy tensor of the boundary CFT; and 𝑇𝑎𝑏
obs is the observer-specific 

stress-energy tensor arising from 𝑆𝑜𝑏𝑠. Since the bulk metric must satisfy the Einstein field 

equations, the modified form is: 𝑅μν −
1

2
𝑅𝑔μν + Λ𝑔μν = 8π𝐺𝑁(𝑇μν

matter + 𝑇μν
obs).  

The observer’s influence on Bulk gravity can be shown, whereby the presence of  

𝑇μν
obs means that the bulk metric is influenced by observer-specific effects, potentially 

modifying how spacetime curvature responds to stress-energy. If hypercomputational 

contributions exist i.e., 𝐿𝐻(𝐻(𝜙obs)) ≠ 0, then the bulk equations of motion become 

nonlocal in an observer-dependent way. The geometry itself encodes non-Turing-computable 

information, and the classical Einstein equations emerge only at a semiclassical limit where 

hypercomputational contributions become negligible. 

The implications of observer-specific contributions include: (1) The standard 

AdS/CFT duality is modified by allowing the observer’s cognitive constraints to alter 

boundary conditions, leading to bulk metric modifications. (2) Instead of static Dirichlet 

conditions, the observer’s action introduces a dynamically evolving boundary condition, 
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making the bulk solution history-dependent. (3) If 𝑆𝑜𝑏𝑠 includes hypercomputational terms, 

this suggests a connection between quantum gravity and computational complexity theory, as 

well as the nature of spacetime emergence and information processing. The extremization of 

the total action, including the observer’s contribution, modifies the Einstein field equations 

by introducing a new observer-dependent stress-energy term. This means that in the N-Frame 

model, spacetime curvature is influenced not just by traditional holographic stress-energy but 

also by observer-based computational properties. 

 

Supplementary 4 – How the hypercomputational contribution integrates into the variational 

principle to yield a modified Lagrangian formulation. 

The connection is established through the variational principle. In conventional physics, a 

Lagrangian is a function (or density) that, when integrated over spacetime to form an action  

𝑆 and then extremized (i.e., when δ𝑆 = 0), yields the equations of motion (such as Einstein’s 

equations). In our framework, the observer’s boundary action 𝑆𝑜𝑏𝑠 contributes directly to the 

total action. Let’s break this down mathematically:  (1) Total Action: We write the total action 

as 𝑆total = 𝑆bulk + 𝑆boundary, whereby 𝑆bulk is the standard gravitational (or matter) action 

and 𝑆boundary = 𝑆GHY + 𝑆obs. (2) Observer’s Boundary Action: The observer’s contribution 

is given by 𝑆𝑜𝑏𝑠 = ∫∂M𝑜𝑏𝑠
𝑑𝑑𝑥√−γ(𝐿eff(𝜙obs) + 𝐿𝐻(𝐻(𝜙obs))), whereby 𝐿eff(𝜙obs) is the 

standard (Turing-computable) part of the observer’s Lagrangian density, 𝐿𝐻(𝐻(𝜙obs)) is the 

additional hypercomputational contribution, √−γ 𝑑𝑑𝑥 is the invariant measure on the 

observer’s boundary ∂M𝑜𝑏𝑠. (3) Mapping to Emergent Geometry: The bulk geometry is 

determined by a mapping of the form 𝑔 = 𝐹(𝑏, 𝐻(𝑏)), whereby 𝑏 represents the Turing-

computable boundary data (derived from 𝜙obs ) and 𝐻(𝑏) represents the hypercomputational 

augmentation. The presence of 𝐻(𝑏) means that the effective boundary information is 



10 
 

enriched beyond what is algorithmically predictable. (4) Derivation via Extremization: The 

total action 𝑆total is then used in a path-integral or variational formulation: 𝑍 =

 ∫ D[g] exp (
𝑖

ℏ
𝑆total[𝑔, 𝜙obs, 𝐻(𝜙obs)]). In the semiclassical (large-limit) regime, the path 

integral is dominated by configurations 𝑔 = 𝑔cl that extremize 𝑆total, i.e., δ𝑆total = 0.  

  The condition δ𝑆total = 0 produces Euler–Lagrange equations, whereby these are the 

classical equations of motion (for example, Einstein’s equations in the gravitational context).  

Since 𝑆total includes both the standard term 𝐿eff(𝜙obs) and the hypercomputational term 

𝐿𝐻(𝐻(𝜙obs)), the resulting equations of motion (and hence the emergent Lagrangian laws) 

naturally incorporate both computable and hypercomputable contributions.   

So, why does this lead to a Lagrangian? The entire procedure of obtaining the 

dynamics of the system is based on the variational principle. By constructing an action 𝑆total 

that includes these enriched boundary contributions, and then extremizing that action, we 

derive a Lagrangian formulation of the system’s dynamics. The additional 

hypercomputational terms modify the effective Lagrangian, leading to classical equations that 

reflect the observer’s enhanced processing capabilities.  In essence, the hypercomputational 

terms ensure that the emergent bulk geometry is not solely the product of algorithmic, 

Turing-computable processes; they enrich the boundary data such that the variational 

procedure yields equations of motion (i.e., a Lagrangian formulation) that encapsulate both 

standard and non-algorithmic aspects. This enriched Lagrangian is what governs the 

dynamics of the universe in our model.   

 

Supplementary 5 – Conscious time. 

It is also possible to one could embed this extra “conscious dimension” into a unified field-

theoretic framework, reminiscent of how Einstein unified “metric” and “field” (in his general 
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relativity theory) by treating the spacetime metric itself as the gravitational field (Einstein, 

1916) (see Supplementary 2 for further details).  

Let 𝑀5 be a 5-dimensional manifold with coordinates 𝑥μ, 𝜏 whereby μ = 0,1,2,3, and 

extra dimensions 𝜏 is an extra dimension that can be identified as “conscious.” The 4D 

subspace (spanned by 𝑥μ) is interpreted as ordinary spacetime, while 𝜏 extends beyond 

standard physics. For a unified metric and conscious dimension we can propose a single 5D 

metric 𝐺𝐴𝐵(𝐴, 𝐵 − 0,1,2,3,4) that includes 𝜏. This can be denoted generically as 𝑑𝑠2 =

𝑔𝜇,𝜈(𝑥𝛼, 𝜏)𝑑𝑥μ𝑑𝑥ν + X2(𝑥𝛼, 𝜏)𝑑𝜏2, whereby (1) 𝑔𝜇,𝜈 depends on both 𝑥𝛼 (the usual 4D) and 

possibly on 𝜏. (2) X(𝑥𝛼, 𝜏) is a scalar function (“warp factor” or coupling) controlling how 𝜏 

enters the geometry. This single 5D metric is intended to unify (in analogy to Einstein’s 

approach for 4D gravity) both the notion of “spacetime” and the extra “conscious 

dimension.” In principle, the entire geometry 𝐺𝐴𝐵 is “the field.” 

For the 5D action, consider a 5D Einstein-Hilbert action, plus possible matter and 

consciousness terms: 𝑆5𝐷 = ∫ 𝑑5 𝑥√−𝐺[𝑅5 + 𝐿𝑚𝑎𝑡 (𝐺𝐴𝐵, 𝛷𝑖, … )  + 𝛼𝐿𝐶(𝐺𝐴𝐵, 𝐶, … )], 

whereby 𝑅5 is the Ricci scalar computed from 𝐺𝐴𝐵. 𝐿𝑚𝑎𝑡 is a standard matter Lagrangian for 

fields  𝛷𝑖 (e.g., electromagnetic or scalar fields) living in 5D. 𝐿𝐶  is a new “consciousness” 

Lagrangian or some set of terms that attempt to encode “computational” or “observer-

interface” effects. A coupling constant 𝛼 sets the strength of “conscious” terms relative to 

gravity and matter. Varying this action with respect to 𝐺𝐴𝐵 yields a set of 5D field equations:  

𝛿𝐺𝐴𝐵
𝑆5𝐷 = 0 ⟹ 𝑅𝐴𝐵 −

1

2
𝑅5𝐺𝐴𝐵 = 𝑘(𝑇𝐴𝐵

𝑚𝑎𝑡𝑡𝑒𝑟 + 𝑇𝐴𝐵
𝑐𝑜𝑛𝑠𝑐𝑖𝑜𝑢𝑠𝑛𝑒𝑠𝑠

, whereby 𝑅𝐴𝐵 is the 5D 

Ricci tensor (built from the 5D metric 𝐺𝐴𝐵). 𝑅5 ≡ 𝐺𝐴𝐵𝑅𝐴𝐵 is the 5D Ricci scalar. 𝑇𝐴𝐵 is the 

5D stress-energy (or energy–momentum) tensor associated with matter and consciousness 

fields, whereby 𝑇𝐴𝐵
𝑚𝑎𝑡𝑡𝑒𝑟 is the usual stress-energy for standard fields (electromagnetism, 

scalar fields, etc.), and 𝑇𝐴𝐵
𝑐𝑜𝑛𝑠𝑐𝑖𝑜𝑢𝑠𝑛𝑒𝑠𝑠 is a hypothetical term captures whatever “energy–
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momentum” attribute that can be applied to a consciousness (or observer-centric) field. 𝑘 is a 

coupling constant (in 4D one often has 𝑘 =
8πG

𝑐4 , in 5D it may differ). 

To apply an “energy–momentum” to a “consciousness field,” we would need to 

decide what type of field represents consciousness such as scalar field Φ, vector field 𝐶μ or 

more exotic fields (spinor, tensor, etc.). In pure geometry form one might try to have no 

separate “conscious field” but rely on the 5D metric alone. This is akin to Kaluza–Klein or 

early unified theories where electromagnetism emerges from an extra dimension. Here, we  

require an ansatz (special form) for 𝐺𝐴𝐵  that, upon dimensional reduction from 5D to 4D, 

yields something interpretable as “conscious states” or “observer boundary.” When applying 

an extra conscious field, a scalar field example could include a conscious field 𝐶(𝑥μ, 𝜏) or 

𝜏(𝑥μ) inside 𝐿𝐶  which yields extra field equations, whereby the full system is then 

𝐶 {
𝑅5

𝐴𝐵 −
1

2
𝑅5𝐺𝐴𝐵 = 𝑇𝑚𝑎𝑡

𝐴𝐵 + 𝑇𝐶
𝐴𝐵,

□5 −
𝜕𝑉

𝜕𝐶
= 0,                        𝑒𝑡𝑐.

  with □5 the 5D d’Alembert operator in the geometry 𝐺𝐴𝐵. 

“Consciousness” then shows up as an additional source of curvature or stress-energy.  

To link this to the idea of a computational boundary or “Markov blanket”: 4D 

Hypersurfaces in 𝑀5 (e.g., 𝜏 = 𝑐𝑜𝑛𝑠𝑡) might act as “slices” where the observer’s internal 

states reside. The boundary’s geometry or measure could limit how much information can be 

“processed” or “encoded,” analogous to how horizon area limits black hole entropy. 

Additional conditions in  𝐿𝐶  could impose “computational constraints,” e.g. a “Landauer-type 

cost,” yielding partial differential equations that shape how states on each slice 𝜏 = 𝑐𝑜𝑛𝑠𝑡 

evolve. 

 

 

 

 


