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1 STOCHASTIC NEURON MODEL

Neurons are modeled as simple stochastic point neurons with absolute refractory period τ . When not in
a refractory state, neuron k spikes at an instantaneous firing rate which depends exponentially on the
membrane potential uk(t) given by equation (M2)1, according to,

lim
δt→0

p( neuron k fires in (t, t+ δt] )/δt = ρk(t) =
1

τ
exp(uk(t)) , (1)

with τ = 10ms unless otherwise stated. An exponential dependence of a neuron’s firing probability on
the membrane potential has been suggested by Jolivet et al. (2006) based on a fit to experimental data.
Similar stochastic neuron models have been suggested by Truccolo et al. (2005); Buesing et al. (2011).

Note that an exponential firing function is required for correct sampling when a constant “off-rate” is
assumed (corresponding to a constant PSP length which does not depend on the pre-synaptic membrane
potential). In the discrete-time variant of neural sampling Buesing et al. (2011), the resolution (how many
discrete time steps constitute a refractory period) determines whether the canonical activation function
resembles more a sigmoid or an exponential function. In discrete time implementations of neural sampling
it may be thus expected that a variety of intermediate behaviors between Gibbs sampling and continuous-
time neural sampling is found at different resolutions.

2 DETAILS TO PRINCIPLE 1: STATIONARY DISTRIBUTIONS AND ENERGY
FUNCTIONS

2.1 NETWORK STATES

The state xk(t) of a principal neuron k at time t is defined as,

xk(t) =

{
1, if neuron k fired within (t− τ, t] ,
0, otherwise ,

(2)

where τ is a brief time window corresponding to the duration of a PSP. The state vector of all principal
neurons (the principal network state) is denoted by x(t) = (x1(t), . . . , xN (t)). Unless otherwise stated,
the term network state refers to the principal network state.

1 We use prefix M to refer to the main text material.
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The state ξm(t) of an auxiliary neuron m is defined in an analogous manner to equation (2). The state
vector of all auxiliary neurons is written as ξ(t) = (ξ1(t), . . . , ξM (t)). The full network state is given by,

(x(t), ξ(t)) = (x1(t), . . . , xN (t), ξ1(t), . . . , ξM (t)) (3)

Similar notions of network state have been suggested by a number of experimental and theoretical
papers Schneidman et al. (2006); Berkes et al. (2011); Buesing et al. (2011); Pecevski et al. (2011) and
Habenschuss et al. (2013).

2.2 CONVERGENCE TO STATIONARY DISTRIBUTION

Under mild conditions, activity in a general spiking network with noise can be theoretically guaranteed to
converge exponentially fast to a unique stationary distribution p(x, ξ) of full network states Habenschuss
et al. (2013), regardless of initial network conditions. In the context of the stochastic neuron model ,
equations (M1)-(M2), it can be easily verified that the theoretical conditions for convergence are fulfilled
if all weights are finite. Clearly, throughout the paper this condition is met. Exponentially fast convergence
to a unique marginal distribution p(x) over principal network states is a simple corollary that follows from
the convergence to a unique joint distribution p(x, ξ).

2.3 ENERGY FUNCTIONS

In analogy with statistical physics Plischke and Bergersen (2006), we define the energy function E(x)
of a network of spiking neurons with a unique stationary distribution p(x) of principal network states x as

E(x) = − log p(x) + C , (4)

with an arbitrary constant C. The stationary distribution p(x) can then be expressed as,

p(x) =
e−E(x)∑
x′ e−E(x′)

. (5)

Note that according to this definition, energies are defined only up to a constant (a global shift applied
to all states). To indicate that two energy functions are identical except for a constant shift we use the
notation E1(x) , E2(x), i.e.

E1(x) , E2(x) ⇔ ∃C∈R ∀x (E1(x) = E2(x) + C) . (6)

3 DETAILS TO PRINCIPLE 2: SHAPING THE ENERGY FUNCTION THROUGH
CIRCUIT MOTIFS

A key theoretical question is how the energy function E(x) (or equivalently p(x)) over principal network
states x depends on the parameters of a network, in particular on synaptic weights wkl and neuronal
excitabilities bk among principal neurons, as well as on auxiliary circuits connected to the principal
neurons. Previous work had shown that pair-wise symmetric connections between neurons map onto
second-order dependencies between variables Buesing et al. (2011). Pecevski et al. (2011) demonstrated
in addition how more complex dependencies can be encoded through the use of pre-processing circuits in
the context of probabilistic inference.

Here we consider how in addition to second-order dependencies, common higher-order constraints of
hard computational problems can be encoded through the use of simple auxiliary circuit motifs, in a
manner suitable for modularity and large-scale circuit design.
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3.1 CONDITIONS FOR MODULARITY

To facilitate systematic design of complex energy landscapes, we would like to find a basic set of auxiliary
circuit motifs which can be combined in arbitrarily rich ways with predictable outcomes. A particularly
desirable feature to aim for is linear modularity, such that the energy contribution to the energy landscape
of each circuit motif is independent of the presence of other circuit motifs.

The starting point for the following results is the Neural Computability Condition (NCC) from Buesing
et al. (2011), which provides a sufficient condition for a network of model neurons given by equation
(M1) to sample from some desired distribution p(x). The NCC requires that the membrane potential of
each neuron k obeys,

uk(t) = log
p(xk = 1|x\k(t))
p(xk = 0|x\k(t))

. (7)

where x\k(t) denoting the current state vector of all principal neurons excluding neuron k. In terms of a
desired energy function E(x), the NCC can be reformulated as

uk(t) = E(xk = 0,x\k(t))− E(xk = 1,x\k(t)) , (8)

where we use the simplified notation E
(
xk = ·,x\k(t)) := E(x1(t), . . . , xk−1(t), ·, xk+1(t), . . . , xN (t)

)
.

In the absence of auxiliary neurons/circuits it was shown by Buesing et al. (2011) that, if all synaptic
connections among principal neurons are symmetric (wkl = wlk), a network N of principal neurons will
sample from a Boltzmann distribution with energy function given by equation (M3). Suppose that a set
of auxiliary circuits I is added (and connected) to such a principal network. Then, due to linearity of
membrane integration ,see equation (M2), the membrane potential of a principal neuron k in the presence
of such auxiliary circuits can be written as equation (M7).

The energy contribution that each auxiliary circuit Ci makes to the energy function E(x) of principal
neurons, however, may be arbitrarily complex. In particular, it may depend in non-trivial ways on the
presence and detailed structure of other auxiliary circuits and synaptic weights and biases of the principal
network. Under appropriate conditions, however, the energy contribution of each auxiliary circuit becomes
linear and independent of the remaining network (Theorem 1).

Theorem 1 suggests that auxiliary circuits should be constructed in a highly specific manner to support
modularity. In particular, condition given by equation (M8) states that auxiliary circuit contributions to
the membrane potential of a principal neuron k should be basically memoryless and reflect a specific
function of the current state of the remaining network, x\k(t). Note that this function (the right-hand side
of equation (M8)) has a very intuitive interpretation: a circuit Ci should inform each principal neuron k
about the currently expected drop in the energy function Ui that can be achieved by a spike of neuron k
(i.e. a switch from xk = 0 to xk = 1).

Proof of Theorem 1: If equation (M8) holds for all Ci then the membrane potential of a principal
neuron k in the presence of some subset of auxiliary circuits Ci, i ∈ I, is given at time t by,

uk,I(t) = bk +
N∑
l=1

wkl xl(t) +
∑
i∈I

[
Ui
(
xk = 0,x\k(t)

)
− Ui

(
xk = 1,x\k(t)

)]
. (9)

To verify that the network has stationary distribution

p(x) ∝ e−EN (x)−
∑

i∈I Ui(x) (10)
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we plug into the NCC given by equation (7) from Buesing et al. (2011),

log
p(xk = 1|x\k)
p(xk = 0|x\k)

= log
p(xk = 1,x\k)

p(xk = 0,x\k)
(11)

= log p(xk = 1,x\k)− log p(xk = 0,x\k) (12)

= −EN ,I(xk = 1,x\k) + EN ,I(xk = 0,x\k) (13)

= −EN (xk = 1,x\k) + EN (xk = 0,x\k) (14)

+
∑
i∈I

[−Ui(xk = 1,x\k) + Ui(xk = 0,x\k)] (15)

= bk +
N∑
l=1

wklxl +
∑
i∈I

[−Ui(xk = 1,x\k) + Ui(xk = 0,x\k)] . (16)

Thus, a network with membrane dynamics given by equation (9) meets the NCC for the distribution in
equation (10). As a result, equation (10) must be the unique stationary distribution of the network, and the
energy function is given by EN (x) +

∑
i∈I Ui(x).

�

Note that, in contrast to neural sampling theory Buesing et al. (2011), Theorem 1 is concerned with the
distribution over a subset of all neurons (the principal neurons x), i.e. the marginal distribution p(x) after
integrating out all auxiliary variables ξ. A concrete application of Theorem 1 is the design of auxiliary
circuit motifs which approximate equation (M8) in practice, as described below for the WTA and OR
motifs.

3.2 WTA CIRCUIT MOTIF

The WTA circuit motif consists of a single auxiliary neuron which is reciprocally connected to some
subset K ⊆ {1, . . . N} of principal neurons (Fig. 1B, top left). The goal of the WTA motif is to achieve
that most of the time exactly one neuron in K is active: whenever one principal neuron spikes it activates
the (inhibitory) auxiliary neuron which suppresses all other principal neurons.

More precisely, in terms of energies, the goal of the WTA motif is to increase the energies of all network
states with more or less than one active neuron in K. This can be achieved in two steps. First, the energy
of all network states where more than one neuron in K is active is increased. We found that this can be
robustly achieved by a single inhibitory neuron which receives strong excitatory connections from K, and
sends strong inhibitory connections back to K (with some weight wWTA � 0). The inhibitory neuron
should have a low bias such that it only fires when one of the principal neurons is active. Second, the
energy of states where no neuron in K is active is raised. This can be done most easily by raising the
biases of all neurons in K by some constant bWTA with 0 < bWTA < −wWTA. Alternatively, this could
in principle also be achieved by an additional auxiliary neuron which is constantly active and makes
excitatory connections to all neurons in K.

The design of the described implementation of the WTA circuit motif was based on the Modularity
Principle (Theorem 1). This can be seen if one considers the desired energy function

UWTA[K](x) =

bWTA , if
∑

k∈K xk = 0 ,
0 , if

∑
k∈K xk = 1 ,

(−wWTA − bWTA) · (−1 +
∑

k∈K xk) , if
∑

k∈K xk > 1 .
(17)
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Theorem 1 provides a concrete guideline for the design of an auxiliary circuit implementing this energy
function. In particular, according to equation (M8) the ideal membrane potential contribution of the
auxiliary circuit to principal neuron k, ∆uk,WTA[K](t), for implementing equation (17) in a modular
manner is given by,

∆uk,WTA[K](t) = UWTA[K](xk = 0,x\k)− UWTA[K](xk = 1,x\k) (18)

=

{
bWTA ,

∑
l∈K\k xl(t) = 0 ,

bWTA − wWTA ,
∑

l∈K\k xl(t) > 0 .
(19)

This membrane potential contribution is closely approximated by the described WTA circuit
implementation: Regardless of the network state, there is a bias term bWTA for each principal neuron
k ∈ K. As soon as one (or more) of these neurons fire, this triggers the auxiliary inhibitory neuron, which
then strongly inhibits all competitors inK with weight wWTA. The nature of the approximation lies mainly
in the delay between the onset of activity of a winner and the onset of inhibition at the remaining principal
neurons (due to stochastic firing of the auxiliary neuron).

3.3 OR CIRCUIT MOTIF

The OR circuit motif consists of two auxiliary neurons I and II reciprocally connected to some subset
K ⊆ {1, . . . N} of principal neurons (Fig. 1B, top right). The purpose of the OR motif is to ensure that
most of the time at least one neuron inK is active. In essence, the auxiliary OR circuit motif remains silent
as long as this OR-condition is met and at least one neuron in K is active. The motif is activated whenever
it is detected that no neuron in K is active. The auxiliary circuit then excites the principal neurons until
one of them fires.

At first sight, it may appear that this basic functionality should require only one auxiliary neuron,
neuron I , which is inhibited by all principal neurons but starts firing immediately upon disinhibition
when no principal neuron is active. Neuron I then keeps firing and exciting the principal neurons (with
synaptic weight wOR) until the OR-condition is restored.

However, a timing problem arises with this simple implementation of the OR motif. This is because
once the OR-condition is restored, neuron I should be silenced immediately, along with all PSPs it is still
causing in principal neurons. Clearly, the latter cannot be achieved by inhibiting neuron I because a spike
of neuron I is an irreversible event, and PSPs, once elicited, have a fixed time course which cannot be
stopped.

A refined implementation of the OR motif therefore contains in addition an auxiliary neuron II to
mitigate this timing problem. Neuron II is activated precisely when PSPs of neuron I should be stopped:
whenever some principal neuron just fired in response to neuron I , but the PSP of neuron I is still active
in other neurons. Neuron II then immediately emits a spike which inhibits the principal neurons (with
negative synaptic weight −wOR), thereby canceling the effect of the prolonged PSPs of neuron I .

Analogous to the WTA circuit, the described implementation of the OR circuit motif aims to
approximate the requirements of Theorem 1 for modularity. To see this, consider the energy function

UOR[K](x) =

{
0 , if

∑
k∈K xk ≥ 1 ,

wOR , if
∑

k∈K xk = 0 .
(20)

Using Theorem 1, according to condition given by equation (M8) this energy function can be implemented
in a modular fashion by an auxiliary circuit making membrane potential contributions to each principal
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neuron in K,

∆uk,OR[K](t) = UOR[K](xk = 0,x\k)− UOR[K](xk = 1,x\k) (21)

=

{
0 ,

∑
l∈K\k xl(t) ≥ 1 ,

wOR ,
∑

l∈K\k xl(t) = 0 .
(22)

The OR circuit approximates this behavior as described above through the combination of two auxiliary
neurons. The nature of the approximation is three-fold. First, when all principal neurons in an OR circuit
have just turned off (and thus the constraint is not met anymore), the additional bias wOR should ideally
be communicated instantly to all neurons. However, the first auxiliary neuron fires in general with some
small delay, and therefore the additional bias wOR is signaled to the principal neurons slightly later than
ideally required. Second, when a principal neuron eventually fires in response to the first auxiliary neuron,
there is a delay until the second auxiliary neuron turns on to cancel the bias wOR that is still present due to
lingering PSPs from the first auxiliary neuron. Third, there is an “undershoot” effect when the excitatory
PSP of the first auxiliary neuron has already vanished, but the inhibitory PSP of the second auxiliary
neuron is still present. To minimize the error due to this effect, the overall biases of all principal neurons
in an OR circuit should be kept high, in order to keep the typical delay between the activity onset of the
first and the second auxiliary neuron as short as possible.

4 DETAILS TO PRINCIPLE 3: BENEFITS OF THE ASYMMETRY OF SPIKE-BASED
STOCHASTIC SEARCH

Principles 1 and 2 pave the way towards massively parallel realizations of stochastic search in networks of
spiking neurons. A first application of these principles has provided compelling results in simulations, as
demonstrated in Fig. 2 and Fig. 4. A key theoretical question which then arises is to what extent different
components of the system contribute to the observed performance. There are various aspects that can be
examined in this context, such as the asynchronicity of message transfer, stochasticity, and the asymmetry
of spike-based communication (a spike marks the onset of a fixed-length on period, whereas off periods
vary randomly - hence on and off states are handled fundamentally different by a spiking network). We
focus our analysis here on the role of the asymmetry of spike-based signaling, because its implications
are arguably least well understood.

4.1 ASYMMETRIC VS. SYMMETRIC DYNAMICS

In order to isolate the effect of asymmetric signaling we consider an artificial non-spike-based
“symmetrized” system in which on and off transitions of units are not mediated in an asymmetric fashion
via spikes of fixed length, but rather in a symmetric manner. Specifically, we aim to morph neural spiking
dynamics into the dynamics of Gibbs sampling Bishop (2006), one of the standard methods in statistics
and machine learning for sampling from complex probability distributions. By theoretically analyzing
and comparing the behavior of the two systems one can then reason about the specific role of asymmetric
signaling.

A canonical way of symmetrizing the dynamics of a given spiking network with noise is to make
sure that all other components and aspects of the system remain unchanged (event-based asynchronous
signaling, stochasticity, synaptic weights and biases, definition of membrane potential uk given the current
on/off states of other neurons) and modify only the way the system handles transitions between on and
off states. Importantly, to facilitate a comparison between asymmetric vs. symmetric dynamics, such
modification should not alter the stationary distribution and energy function of the system.
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For a stochastic spiking neuron embedded in some network, transitions occur from off to on states
according to

ρon(uk) =
1

τ
exp(uk) , (23)

whereas transitions from on to off occur deterministically after a period of τ time units has passed.
Clearly, in a symmetric system transitions must occur stochastically in both directions (they cannot be
both deterministic), with transition rates ρsymon (uk) and ρsymoff (uk). Concrete symmetric expressions for
ρsymon (uk) and ρsymoff (uk) are obtained by using a continuous-time variant of Gibbs sampling Bishop (2006):

ρ
sym
on (uk) = ρ0 ·

p(xk = 1,x\k)

p(xk = 1,x\k) + p(xk = 0,x\k)
(24)

= ρ0 ·
1

1 + p(xk = 0,x\k)/p(xk = 1,x\k)
(25)

= ρ0 ·
(
1 + exp

(
E(xk = 1,x\k)− E(xk = 0,x\k)

))−1 (26)

= ρ0 · σ
(
E(xk = 0,x\k)− E(xk = 1,x\k)

)
(27)

= ρ0 · σ(uk) , (28)

ρ
sym
off (uk) = ρ0 ·

p(xk = 0,x\k)

p(xk = 1,x\k) + p(xk = 0,x\k)
(29)

= ρ0 ·
(
1 + exp

(
E(xk = 0,x\k)− E(xk = 1,x\k)

))−1 (30)

= ρ0 · σ(−uk) , (31)

where σ(u) = (1 + exp(−u))−1 denotes the standard sigmoid function and ρ0 is an arbitrary constant
controlling the global speed of sampling. Such a continuous-time variant of Gibbs sampling has been
proposed in the literature, for example, in the context of sampling from second-order Boltzmann machines
Yamanaka et al. (1997).

4.2 ASYMMETRY FACILITATES TRANSITIONS ACROSS LARGE ENERGY BARRIERS

A somewhat unexpected difference which emerges from the comparative analysis between asymmetric
and symmetric dynamics is that transitions across large energy barriers are much more likely and
frequently to occur with asymmetric (spike-based) signaling. To see this, define the mean on-transition
time mon(u) as the average time from the last on→ off transition until the next off→on transition, at
a given membrane potential u. The mean off -transition time is defined in an analogous manner. In the
stochastic spiking network these are given by,

mon(u) =
1

ρon(u)
= τ · exp(−u) , (32)

moff(u) = τ . (33)
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In the symmetric system, on the other hand, mean transition times in continuous time are given by,

m
sym
on (u) =

1

ρ
sym
on (u)

=
1

ρ0
· (1 + exp(−u)) , (34)

m
sym
off (u) =

1

ρ
sym
off (u)

=
1

ρ0
· (1 + exp(u)) . (35)

Notably, one can identify a single translation factor F (u) between the two systems,

m
sym
on (u)

mon(u)
=
ρ−10 · (1 + exp(−u))

τ · exp(−u)
(36)

=
ρ−10 · (1 + exp(u))

τ
= F (u) (37)

m
sym
off (u)

moff(u)
=
ρ−10 · (1 + exp(u))

τ
= F (u) (38)

which is given by,

F (u) =
1

τρ0︸︷︷︸
const.

· (1 + exp(u)) . (39)

Note that F (u) is strictly positive and increases monotonically with increasing membrane potential u.
Furthermore, note that large values F (u) signify that the spike-based dynamics is fast in comparison with
the symmetric dynamics. Hence, for larger u transition times are considerably shortened in the spike-
based system. In other words, the asymmetric dynamics of spiking neurons increases specifically the on-
and off -transition rates of those neurons with high membrane potentials u (i.e. neurons with strong input
and/or high biases). This makes sense since off transitions in the symmetric case can be arbitrarily slowed
down for large u, see equation (35), whereas the spike-based system will necessarily fall back to an off
state on a regular basis regardless of u.

According to equation (M8), high membrane potentials u reflect large energy barriers in the energy
landscape. Therefore, the increase of transition rates for large u in the spike-based system (due to
deterministic on→off transitions) means that large energy barriers are crossed more frequently than in
the symmetric system. In particular, on→off transitions to high-energy states become considerably more
likely due to equation (38). Nevertheless, it should be stressed that on average the spike-based system
does not spend more time in high-energy states (both systems sample from the same p(x)), because
according to equation (37) also the transition back to the corresponding on state (i.e. the lower energy
state) happens at an increased rate for large u. The critical observation is that the return to the identical
previous state can be intercepted: While the neuron is off, other neurons are given the brief opportunity to
spike before the previous state is restored, and may thereby, e.g., escape from a previously inhibited state.
This is particularly obvious in the context of WTA circuits, where such brief periods of off -time of the
current winner allow other neurons to take over. Altogether, as we demonstrated in Fig. 2, it is observed
that this enhanced utilization of exploratory moves leads to improved search for low energy states in the
asymmetric spike-based system, by facilitating fast escape routes from deep local minima which are not
available to such extent in a symmetric system.

4.3 ASYMMETRY FACILITATES GOAL-DIRECTED TRANSITIONS

Equation (39) implies that spike-based transition frequency is enhanced in proportion to u. It was already
noted above that this encourages exploratory on→off transitions which may facilitate the escape from
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local minima. But clearly also off→on transitions are affected by equation (39). In particular, consider a
situation where a group of neurons in the off state is competing for emitting the next spike (e.g. in a WTA
circuit). Those neurons with the highest membrane potentials are particularly eager to fire. Suppose, for
example, that there are two neurons with ua = 3 and ub = 5, and all other neurons have considerably lower
u. According to equation (37), transition rates in the spike-based system are increased to a greater extent
in neurons with higher u: In the symmetrized non-spiking system, transition rates scale with σ(u) and are
therefore approximately equal for the two neurons a and b (due to saturation of the sigmoid function). In
the spike-based system, however, instantaneous transition rates scale with exp(u) and thus the competition
will be much easier to win by the neuron which is most eager to fire (i.e. neuron b in the example). Clearly,
this makes a substantial difference in the dynamics and performance of the stochastic search, especially
since uk reflects the drop in energy that can be gained by turning on some neuron k. In particular, it means
that a spike-based system is not only more exploratory in the “up-hill” direction (on→off transitions
towards higher energy levels), but also more goal-directed in the “down-hill” direction.

Obviously, the enhanced agility with respect to some transitions must come at a price. Indeed, those
transitions which bring about only small changes in the energy landscape (transitions with small) are
considerably disadvantaged by the spike-based dynamics. In terms of convergence properties, however,
this seems to be a small price to pay, since stochastic search appears in practice more frequently impeded
by the presence of large energy barriers. 2

4.4 COMPARISON OF SOLVING TSP BY A SPIKING NETWORK AND BY A BOLTZMANN
MACHINE

Boltzmann machines are artificial (non-spiking) neural networks with stochastic binary units which have
biases bk and where connections between units are required to be symmetric, i.e. wkl = wlk, Hinton and
Sejnowski (1983); Hinton et al. (1984). In order to facilitate a fair comparison between spiking network
and Boltzmann machines, we adapted the previously described TSP network architecture to include only
symmetric weights between neurons. This can be done by replacing di-synaptic inhibitory links mediated
through WTA auxiliary neurons by direct inhibitory connections among principal neurons (in violation
of Dale’s law). The activation of a principal neuron in a WTA circuit will therefore automatically and
directly inhibit all other principal neurons in the same WTA. We note that this adapted architecture has
virtually the same energy function as the original implementation with auxiliary inhibitory neurons.

The above described simplification allowed us to perform a fair comparison between spiking
network (SN) and Boltzmann machine (BM), since the adapted architecture can be simulated with
identical parameters (and leads to an identical stationary distribution p(x)) on both systems. The
comparison of the number of state changes between SN and BM implementations was done based on
100 runs, each of which was simulated for 100.000 state changes. Both systems were initialized at the
beginning of each run in an all-silent state (i.e. all zk = 0). In each run and after every state change
we evaluated the current network state, and checked how many problem variables were properly defined.
Combining all runs in each case, we calculated how often transitions occurred in each sampler to states
with different numbers Nundef ∈ {0, . . . , N ′} of undefined problem variables. Based on this information
we constructed corresponding histograms for SN and BM. To highlight the differences between the two
implementations, we calculated the ratios between the normalized histogram values for SN and BM
(Fig. 2C). For the convergence speed comparison, in each run we calculated after each state change the
cumulative minimum and mean performance during the whole time leading up to that state change. This
was first done for each of the 100 network runs individually. The results for each number of state changes
were then averaged over all runs.

2 In principle, one sees from equation (39) that on the other hand transitions with negative u are disadvantaged by the spike-based dynamics. In the context of
this paper negative u only occur in neurons which are currently inhibited in a WTA circuit.
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4.5 FURTHER DETAILS TO THE OBSERVED SPIKE-BASED ENERGY JUMPS IN FIG. 3C

The histograms in Fig. 3C display a striking symmetricity of state transitions with positive and negative
energy differences. For the Boltzmann machine this is an expected consequence of detailed balance in
Gibbs sampling Brooks et al. (2010), which ensures that on average transitions between any two states are
observed equally often in either direction. For the spiking network, however, the observed symmetricity
cannot be predicted from theoretical considerations alone. This is because detailed balanced does not hold
in a strict sense in the spiking network when off-transitions follow a deterministic decay law Buesing
et al. (2011). Nevertheless, the spiking network dynamics can be easily morphed into a system that obeys
detailed balance: When off-transitions are made stochastic with constant rate τ−1 (such that on average
neurons are on for τ time units before turning off as in the spiking network), the dynamics of the system
can be described in terms of a simple Master equation,

dpt(x)

dt
= τ−1

∑
k

[
pt(¬xk,x\k) · exp(xkuk)− pt(x) · exp((1− xk)uk)

]
(40)

= τ−1pt(x)
∑
k

exp(xkuk)

[
pt(¬xk|x\k)
pt(xk|x\k)

− exp((1− 2xk)uk)

]
(41)

= τ−1pt(x)
∑
k

exp(xkuk)

(pt(¬xk|x\k)
pt(xk|x\k)

)1−2xk

− exp(uk)
1−2xk

 (42)

where pt(x) denotes the probability that the system is in state x at time t, and pt(¬xk,x\k) denotes
the probability of state x with negated element k. Detailed balance requires that all summands (i.e. the
probability flows for all neurons k) are zero at equilibrium, for all possible states x. It is easy to verify
that this holds if the NCC given by equation (M5) is fulfilled. Hence, although the spiking network is
not strictly in detailed balance, a slightly modified dynamics of the spiking network is. This provides a
potential explanation for the symmetricity of the top histogram in Fig. 3C.

Another peculiarity of the top histogram in Fig. 3C (energy jumps in the spiking network) is its highly
non-Gaussian shape (the distribution of positive jumps is even bi-modal). It should be stressed that the
particular shape of the histogram, including the dip around 15, does not reveal general properties of the
spiking network dynamics, but reflects the statistics of the problem instance. Concretely, the fact that
positive jumps are bi-modally distributed arises from the architecture of the TSP network (Fig. 2A): Each
neuron has at most two neighbors that provide positive input. When only one neighbor is active, the
membrane potential is typically between 10 and 14, and when both are active, the membrane potential
is typically between 20 and 28. The membrane potential u of a neuron encodes the energy difference of
an off-transition, and −u represents the energy difference of an on-transition. Hence, the observed bi-
modally distributed energy jumps in the spiking network are a direct consequence of the specific problem
architecture. In the Boltzmann machine this effect is not visible since transitions in the relevant range of
energy differences are suppressed.

5 DETAILS TO PRINCIPLE 4: INTERNAL TEMPERATURE CONTROL

In order to realize an internal temperature control mechanism for regulating the temperature T of the
network energy function according to ET (x) = E(x)/T in an autonomous fashion, at least three
functional components are required (Fig. 1D): 1. Internally generated feedback signals from circuit motifs
reporting on the quality and performance of the current tentative network solution. 2. A temperature
control unit which integrates feedback signals and decides on an appropriate temperature T . 3. An
implementation of the requested temperature change in each circuit motif.
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Both circuits motifs, WTA and OR, can be equipped quite easily with the ability to generate internal
feedback signals. The WTA condition in a WTA circuit is met if exactly one principal neuron is active in
the circuit. If the WTA circuit has strong inhibition then network states with two or more active neurons are
very unlikely and can be ignored in practice. Thus, a WTA feedback signal can be generated by simply
checking whether any principal neuron is active. Concretely, the output of the auxiliary WTA neuron
can be used as a feedback signal, since the auxiliary neuron is only activated when one of the principal
neurons has fired. Alternatively, for the same reasons the WTA feedback signal may be constructed from
the summed outputs of all principal neurons in a WTA circuit.

For the OR circuit motif, the OR condition is met if at least one principal neuron is active. The most
straightforward way of implementing an OR feedback signal is therefore to add a feedback neuron which
fires as long as one of the principal neurons is active, and remains silent otherwise. This can be achieved in
a straightforward manner by a feedback neuron with low bias and excitatory connections from all involved
principal neurons. In simulations a slightly different implementation has proved even more effective,
which can be used when all principal neurons involved in the OR circuit are also part of some WTA
circuit. Then, a negative feedback signal (one which is active when the OR condition is violated) can be
generated by adding an auxiliary neuron with low bias which receives connections from all other neurons
in the WTA circuits of the involved principal neurons. The rationale behind this implementation of an OR
feedback signal is as follows: Whenever some principal neuron k, which is involved in the OR circuit
and in addition in some WTA circuit, is not active, most of the time some other neuron in the WTA
circuit of neuron k must be active. Hence, whenever the OR constraint is violated and all K principal
neurons involved in the OR circuit are inactive, the feedback neuron will see that in each of the involved
WTA circuits some other neuron is active. A more detailed description of how this was implemented as
part of the temperature control mechanism for 3-SAT problems is given in Section ”Details to 3-SAT
application“.

Regarding the temperature control unit, one can think of various smart strategies to integrate feedback
signals in order to decide on a new temperature. In the simplest case, a temperature control unit has
two temperatures to choose from: one for exploration (high temperature), and for stabilization of good
solutions (low temperature). A straightforward way of selecting a temperature is to remain at a moderate
to high temperature (exploration) by default, but switch temporarily to low temperature (stabilization)
whenever the number of positive feedback signals exceeds some threshold, indicating that almost all (or
all) constraints in the circuit are currently fulfilled.

Concretely, such internal temperature control unit can be implemented via a temperature control neuron
with a low bias and connection strengths from feedback neurons in each circuit in such a manner that the
neuron’s firing probability reaches non-negligible values only when all (or almost all) feedback signals
are active. When circuits send either positive or negative feedback signals, the connection strengths from
negative feedback neurons should be negative and can be chosen in such a manner that non-negligible
firing rates are achieved only if all positive feedback but none of the negative feedback signals are active.
Whenever such temperature control neuron is active it indicates that the circuit should be switched to the
low temperature (stabilization) regime.
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