
A mechanistic quantitative systems pharmacology model platform 

for translational efficacy evaluation and checkpoint combination 

design of bispecific immuno-modulatory antibodies 

 

Yiyang Xu1#, Siyuan Yang1#, Qi Rao1#, Yuan Gao2, Guanyue Zhou3, Dongmei Zhao3, 

Xinsheng Shi3, Yi Chai4*, Chen Zhao1,5* 

1 School of Pharmacy, Nanjing Medical University, Nanjing, China, 210000  

2 QSPMed Technologies, Nanjing, China, 210000 

3 Nanjing Sanhome Pharmaceutical Co., Ltd., Nanjing, China, 221116 

4 Phase I Clinical Trial Unit, The First Affiliated Hospital of Nanjing Medical 

University, Nanjing, China, 210000 

5 Department of Oncology, The First Affiliated Hospital of Nanjing Medical 

University, Nanjing, China, 210000 

 

This file includes: 

Supplemental Fig. S1. Model-based quantitative characterization of T cell intracellular signaling. 

See also Fig. 2. 

Supplemental Fig. S2. Additional model calibration using in vitro data. See also Fig. 3. 

Supplemental Fig. S3. Model-based quantitative characterization of time-course drug 

pharmacokinetics in mice. See also Fig. 3. 

Supplemental Fig. S4. Additional model calibration using in vivo data on antibody-induced 

tumor growth inhibition – part 1 (BsAbs). See also Fig. 3. 

Supplemental Fig. S5. Additional model calibration using in vivo data on antibody-induced 

tumor growth inhibition – part 2 (mAbs). See also Fig. 3. 

Supplemental Fig. S6. Additional model validation using in vivo data on antibody-induced tumor 

growth inhibition. See also Fig. 4. 

Supplemental Fig. S7. Antibody dosing regimen analyses and projection of combination efficacy. 

See also Fig. 6.  

Supplemental Fig. S8. Model-based anti-tumor efficacy analyses of combining SHP2 inhibition 

with checkpoint regulation. See also Fig. 6. 



 

Figure S1. Model-based quantitative characterization of T cell intracellular signaling. Upon T-

cell activation, ZAP70 was rapidly phosphorylated, as shown by model simulation and experimental 

data in scenarios of (A) anti-CD3 treatment (data from Williams et al.[1] and Kästle et al.[2]), and 

(B) anti-CD3 and anti-CD28 treatment (data from Kästle et al.[2] and Rodriguez-Peña et al. [3]). 

(C) Downstream activation of AKT by phosphorylation under anti-CD3 activation (data from 

Kassem et al.[4]). (D) Downstream activation of AKT by phosphorylation under anti-CD3 and 

antiCD28 activation (data from Wang et al.[5]). (E) Downstream activation of PI3K by 

phosphorylation under anti-CD3 and antiCD28 activation (data from Alcázar et al.[6]). (F) 

Downstream activation of PI3K by phosphorylation under T-B cell co-culture (data from Zhao et 

al.[7]). (G) Downstream activation of ERK by phosphorylation under anti-CD3 activation (data 

from Kästle et al.[2], Fujiwara et al.[8], Tewari et al.[9]). (H) Downstream activation of ERK by 

phosphorylation under anti-CD3 and antiCD28 activation (data from Rodriguez-Peña et al.[3], 

Wang et al.[5], Zheng et al.[10]). (I) Downstream activation of SHP2 under T-B cell co-culture (data 

from Marasco et al[11]). (A-I) Y axes are relative expression levels (normalized to their respective 

maximum values). S, simulation; D, experimental data. 



 

 

Figure S2. Additional model calibration using in vitro data. The QSP model can quantitatively 

capture (A) the growth of tumor cells over time(data from Muik et al.[12])  and (B)  the time-

dependent proliferation of T cells (data from Koenen et al.[13]). The integrated in vitro QSP model 

captures the dose response relationship of (C) anti-tumor cytotoxicity of anti-PD-L1 antibody (data 

from Passariello et al.[14]), (D) anti-tumor cytotoxicity of anti-TIGIT/PD-L1 bispecific antibody 

(data from Zhong et al.[15]), as well as increase in (E-F) IFN-γ release after anti-LAG3/PD-L1 

bispecific antibody treatment (data from Jiang et al.[16], Kraman et al.[17]), and (G) IL-2 release 

after anti-CTLA4 antibody treatment (data from Li et al.[18]). 

 

 

 



 

Figure S3. Model-based quantitative characterization of time-course drug pharmacokinetics 

in mice. The QSP model can quantitatively capture (A) plasma pharmacokinetics of anti-

MSLN/CD3 bispecific antibody in mice (data from Yoon et al.[19]), (B-C) plasma 



pharmacokinetics of anti-CD20/CD3 bispecific antibody in mice (data from Ferl et al.[20]), (D) 

plasma pharmacokinetics of anti-CD3/CD19 bispecific antibody in mice (data from Betts et al.[21]), 

(E-F) plasma pharmacokinetics of anti-CTLA4 antibody in mice (data from Gan et al.[22]), (G) 

plasma pharmacokinetics of anti-CD3/EGFRvⅢ bispecific antibody in mice (data from Sun et 

al.[23]), (H) plasma pharmacokinetics of anti-IGF-1R  antibody in mice (data from Dong et al.[24]), 

(I) plasma pharmacokinetics of anti-EGFRvⅢ  antibody in mice (data from Sun et al.[23]),and (J-

K) plasma pharmacokinetics of SHP099 in mice (data from Garcia Fortanet et al.[25]). S, simulation; 

S*, optimized simulation after data-specific calibration; D, experimental data. 

 

 



Figure S4. Additional model calibration using in vivo data on antibody-induced tumor growth 

inhibition – part 1 (BsAbs). In vivo antitumor activity of different antibody treatment regimens 

targeting immune checkpoints (and administered at different doses) as characterized by the QSP 

model; examples shown here include (A) anti-LAG3/PD-L1 bispecific antibody (data from Jiang et 

al.[16]) (B)anti-TIGIT/PD-L1 bispecific antibody (data from Zhong et al.[15]), (C) anti-4-1BB/PD-

1 bispecific antibody (data from Qiao et al.[26]), (D-G) anti-4-1BB/PD-L1 bispecific antibody (data 

from Yuwen et al.[27], Peper-Gabriel et al.[28], Muik et al.[12]), (H) anti-CTLA4/OX40 bispecific 

antibody (data from Kvarnhammar et al.[29]), and (I) SHP099 and anti-PD-1 antibody(data from 

Wang et al.[30]). S, simulation; D, experimental data. 

 



 

Figure S5. Additional model calibration using in vivo data on antibody-induced tumor growth 

inhibition – part 2 (mAbs). In vivo antitumor activity of different antibody treatment regimens 

targeting immune checkpoints (and administered at different doses) as characterized by the QSP 

model; examples shown here include (A-B) anti-4-1BB and anti-PD-L1 antibodies (data from 

Cheng et al.[31], Yuwen et al.[27]), (C) anti-TIGIT and anti-PD-1 antibodies (data from Shao et 

al.[32]), (D-E) anti-LAG3 and anti-PD-1 antibodies (data from Kraman et al.[17], Lecocq et al.[33]), 

(F-H) anti-CTLA4 antibody (data from Gan et al.[22], Du et al.[34]).S, simulation; D, experimental 

data. 

https://pubmed.ncbi.nlm.nih.gov/?term=Lecocq+Q&cauthor_id=33712537


Figure S6. Additional model validation using in vivo data on antibody-induced tumor growth 

inhibition. In vivo antitumor activity of different antibody treatment regimens targeting immune 

checkpoints (and administered at different doses) as predicted by the QSP model; examples shown 



here include (A) anti-TIGIT/PD-L1 bispecific antibody (data from Xiao et al.[35]), (B) anti-

LAG3/PD-L1 bispecific antibody (data from Jiang et al.[16]), (C-E) anti-4-1BB/PD-L1 bispecific 

antibody (data from Muik et al.[12], Yuwen et al.[27]), (F) anti-CTLA4/OX40 bispecific antibody 

(data from Kvarnhammar et al.[36]), (G) anti-CTLA4 antibody (data from Du et al.[34]), (H) anti-

LAG3 and anti-PD-1 antibodies (data from Lecocq et al.[33]), (I) anti-4-1BB/PD-L1 bispecific 

antibody (data from Peper-Gabriel et al.[28]), (J) anti-4-1BB and anti-PD-L1 antibodies (data from 

Cheng et al.[31]), (K) anti-4-1BB/PD-L1 bispecific antibody (data from Yuwen et al.[27]). S, 

simulation; D, experimental data. 

 



Figure S7. Antibody dosing regimen analyses and projection of combination efficacy. (A) 

Predicted TGI in the virtual mouse population after anti-4-1BB/PD-L1 BsAb treatment at doses of 

3.25~26 mg/kg, and (B) distribution of TGI response depth (percentages of mice with TGI>=40%, 

20%<TGI<40%, and TGI<=20%) at different doses. (C) Predicted TGI in response to anti-4-

1BB/PD-L1 BsAb treatment at 7 mg/kg biw (twice per week) and 14 mg/kg qw (once per week) 



dosing regimens. (D) Predicted TGI in the virtual mouse population after anti-CTLA4/PD-1 BsAb 

treatment at doses of 2.5~20 mg/kg, and (E) distribution of TGI response depth at different doses. 

(F) Predicted TGI in response to anti-CTLA4/PD-1 BsAb treatment at 10 mg/kg biw and 20 mg/kg 

qw regimens. (G) Predicted TGI in the virtual mouse population after anti-CTLA4/OX40 BsAb 

treatment at doses of 1.5~12 mg/kg, and (H) distribution of TGI response depth at different doses. 

(I) Predicted TGI in response to anti-CTLA4/OX40 BsAb treatment at 6 mg/kg biw and 12 mg/kg 

qw regimens. (J) Predicted population-level TGI heatmap for the combination of anti-PD-1 and 

anit-OX40 antibodies. nsP＞ 0.05,∗P < 0.05, ∗∗∗∗P <0.0001. Statistical analyses were performed 

using Wilcoxon rank-sum test. 

 

 

 

 

 

 

Figure S8. Model-based anti-tumor efficacy analyses of combining SHP2 inhibition with 

checkpoint regulation. (A) Predicted population-level TGI heatmap for the combination of anti-

PD-1 and SHP099 (SHP2 inhibitor). (B) Predicted TGI for SHP099 combined with antibodies 

targeting other immune checkpoints. 
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