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Figure S1. Model-based quantitative characterization of T cell intracellular signaling. Upon T-
cell activation, ZAP70 was rapidly phosphorylated, as shown by model simulation and experimental
data in scenarios of (A) anti-CD3 treatment (data from Williams et al.[1] and Késtle et al.[2]), and
(B) anti-CD3 and anti-CD28 treatment (data from Kaéstle et al.[2] and Rodriguez-Pefia et al. [3]).
(C) Downstream activation of AKT by phosphorylation under anti-CD3 activation (data from
Kassem et al.[4]). (D) Downstream activation of AKT by phosphorylation under anti-CD3 and
antiCD28 activation (data from Wang et al.[5]). (E) Downstream activation of PI3K by
phosphorylation under anti-CD3 and antiCD28 activation (data from Alcazar et al.[6]). (F)
Downstream activation of PI3K by phosphorylation under T-B cell co-culture (data from Zhao et
al.[7]). (G) Downstream activation of ERK by phosphorylation under anti-CD3 activation (data
from Kistle et al.[2], Fujiwara et al.[8], Tewari et al.[9]). (H) Downstream activation of ERK by
phosphorylation under anti-CD3 and antiCD28 activation (data from Rodriguez-Pefia et al.[3],
Wang et al.[5], Zheng et al.[10]). (I) Downstream activation of SHP2 under T-B cell co-culture (data
from Marasco et al[11]). (A-I) Y axes are relative expression levels (normalized to their respective

maximum values). S, simulation; D, experimental data.
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Figure S2. Additional model calibration using in vitro data. The QSP model can quantitatively
capture (A) the growth of tumor cells over time(data from Muik et al.[12]) and (B) the time-
dependent proliferation of T cells (data from Koenen et al.[13]). The integrated in vitro QSP model
captures the dose response relationship of (C) anti-tumor cytotoxicity of anti-PD-L1 antibody (data
from Passariello et al.[14]), (D) anti-tumor cytotoxicity of anti-TIGIT/PD-L1 bispecific antibody
(data from Zhong et al.[15]), as well as increase in (E-F) IFN-y release after anti-LAG3/PD-L1
bispecific antibody treatment (data from Jiang et al.[16], Kraman et al.[17]), and (G) IL-2 release
after anti-CTLA4 antibody treatment (data from Li et al.[18]).
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Figure S3. Model-based quantitative characterization of time-course drug pharmacokinetics
in mice. The QSP model can quantitatively capture (A) plasma pharmacokinetics of anti-
MSLN/CD3 bispecific antibody in mice (data from Yoon et al[l19]), (B-C) plasma



pharmacokinetics of anti-CD20/CD3 bispecific antibody in mice (data from Ferl et al.[20]), (D)
plasma pharmacokinetics of anti-CD3/CD19 bispecific antibody in mice (data from Betts et al.[21]),
(E-F) plasma pharmacokinetics of anti-CTLA4 antibody in mice (data from Gan et al.[22]), (G)
plasma pharmacokinetics of anti-CD3/EGFRVIII bispecific antibody in mice (data from Sun et
al.[23]), (H) plasma pharmacokinetics of anti-IGF-1R antibody in mice (data from Dong et al.[24]),
(I) plasma pharmacokinetics of anti-EGFRVIII antibody in mice (data from Sun et al.[23]),and (J-
K) plasma pharmacokinetics of SHP099 in mice (data from Garcia Fortanet et al.[25]). S, simulation;

S*, optimized simulation after data-specific calibration; D, experimental data.
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Figure S4. Additional model calibration using in vivo data on antibody-induced tumor growth
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inhibition — part 1 (BsAbs). In vivo antitumor activity of different antibody treatment regimens
targeting immune checkpoints (and administered at different doses) as characterized by the QSP
model; examples shown here include (A) anti-LAG3/PD-L1 bispecific antibody (data from Jiang et
al.[16]) (B)anti-TIGIT/PD-L1 bispecific antibody (data from Zhong et al.[15]), (C) anti-4-1BB/PD-
1 bispecific antibody (data from Qiao et al.[26]), (D-G) anti-4-1BB/PD-L1 bispecific antibody (data
from Yuwen et al.[27], Peper-Gabriel et al.[28], Muik et al.[12]), (H) anti-CTLA4/0X40 bispecific
antibody (data from Kvarnhammar et al.[29]), and (I) SHP099 and anti-PD-1 antibody(data from
Wang et al.[30]). S, simulation; D, experimental data.
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Figure S5. Additional model calibration using in vivo data on antibody-induced tumor growth
inhibition — part 2 (mAbs). In vivo antitumor activity of different antibody treatment regimens
targeting immune checkpoints (and administered at different doses) as characterized by the QSP
model; examples shown here include (A-B) anti-4-1BB and anti-PD-L1 antibodies (data from
Cheng et al.[31], Yuwen et al.[27]), (C) anti-TIGIT and anti-PD-1 antibodies (data from Shao et
al.[32]), (D-E) anti-LAG3 and anti-PD-1 antibodies (data from Kraman et al.[17], Lecocq et al.[33]),

(F-H) anti-CTLA4 antibody (data from Gan et al.[22], Du et al.[34]).S, simulation; D, experimental
data.
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Figure S6. Additional model validation using in vivo data on antibody-induced tumor growth
inhibition. In vivo antitumor activity of different antibody treatment regimens targeting immune
checkpoints (and administered at different doses) as predicted by the QSP model; examples shown



here include (A) anti-TIGIT/PD-L1 bispecific antibody (data from Xiao et al.[35]), (B) anti-
LAG3/PD-L1 bispecific antibody (data from Jiang et al.[16]), (C-E) anti-4-1BB/PD-L1 bispecific
antibody (data from Muik et al.[12], Yuwen et al.[27]), (F) anti-CTLA4/0X40 bispecific antibody
(data from Kvarnhammar et al.[36]), (G) anti-CTLA4 antibody (data from Du et al.[34]), (H) anti-
LAG3 and anti-PD-1 antibodies (data from Lecocq et al.[33]), (I) anti-4-1BB/PD-L1 bispecific
antibody (data from Peper-Gabriel et al.[28]), (J) anti-4-1BB and anti-PD-L1 antibodies (data from
Cheng et al.[31]), (K) anti-4-1BB/PD-L1 bispecific antibody (data from Yuwen et al.[27]). S,
simulation; D, experimental data.
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Figure S7. Antibody dosing regimen analyses and projection of combination efficacy. (A)
Predicted TGI in the virtual mouse population after anti-4-1BB/PD-L1 BsAb treatment at doses of
3.25~26 mg/kg, and (B) distribution of TGI response depth (percentages of mice with TGI>=40%,
20%<TGI<40%, and TGI<=20%) at different doses. (C) Predicted TGI in response to anti-4-
1BB/PD-L1 BsAb treatment at 7 mg/kg biw (twice per week) and 14 mg/kg qw (once per week)



dosing regimens. (D) Predicted TGI in the virtual mouse population after anti-CTLA4/PD-1 BsAb
treatment at doses of 2.5~20 mg/kg, and (E) distribution of TGI response depth at different doses.
(F) Predicted TGI in response to anti-CTLA4/PD-1 BsAb treatment at 10 mg/kg biw and 20 mg/kg
qw regimens. (G) Predicted TGI in the virtual mouse population after anti-CTLA4/0X40 BsAb
treatment at doses of 1.5~12 mg/kg, and (H) distribution of TGI response depth at different doses.
(I) Predicted TGI in response to anti-CTLA4/0X40 BsAb treatment at 6 mg/kg biw and 12 mg/kg
qw regimens. (J) Predicted population-level TGI heatmap for the combination of anti-PD-1 and
anit-OX40 antibodies. nsP > 0.05,*P < 0.05, #*xxP <0.0001. Statistical analyses were performed

using Wilcoxon rank-sum test.
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Figure S8. Model-based anti-tumor efficacy analyses of combining SHP2 inhibition with
checkpoint regulation. (A) Predicted population-level TGI heatmap for the combination of anti-
PD-1 and SHP099 (SHP2 inhibitor). (B) Predicted TGI for SHP099 combined with antibodies
targeting other immune checkpoints.
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