Ferraro et al.

APPENDIX

Object-centric World Models training

RSSM Py Decoder p, Loss targets
(- N[~— .) q
MLP q ;
—J t o
T Prior . oob] t
s br cobi

Aob' 7
., i
” I =

a L Obij Obj
t . J obj J
S obJ
_____ - Ext t Dec ;|8
d]]]:L St [: } SN S FastSAM
e — § t / +XMem

: \ Posterior) \

Figure 1. Object-centric World Models training. Detailed representation of the object-centric world
models training.

In Figure |1 we detail the object-centric world model learned by focus, highlighting its training pipeline.
Inputs = are encoded and transferred to the RSSM, which represents the latent state probability s as a
categorical distribution. Latent states are sampled and fed to the decoder, which reconstructs the
proprioceptive information of the robot, through an MLP, and extracts object-centric latents s°%/. These
object-centric representations are decoded into object masks and RGB reconstructions. All reconstructions
are compared to the original inputs. Prior latent’s are compared to the posterior latent, to learn to reconstruct
future states only by the history of latent states and actions.

Frontiers 1

Ferraro et al.

Algorithm

Algorithm 1 FOCUS: Online training

Require: Initial agent modules: world model, exploration actor-critic, task actor-critic
Require: Initial model state sg
Require: Initialized environment

1:

R I A A S

if no replay buffer available then

Initialize replay buffer.
end if
. // Pre-training
fOI’ t=20,...,Nprdo
Draw action from the exploration actor, a; ~ Teyp(at|st)
Apply action to the environment, z;+1 ~ P(-|s¢, ay)
Add transition to replay buffer,
if{ mod 7 = 0 then
Update world model parameters ¢, 6 on the data from the replay buffer
Update actor-critic parameters Texpls Vexpl in imagination, maximizing r eii)l
Update actor-critic parameters 7y, sk, Utask 1N imagination, maximizing sz
end if
. end for

PT

. Output pre-trained modules {7Tt sk Utasks p0 .pP) m

// Fine-tuning
PT | PT

. Load pre-trained modules {7/, v; .1, pe .pP 7 }

Initialize replay buffer

fort=0,..., Npr do

Draw action from the task actor, a; ~ g5k (a¢|st)

Apply action to the environment, x+1 ~ P(-|s¢, az)

Add transition to replay buffer,

if{ mod 7 = 0 then
Update world model parameters ¢, 6 on the data from the replay buffer
Update actor-critic parameters 7y sk, Utqsk 1N Imagination, maximizing sk

end if

end for

. Output fine-tuned modules {’/Tta o vf;fk, Py, pg T

Frontiers

