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Supplementary Table 1. Principal bacteria, archaea, and fungi composing the human colonic microbiota 

Phylum Genus Characteristics 
Colonic abundance and observed effect on host health Reference 

Infants Adults Older adults  

Bacillota 

Streptococcus 

Saccharolytic and 

proteolytic, produces lactate 

and acetate. Includes both 
beneficial species (e.g. S. 

thermophilus) and pathogens 

(e.g. S. bovis) 

Infants delivered by C-

section and formula-fed had 

an increased abundance of 

Streptococcus compared to 
other infants (n=27) 

Streptococcus abundance 

was positively associated 
with coronary 

atherosclerosis (n=8973) 

A higher abundance of 

Streptococcus was 
associated with 

unhealthy aging (n=32) 

(190–192) 

Lactobacillus 

Mainly saccharolytic, 

produces lactate and 

bacteriocins. Species are 
typically considered 

beneficial (e.g. L. 

rhamnosus) 

Vaginally delivered infants 

had a higher abundance of 

Lactobacillus compared to 
those delivered via C-section 

during the first days of life 

(n=37) 

A higher abundance of 

Lactobacillus was associated 
with type-2 diabetes (n=18) 

and obesity (n=20) in adults 

Long-living older adults 

(aged 97-100) had 

increased Lactobacillus 
abundance compared to 

healthy older adults 

(aged 60-76) (n=20) 

(193–196) 

Clostridium 

Saccharolytic and 
proteolytic, produces acetate, 

propionate, and butyrate. 

Contains both beneficial 
species (e.g. C. butyricum) 

and pathogens (e.g. C. 

difficile) 

Higher abundance of 
Clostridium sensu stricto in 

infants with food allergies 

(n=34) 

A higher abundance of 
Clostridium was associated 

with obesity in adults 

(n=307) 

Older adults with 

Parkinson’s disease had 
a decreased abundance 

of Clostridium compared 

to healthy controls 
(n=45) 

(197–199) 

Ruminococcus 

Mainly saccharolytic, 

produces acetate. Degrades 

resistant starch contributing 
to butyrate production via 

cross-feeding (e.g. R. 

bromii) 

Lower abundance of 

Ruminococcus in children 
and adolescents with 

Crohn’s disease (n=64) 

Lower abundance of 

Ruminococcus in adults with 
Crohn’s disease compared to 

healthy controls (n=10) 

Higher abundance of 

Ruminococcus in older 
adults with frailty and 

sarcopenia (n=18) 

(200–202) 

Faecalibacterium 

Mainly saccharolytic, 

produces SCFA, including 

butyrate. Typically 
considered beneficial, some 

species produce anti-

inflammatory molecules 
(e.g. F. prausnitzii) 

Lower abundance of F. 
prausnitzii in children with 

allergic asthma (n=92)  

Lower abundance of F. 
prausnitzii in adults with 

Crohn’s disease (n=68)  

Lower abundance of F. 

prausnitzii in older 
adults with mild-

cognitive impairment 

(n=15) 

(203–205) 

Enterococcus 

Saccharolytic and 

proteolytic, produces lactate 

and acetate. Some species 
raise concern due to capacity 

to acquire antibiotic 

resistance (e.g. E. faecalis) 

Higher abundance of 

Enterococcus in infants with 

food allergies (n=34) 

Higher abundance of E. 

faecalis in adults with 

colorectal cancer (n=25) 

Higher abundance of 

Enterococcus in older 
adults with Parkinson’s 

disease (n=24) 

(199,206,207) 

Eubacterium 
Chemoheterotroph, produces 

SCFAs, including butyrate. 

Lower abundance of E. 

rectale in children with 

Lower abundance of 

Eubacterium in adults with 

Lower abundance of 

Eubacterium in older 
(201,202,208,209) 
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Typically associated with the 
promotion of colonic 

homeostasis (e.g. E. rectale) 

ulcerative colitis (n=6) and 
in children with 

neurodevelopmental 

disorders (n=36) 

Crohn’s disease compared to 
healthy controls (n=10) 

adults with frailty and 
sarcopenia (n=18) 

Bacteroidota 

Bacteroides 

Saccharolytic and 

proteolytic, produces acetate, 
propionate, and succinate. 

Contains both beneficial 

species (e.g. B. 
thetaiotaomicron) and 

pathogens (e.g. B. fragilis) 

Decreased abundance of 
Bacteroides in infants 

delivered via C-section 

compared to infants 
vaginally delivered (n=9) 

A meta-analysis reported 

lower abundance of 

Bacteroides in adults and 
adolescents with Crohn’s 

disease and ulcerative colitis 

(n=706) 

Higher abundance of 

Bacteroides in older 

adults was positively 
associated with 

increased risk of all-

cause mortality (n=706) 

(138,210,211) 

Prevotella 

Saccharolytic and 

proteolytic, produces acetate 
and propionate. Contains 

species with potential role in 

promoting (e.g. P. copri) or 
suppressing inflammation 

(e.g. P. histicola) 

Higher abundance of 

Prevotella in infants with 

food allergies (n=34) 

Higher abundance of 
Prevotella in adults with 

hypertension (n=99). 

Increased abundance of 
Prevotella was associated 

with improved glucose 

metabolism in healthy adults 
(n=10) 

A systematic review 
reported a lower 

abundance of Prevotella 

in frail older adults 
(n=912) 

(199,212–214) 

Alistipes 

Saccharolytic and 

proteolytic, produces acetate 

and propionate. Contains 
pathogenic species that 

produce pro-inflammatory 
toxins (e.g. A. finegoldii) 

Lower abundance of A. 

putredinis in infancy was 

associated with 
neurodevelopmental 

disorders later in life 
(n=1748) 

Lower abundance of 

Alistipes in adults with atrial 

fibrillation (n=50) and higher 
abundance in adults with 

chronic fatigue syndrome 
(n=25) 

Higher abundance of 

Alistipes in older adults 
with frailty compared to 

healthy controls (n=47) 

(215–218) 

Actinomycetota Bifidobacterium 

Saccharolytic, produces 
acetate and lactate. 

Predominant in the infant 

colon. Typically considered 
beneficial (e.g. B. breve and 

B. longum) 

Vaginally delivered and 
breastfed infants have higher 

Bifidobacterium abundance 

compared to those delivered 
via C-section and formula-

fed (n=8) 

Lower abundance of 
Bifidobacterium in obese 

women (n=15) 

Higher abundance of 

Bifidobacterium in older 
adults with frailty 

compared to healthy 

controls (n=47) 

(192,217,219) 

Pseudomonadota 

Escherichia 

Saccharolytic and 

proteolytic. Contains 
pathogenic species that 

produce pro-inflammatory 

toxins (e.g. E. coli) 

Higher abundance of 

Escherichia in children with 

non-alcoholic steatohepatitis 
(n=22) 

A meta-analysis reported 

higher abundance of E. coli 
in adults with irritable bowel 

syndrome compared to 

healthy controls (n=1340) 

Higher abundance of 

Escherichia-Shigella in 

critically ill older adults 
(n=72) 

(220–222) 

Desulfovibrio 

Reduces sulphate, producing 
hydrogen sulphide 

(excessive production is 

deleterious) 

Higher abundance of 
Desulfovibrio in infants with 

stunting compared to healthy 

controls (n=10) 

Higher abundance of 

Desulfovibrio in adults with 
systemic sclerosis (n=59) 

Higher abundance of 
Desulfovibrio in older 

adults with Parkinson’s 

disease (n=20)  

(223–225) 

Verrucomicrobiota Akkermansia 

Mucin degrader. Produces 
acetate, propionate, and 

butyrate. Assumed to 

promote colonic barrier 
integrity (e.g. A. 

muciniphila) 

Lower abundance of A. 
muciniphila in overweight 

children (n=20) 

Lower abundance of A. 

muciniphila in pregnant 
women (n=16) and patients 

with inflammatory bowel 

disease (n=46) 

Higher abundance of 

Akkermansia in older 
adults with frailty 

compared to healthy 

controls (n=47) 

(217,226–228) 

Euryarchaeota Methanobrevibacter 

Archaea. Consumes 

hydrogen to produce 

methane, facilitating 
fermentation by anaerobic 

Lower abundance of 

Methanobrevibacter in 

children with severe acute 
malnutrition (n=143) 

Higher abundance of 
Methanobrevibacter in 

anorexic adults (n=20) 

Abundance of M. smithii 

in older adults was 

positively associated 
with the severity of 

(193,229,230) 



 
3 

saccharolytic bacteria (e.g. 

M. smithii) 

cognitive impairment 

(n=159) 

Ascomycota 

Candida 

Fungi. Converts simple 
carbohydrates into ethanol 

and acetate. Contains 

opportunistic pathogens (e.g. 
C. albicans) 

Higher abundance of 

Candida in children with 
autism compared to 

neurotypical controls (n=40) 

Higher abundance of 

Candida in adults with 
inflammatory bowel disease 

(n=235) 

Higher abundance of C. 

tropicalis in older adults 
with Alzheimer’s 

disease (n=88) 

(231–233) 

Saccharomyces 

Fungi. Converts simple 

carbohydrates into ethanol 

and carbon dioxide. 
Typically considered 

commensals (e.g. S. 

cerevisiae) 

Higher abundance of S. 

cerevisiae in children with 
autism compared to 

neurotypical controls (n=29) 

Higher abundance of 

Saccharomyces in adults 
with colorectal cancer 

(n=71). Lower abundance of 

Saccharomyces in adults 

with inflammatory bowel 

disease (n=235) 

Saccharomyces 
abundance was 

positively associated 

with higher levels of 
circulating plasma 

triglycerides and very 

low-density lipoprotein 

in older adults (n=99) 

(142,231,234,235) 
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Supplementary Table 2. Principal metabolites produced by the human colonic microbiota 

Category Compound 
Substrate or 

precursor 

Major producing 

microbial taxa 

Observed effect on host health 
Reference 

Infants Adults Older adults 

Short-chain fatty 

acids (SCFAs) 

Acetate 

Primarily dietary 

fibre and resistant 

starch, but also 

amino acids 

Bifidobacterium, 

Lactobacillus, 
Prevotella, 

Ruminococcus, A. 

muciniphila 
Infants exclusively breastfed 

had a lower concentration of 

acetate, propionate, and 

butyrate (n=48) 

A meta-analysis found an 

increased fecal 
concentration of acetate, 

propionate, and butyrate in 

obese adults (n=221) 

Lower concentration of fecal 
acetate, propionate, and 

butyrate in older adults with 

Alzheimer's disease 

compared to healthy controls 

(n=27) 

(236–238) Propionate 
Prevotella, 

Bacteroides, 

Propionibacterium 

Butyrate 

Clostridium, 
Roseburia, F. 

prausnitzii, E. rectale, 

B. fragilis, R. bromii, 
A. muciniphila 

Branched-chain 
fatty acids 

(BCFAs) 

Isobutyrate and 

isovalerate 

Amino acids (valine, 
leucine, and 

isoleucine) 

Bacteroides, 

Clostridium 

Increased fecal levels of 

isobutyrate and isovalerate in 
formula-fed infants 

compared to breastfed infants 

(n=33) 

Increased isobutyrate fecal 
levels in adults with non-

alcoholic fatty liver disease 

(n=24) and increased 
isovalerate in adults with 

depression (n=34) 

Increased fecal levels of 

isobutyrate and isovalerate in 

older adults with colorectal 
cancer (n=50) 

(239–242) 

Conjugated fatty 

acids 

Conjugated linoleic 

acid 
Linoleic acid 

Bifidobacterium, 

Enterobacter, 

Lactobacillus, 
Clostridium 

Conjugated linoleic acid 

supplementation in obese 
children decreased body fat 

and high-density lipoprotein 

compared to placebo (n=28) 

Conjugated linoleic acid 

supplementation in adults 

decreased T lymphocyte 
activation (n=39) 

Conjugated linoleic acid 

supplementation in adults 
older with type 2 diabetes 

reduced insulin sensitivity 

(n=16) 

(243–245) 

Vitamins 

Complex B 

vitamins 

Carbohydrates and 

amino acids 

Bifidobacterium, 

Lactobacillus, 
Bacteroides 

Deficiency of complex B 
vitamins in infants was 

linked with compromised 

brain development (n=6) 

Decreased serum levels of 
vitamin B7 in adults were 

associated with obesity and 

type 2 diabetes (n=24) 

Deficiency of complex B 
vitamins in older adults was 

linked with increased risk of 

dementia (n=228) 

(246–248) 

Vitamin K family Bacteroides, Prevotella 

Vitamin K family deficiency 

in infants was linked with 
convulsions, hemorrhage, 

and death (n=30) 

Serum vitamin K1 levels 
were negatively associated 

with circulating 

inflammatory biomarkers in 
adults (n=1381) 

Serum vitamin K1 levels 
were negatively associated 

with circulating 

inflammatory biomarkers in 
older adults (n=662) 

(249–251) 

Gases 

H2 

Carbohydrates 

Clostridium, 

Enterobacteriaceae 

Excessive H2 production has 

been associated with the 

development of colic 
symptoms in infants (n=8) 

Higher H2 production from 
in vitro starch fermentation 

using fecal inoculum from 

adults with irritable bowel 
syndrome compared to 

healthy controls (n=14) 

No differences in H2 

production from in vitro 

fermentation of different 
carbohydrates using fecal 

inoculum from older adults 

with pre-frailty compared to 
young controls (n=6) 

(252–254) 

CO2 Clostridium 

No changes in CO2 

production were observed 

during in vitro incubation of 

fecal inoculum from infants 
fed soy-based infant formula, 

CO2 insufflation during 

colonoscopy in adults 
reduced the fecal 

abundance of colonic 

CO2 insufflation during 
colonoscopy in older adults 

was associated with less pain 

compared to air insufflation 
(n=66) 

(255–257) 
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milk-based formula, or 
breastmilk (n=18) 

pathogens compared to air 
insufflation (n=38) 

CH4 H2, CO2 
Methanobrevibacter 

smithii 

Higher breath methane in 

children with chronic 

constipation compared to 
healthy controls (n=75) 

Higher breath methane in 

adults with multiple 

sclerosis compared to 
healthy controls (n=60) 

Higher CH4 production from 

in vitro fermentation of 

different carbohydrates using 
fecal inoculum from older 

adults with pre-frailty 

compared to young controls 
(n=6) 

(254,258,259) 

H2S Sulphate Desulfovibrio 

Higher H2S production was 
observed from in vitro 

incubation of fecal inoculum 
from infants fed soy-based 

infant formula compared to 

breastfed infants (n=5) 

Higher H2S production from 
in vitro starch fermentation 

using fecal inoculum from 
adults with irritable bowel 

syndrome compared to 

healthy controls (n=14) 

A meta-analysis reported 
lower levels of circulating 

H2S in older adults with 
chronic and degenerative 

diseases compared to healthy 

controls (n=1721) 

(253,255,260) 

Secondary bile 
acids 

Deoxycholic acid, 
lithocholic acid  

Primary bile acids 

Clostridium, 
Bifidobacterium, 

Lactobacillus, 

Bacteroides, 
M. smithii 

Higher fecal levels of 
secondary bile acid in 

critically ill children 

compared to healthy controls 
(n=39) 

Higher levels of circulating 

lithocholic acid in adults 
with severe obstructive 

coronary heart disease 

compared to 
angiographically normal 

controls (n=150) 

Higher levels of circulating 

unconjugated secondary bile 

acids were associated with a 
higher risk for cardiovascular 

diseases in older adults with 

type 2 diabetes (n=1234) 

(261,262) 

Ursodeoxycholic 

acid 
Primary bile acids 

Ruminococcus, 

Clostridium 

Higher levels of circulating 

ursodeoxycholate in formula-

fed infants compared to 
breastfed infants (n=48) 

Ursodeoxycholic acid use 

was associated with a 

reduced risk of colorectal 
cancer in adults (n=2557) 

Ursodeoxycholic acid use 

was associated with a 
reduced risk of colorectal 

cancer in older adults 

(n=1911) 

(263–265) 

Neurotransmitters 

Dopamine 

Tyrosine, 3,4-

dihydroxy-L-
phenylalanine 

Bacillus, E. coli, 

Staphylococcus 

Higher circulating serotonin 

and serotonin transporter 
levels in children with autism 

compared to healthy control 
(n=60) 

Higher plasma levels of 
dopamine and gamma-

aminobutyric acid in adults 
with major depressive 

disorder compared to 

healthy controls (n=49) 

Alterations in the dopamine 

system were associated with 
the progression of 

Alzheimer’s disease in older 
adults (n= 144) 

(266–268) 

Norepinephrine Tyrosine Bacillus 

Serotonin 
Tryptophan, 5-

hydroxytryptophan 

Lactobacillus, 
Streptococcus, 

Clostridium 

Gamma-

aminobutyric acid 
Acetate, glutamate 

Bifidobacterium, 

Lactobacillus, 

Eubacterium, 
Bacteroides 

Nitrogen-

derivatives 

Ammonia 
Amino acids and 

peptides 

Clostridium, 

Fusobacterium, 
Bacteroides 

Hyperammonemia in infants 
was associated with liver 

failure and urea cycle defects 

(n=90) 

Higher circulating levels of 
ammonia were associated 

with hepatic steatosis in 

adults (n=25) 

Higher blood ammonia levels 
in patients with Alzheimer’s 

disease compared to controls 

(n=3) 

(269–271) 

p-cresol Tyrosine 

Fusobacterium, 

Enterobacter, 

Clostridium 

Higher urinary levels of p-

cresol in children with autism 
compared to healthy controls 

(n=33) 

Higher circulating levels of 
p-cresol in adults 

undergoing hemodialysis 

were associated with 
increased risk for infection-

Higher circulating levels of 
p-cresol in older adults 

undergoing hemodialysis 

compared to non-
hemodialysis controls (n=4) 

(272–274) 
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related hospitalizations 
(n=464) 

Indole Tryptophan 
Peptostreptococcus, 

Akkermansia, 

Clostridium 

Fecal levels of indole-3-
lactic acid correlated 

positively with increased 

fecal abundance of 
Bifidobacterium infants in 

breastfed infants (n=18) 

Lower serum levels of 

indole-3-pyruvic acid in 
adults with ulcerative colitis 

compared to healthy 

controls (n=15) 

Lower fecal levels of indole-

3-pyruvic acid in older adults 
with Alzheimer’s disease 

compared to healthy controls 

(n=27) 

(238,275,276) 

Endotoxins Lipopolysaccharide 

Lipid A, 

oligosaccharide, O 
antigen 

Enterobacteriaceae, 

Bacteroidales 

Increased exposure to 

lipopolysaccharides in early 
infancy was associated with 

the development of 

autoimmune diseases 

(n=168) 

Lipopolysaccharide 
exposure increased 

intestinal permeability in 

healthy adults (n=14) 

Trend towards higher 

circulating levels of 
lipopolysaccharides in older 

adults with Alzheimer’s 

disease compared to healthy 

controls (n=27) 

(238,277,278) 
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