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Supplementary Note 1 : Non-Negative Weight Implementation 

The current implementation inherently supports non-negative weighting due to the nature of optical power 
transmission, which cannot represent negative values directly. However, enabling signed weights is essential for 
realizing more expressive and general-purpose neural network models. We have expanded the discussion to 
outline feasible strategies for achieving signed weight representations:  

1. Balanced Photodetector Schemes: 

One practical method to enable signed weights involves the use of balanced photodetectors. By routing the 
outputs of two optical channels—one representing a positive contribution and the other a negative counterpart—
into a differential photodetector, the effective output can represent a signed weight. This approach has been 
demonstrated in other photonic neuromorphic systems [1] and is compatible with our architecture by assigning 
complementary optical paths controlled via tuning pads. 

2. Differential Detection Architectures: 

Alternatively, a differential detection setup can be realized using a pair of MMIs operating in parallel, with each 
MMI encoding either positive or negative weight values. The difference in their optical outputs can then be 
electronically processed to emulate signed operations. While this increases the device footprint and complexity 
slightly, it offers a scalable path toward implementing full-range weight matrices. 

3. Coherent Interference Schemes: 

In future extensions, we envision leveraging coherent optical inputs in combination with calibrated phase 
control to support signed or even complex-valued weights. While interference naturally governs MMI behavior, 
precise control over the input phase profile and internal modulation can be used to tailor the interference 
outcomes, enabling encoding of both weight polarity and magnitude. Balanced photodetector schemes may then 
be employed to extract differential signals, realizing signed weight operations. 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Note 2 : A comparative analysis of existing reconfigurable photonic hardware platforms 

Table S1 

A comparison of the proposed LC-tuned MMI neural networks with previously reported existing reconfigurable 
neural networks 

Platform Reconfigurable 
Element 

Inference 
Accuracy  

Reconfiguration 
Power 

Speed / 
Response 
Time 

Programmability / 
Endurance 

Microring 
Resonators [2] 

Thermo-optic 
tuning 

~ 93% (Iris) ~ 20 mW ~ 1-100 µs High 

PCM-based [3, 4] Phase-change 
material 
(Ge2Sb2Te5) 

~ 95% 
(MNIST) 

~ 5.33 mW † 
(Non-volatile) 

ns–µs (phase 
transition) 

Limited (finite 
endurance) 

MZI Meshes (e.g., 
Reck/Clements) [5] 

Thermo-optic 
phase shifters 

~92.5% 
(vowel 
classification
) 

~25 mW ~1 µs High but sensitive 
to drift 

Current-controlled 
attenuators [6] 

Forward biasing 
the PIN junction 

~ 89.8 % 
(four-class 
handwritten 
letters) 

~ 80 mW † ~46 ps High 

Electro-absorption 
modulator-based 
Photonics [7, 8]  

SiGe EAM ~95.91% 
(MNIST) 

~ 0.25 mW ~ 20 ps  High (fast 
reprogramming) 

Hybrid MOS 
Optical Phase 
Shifter [1, 9] 

Transparent 
Conducting 
Oxides 

Emerging 
(data not 
available) 

~1 nW ~1 ns 
(electro-
optic) 

High (fast, 
CMOS-
compatible) 

This Work (LC-
MMI) (This work) 

Liquid crystal 
(LC) tuned MMI 

86.67% 
(Iris) 

~ nW ~ms (LC 
switching) 

High (electrical 
tuning) 

 

† Estimated average power 

 

The LC-MMI architecture proposed in this work demonstrates competitive accuracy (86.67% on the Iris dataset) 
and stands out for its low power consumption (~ nW) and high programmability via electrically controlled 
liquid crystals. Although its response time (~ ms) is slower compared to electro-optic or PCM-based platforms, 
it is sufficient for inference-dominant or low-update-rate applications.  

 

 

 

 

 



 

 

Supplementary Note 3 : Description of variables used in the equations presented in Figure 1  

Table S2 

Symbol Definition 

Ψ(x, z) Optical field distribution in the multimode interference (MMI) region as a function of 
position (𝑥𝑥, 𝑧𝑧) 

M Number of supported optical modes in the MMI region. 

ci Amplitude coefficient of the 𝑖𝑖-th mode 

Ψi(x) Transverse mode profile of the 𝑖𝑖-th mode 

βi Propagation constant of the 𝑖𝑖-th mode 

β0 Propagation constant of the fundamental mode 

z Longitudinal propagation distance 

Npads Number of liquid crystal (LC) tuning pads used for phase control 

𝛼𝛼𝑖𝑖𝑖𝑖(𝑉𝑉𝑉𝑉) Number of liquid crystal (LC) tuning pads used for phase control 

Wij(V) Synaptic weight representing the optical transfer function between input i and output j, 
controlled by voltage V 

Cim Optical Mode coupling coefficient between input mode 𝑖𝑖 and mode 𝑚𝑚 

C*jm Complex conjugate of the mode coupling coefficient for output mode 𝑗𝑗 

βm Propagation constant of mode 𝑚𝑚 

L Physical length of the multimode region 

ϕij(V) Phase shift induced between input 𝑖𝑖 and output 𝑗𝑗 by voltage 𝑉𝑉  

Xi Input vector (optical signals injected into waveguides) 

Yi output vector (resulting optical signals) 

 

References: 

1. Tait A N, De Lima T F, Zhou E, Wu A X, Nahmias M A, Shastri B J, Prucnal, P R. Neuromorphic 

photonic networks using silicon photonic weight banks. Scientific reports. (201) 7:7430.   

2. Ohno S, Tang R, Toprasertpong K, Takagi S, Takenaka M. Si microring resonator crossbar array for 

on-chip inference and training of the optical neural network. Acs Photonics. (2022) 9:2614-2622. 

3. Feldmann J, Youngblood N, Karpov M, Gehring H, Li X, Stappers M, Le Gallo M, Fu X, 

Lukashchuk A, Raja A S, Liu J. Parallel convolutional processing using an integrated photonic tensor 

core. Nature. (2021) 589:52-58.  



4. Ríos C, Stegmaier M, Hosseini P, Wang D, Scherer T, Wright C D, Bhaskaran H, Pernice W H. 

Integrated all-photonic non-volatile multi-level memory. Nature photonics. (2015) 9:725-732. 

5. Bandyopadhyay S, Sludds A, Krastanov S, Hamerly R, Harris N, Bunandar D, Streshinsky M, 

Hochberg M, Englund D. Single-chip photonic deep neural network with forward-only training. 

Nature Photonics. (2024) 18:1335-1343. 

6. Ashtiani F, Geers A J, Aflatouni, F. An on-chip photonic deep neural network for image 

classification. Nature. (2022) 606:501-506. 

7. Moralis-Pegios M, Giamougiannis G, Tsakyridis A, Lazovsky D, Pleros N. Perfect linear optics 

using silicon photonics. Nature Communications. (2024) 15:5468. 

8. Giamougiannis G, Tsakyridis A, Mourgias-Alexandris G, Moralis-Pegios M, Totovic A, Dabos G, 

Passalis N, Kirtas M, Bamiedakis N, Tefas A, Lazovsky D. Silicon-integrated coherent neurons with 

32GMAC/sec/axon compute line-rates using EAM-based input and weighting cells. In 2021 

European conference on optical communication (ECOC) (pp. 1-4). IEEE. 

9. Takenaka M, Han J, Boeuf F, Park J, Li Q, Ho C P, Lyu D, Ohno S, Fujikata J, Takahashi S, Takagi, 

S. III-V/Si Hybrid MOS Optical Phase Modulator for Si Photonic Integrated Circuits. In 2018 

European Conference on Optical Communication (ECOC) (pp. 1-3). IEEE.  

 


