
Supplementary Methods

Rationale for Excluding the 2020 CHARLS Wave  

The 2020 wave (Wave 5) of the China Health and Retirement Longitudinal Study (CHARLS) was not included 

in our analysis due to substantial methodological and content-related disruptions resulting from the COVID-19 

pandemic. As documented in the Wave 5 User Guide (https://charls.charlsdata.com/pages/Data/2020-charls-

wave5/en.html), CHARLS explicitly acknowledged that the pandemic had a profound impact on survey 

implementation. 

First, as noted in Chapter 1 (General Introduction):“In late 2019 and early 2020, there was an outbreak of Covid-

19 in China. In order to document the impact of the pandemic on the lives and health of middle-aged and elderly 

people in China, the information related to Covid-19 was additionally collected in wave 5.” 

This led to the inclusion of a dedicated COVID-19 module, which extended interview time and consequently 

reduced the breadth of information collected in other areas. As clarified in Chapter 3 (Survey Content): 

“What needs to be pointed out is that, due to the extra interview time added by the new COVID module, less 

information was collected in some other modules in Wave 5 compared to previous waves. For example, 

information on siblings was not collected in the family module; additionally, there was less information on health 

status, health care utilization, health insurance, pension and assets in this survey.” 

Furthermore, the pandemic altered the data collection methods, introducing inconsistencies with previous waves. 

According to Chapter 4 (Fieldwork and Response):“In each of previous waves, all interviews were conducted 

face-to-face CAPI interviews. However, in wave 5, in some cases when the respondent fear of being infected by 

COVID-19, or when he/she lives in a nursing home where visits are not allowed, the video interview was 

conducted after it was approved by CHARLS headquarter.” 

These changes—ranging from content reduction to deviations in interview modality—have implications for data 

completeness, comparability, and measurement consistency. Therefore, to preserve the integrity and comparability 

of our analysis across waves, we excluded the 2020 wave and limited our study to pre-pandemic data.  

Overview of Model Characteristics and Considerations for Application 

In this study, five machine learning algorithms were applied: Logistic Regression (LR), Support Vector Machine 

(SVM), Random Forest (RF), Extreme Gradient Boosting (XGBoost), and Light Gradient Boosting Machine 

(LightGBM). Each model has unique computational mechanisms and potential advantages depending on the 

nature of the input data. 

Logistic Regression (LR) is a linear model widely used in binary classification tasks. It is relatively simple, 
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interpretable, and suitable for datasets where the relationship between variables is approximately linear. 

Support Vector Machine (SVM) is effective for both classification and regression in high-dimensional spaces. It 

seeks an optimal hyperplane to separate classes and can handle nonlinear relationships through kernel functions, 

although it may require careful tuning of parameters and is sensitive to feature scaling. 

Random Forest (RF) is an ensemble method based on decision tree bagging. It tends to be robust to overfitting 

and works well with datasets that include complex feature interactions or noisy and high-dimensional data. 

Because it builds multiple trees with random feature subsets, it can handle a wide range of variable types and 

distributions. 

Extreme Gradient Boosting (XGBoost) is a boosting-based method that builds trees sequentially, optimizing 

residual errors at each stage. It includes regularization terms to control overfitting and is known for handling 

structured/tabular data effectively. XGBoost is often efficient for problems with strong feature interactions and 

when a smaller number of influential features carry high predictive value. 

LightGBM is another boosting algorithm that uses a leaf-wise tree growth strategy. It is designed for efficiency 

and speed, particularly in large datasets, and can be advantageous when training with large-scale or sparse data. 

However, it may be more sensitive to overfitting in certain cases without appropriate regularization. 

The relative performance of these models can vary depending on the feature composition, variable types, data 

complexity, and class balance within each subgroup. For instance, differences in variable richness, distributional 

characteristics, and interaction effects between urban and rural datasets may influence how well each algorithm 

captures underlying patterns. 

Custom Scoring Function for Hyperparameter Optimization 

To identify the optimal hyperparameters for each machine learning model, we adopted a customized scoring 

function that integrates the area under the receiver operating characteristic curve (AUC) and sensitivity, assigning 

a weight of 70% to AUC and 30% to sensitivity. This approach was designed to balance the need for strong overall 

classification performance with the clinical necessity of identifying high-risk individuals who may experience a 

fall. 

AUC was selected as the primary component because it reflects the model’s ability to distinguish between fallers 

and non-fallers across all possible thresholds, which is especially useful for evaluating classifiers on imbalanced 

datasets (1). However, in public health scenarios such as fall prevention—where the cost of false negatives (i.e., 

failing to identify someone who is truly at high risk) is high—sensitivity becomes critically important (2). Failing 

to detect at-risk older adults may lead to severe outcomes such as fractures, disability, and even mortality, 
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particularly when early intervention is possible. Therefore, the scoring function places a moderate emphasis on 

sensitivity to avoid underestimating high-risk cases. 

Prior research in the context of disease screening and prognosis prediction—such as in cancer, diabetes, and 

geriatric care—has supported the use of composite metrics that incorporate sensitivity into model selection and 

evaluation (3). These studies highlight the importance of balancing overall model performance with the practical 

need for early risk detection, especially when working with clinical or public health datasets that feature class 

imbalance or unequal error costs. Based on these considerations, we weighted AUC at 70% to reflect model 

discrimination and sensitivity at 30% to emphasize correct identification of true positives. This tailored approach 

aims to enhance the real-world utility of the predictive models for informing fall prevention strategies in clinical 

and community settings. 
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