

Supplementary Material

Application of Aqueous Two-phase Separation for the Selective Purification of Mono-PEGylated Human Serum Albumin Derivatives: Influence of Process Parameters and PEGylation Reagent Size

Salem Alkanaimsh ^{1*}, Osama A. Al-Rashed ¹, Mohamed Shaaban ²

¹Department of Chemical Engineering, College of Engineering and Petroleum, Kuwait University, P.O. Box 5969, Safat, Kuwait City 13060, Kuwait (s.alkanaimsh@edu.kw, ORCID-0000-0001-6266-4863; osama.alrashed@ku.edu.kw).

²Petroleum Refining & Petrochemical Research Center, College of Engineering and Petroleum, Kuwait University, P.O. Box 5969, Safat, Kuwait City 13060, Kuwait (mshaaba@gmail.com; m.shaaban@ku.edu.kw; Orcid -0000-0001-9281-2505).

* Correspondence:

s.alkanaimsh@edu.kw.

Table of Contents:	Page
Figure S1. Kinetic analysis of the PEGylation reaction of HSA and 20 KDa methoxy PEG maleimide. The evolution of the concentrations was monitored using RP-UPLC at 280 nm.	S3
Figure S2. Kinetic analysis of the PEGylation reaction of HSA and 40 KDa methoxy PEG maleimide. The evolution of the concentrations was monitored using RP-UPLC at 280 nm.	S4
Figure S3. Chromatograms of the top and bottom phases after performing ATPS at a TLL of 45 (w/w) % and V_r of 1.	S5
Figure S4. Chromatograms of the top and bottom phases after performing ATPS at a TLL of 20 (w/w) % and V _r of 2.5 and including 15 (w/w) % NaCl	S6

Figure S1. Kinetic analysis of the PEGylation reaction of HSA and 20 KDa methoxy PEG maleimide. The evolution of the concentrations was monitored using RP-UPLC at 280 nm.

Figure S2. Kinetic analysis of the PEGylation reaction of HSA and 40 kDa methoxy PEG maleimide. The evolution of the concentrations was monitored using RP-UPLC at 280 nm.

Figure S3. Chromatograms of the top and bottom phases after performing ATPS at a TLL of 45 (w/w) % and Vr of 1.

Figure S4 Chromatograms of the top and bottom phases after performing ATPS at a TLL of 20 (w/w) % and Vr of 2.5 and including 15 (w/w) % NaCl.