## **Supplementary Materials**

| Publication | Record | % of  | Publication | Record | % of  |
|-------------|--------|-------|-------------|--------|-------|
| Years       | Count  | 2,352 | Years       | Count  | 2,352 |
| 2025        | 83     | 3.529 | 1990        | 5      | 0.213 |
| 2024        | 199    | 8.461 | 1989        | 6      | 0.255 |
| 2023        | 171    | 7.27  | 1988        | 2      | 0.085 |
| 2022        | 185    | 7.866 | 1987        | 2      | 0.085 |
| 2021        | 195    | 8.291 | 1986        | 2      | 0.085 |
| 2020        | 153    | 6.505 | 1985        | 1      | 0.043 |
| 2019        | 122    | 5.187 | 1984        | 1      | 0.043 |
| 2018        | 111    | 4.719 | 1983        | 1      | 0.043 |
| 2017        | 110    | 4.677 | 1982        | 1      | 0.043 |
| 2016        | 100    | 4.252 | 1981        | 1      | 0.043 |
| 2015        | 88     | 3.741 | 1980        | 1      | 0.043 |
| 2014        | 87     | 3.699 | 1979        | 5      | 0.213 |
| 2013        | 82     | 3.486 | 1978        | 3      | 0.128 |
| 2012        | 69     | 2.934 | 1977        | 3      | 0.128 |
| 2011        | 74     | 3.146 | 1976        | 6      | 0.255 |
| 2010        | 50     | 2.126 | 1975        | 3      | 0.128 |
| 2009        | 59     | 2.509 | 1974        | 2      | 0.085 |
| 2008        | 48     | 2.041 | 1973        | 4      | 0.17  |
| 2007        | 43     | 1.828 | 1972        | 3      | 0.128 |
| 2006        | 45     | 1.913 | 1971        | 2      | 0.085 |
| 2005        | 30     | 1.276 | 1970        | 2      | 0.085 |
| 2004        | 20     | 0.85  | 1969        | 3      | 0.128 |
| 2003        | 19     | 0.808 | 1968        | 1      | 0.043 |
| 2002        | 15     | 0.638 | 1967        | 4      | 0.17  |
| 2001        | 9      | 0.383 | 1966        | 5      | 0.213 |
| 2000        | 14     | 0.595 | 1965        | 3      | 0.128 |
| 1999        | 11     | 0.468 | 1964        | 8      | 0.34  |
| 1998        | 5      | 0.213 | 1963        | 5      | 0.213 |
| 1997        | 7      | 0.298 | 1962        | 2      | 0.085 |
| 1996        | 9      | 0.383 | 1961        | 3      | 0.128 |
| 1995        | 12     | 0.51  | 1960        | 1      | 0.043 |
| 1994        | 7      | 0.298 | 1959        | 2      | 0.085 |
| 1993        | 9      | 0.383 | 1956        | 1      | 0.043 |
| 1992        | 8      | 0.34  | 1955        | 1      | 0.043 |
| 1991        | 8      | 0.34  |             |        |       |

Table S1 Annual Publication on Tryptophan Metabolism and Cancer from 1955 to 2004.



Figure S1 Visualization of the most frequent keywords in research on tryptophan metabolism and cancer (1955–2004)

| Rank | Keywords               | Count | Centrality | Year |
|------|------------------------|-------|------------|------|
| 1    | interferon gamma       | 40    | 0.21       | 1990 |
| 2    | tumor necrosis factor  | 28    | 0.44       | 1991 |
| 3    | indoleamine 2          | 28    | 0.19       | 1990 |
| 4    | tryptophan catabolism  | 25    | 0.09       | 2000 |
| 5    | tryptophan degradation | 21    | 0.17       | 1991 |
| 6    | activation             | 12    | 0.16       | 1993 |
| 7    | induction              | 12    | 0.08       | 1991 |
| 8    | nitric oxide synthase  | 11    | 0.06       | 1999 |
| 9    | cancer                 | 10    | 0.27       | 1990 |
| 10   | mechanism              | 10    | 0.04       | 1991 |
| 11   | inhibition             | 10    | 0.03       | 2001 |

Table S2 Most frequent keywords related to tryptophan metabolism and cancer (1955–2004).

**Note:** From 1955 to 2004, the annual publication volume remained relatively low, indicating that the field was still in its formative stage. During this period, research primarily explored the biochemical pathways of tryptophan metabolism and the enzymatic activities involved. Although studies were limited in number, several pioneering works began to investigate the immunological implications of tryptophan catabolism, such as the induction of indoleamine 2,3-dioxygenase (IDO) by interferon-gamma, laying the groundwork for later studies on cancer-related

mechanisms.

| Rank | References                                                                                                                                                                                                                                   | Total<br>Citations | Year |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------|
| 1    | Evidence for a tumoral immune resistance mechanism based<br>on tryptophan degradation by indoleamine 2,3-dioxygenase                                                                                                                         | 1877               | 2003 |
| 2    | IDO expression by dendritic cells: Tolerance and tryptophan catabolism                                                                                                                                                                       | 1867               | 2004 |
| 3    | Inhibition of T cell proliferation by macrophage tryptophan catabolism                                                                                                                                                                       | 1322               | 1999 |
| 4    | Relationship between interferon-gamma, indoleamine2,3-<br>dioxygenase, and tryptophan catabolism                                                                                                                                             | 928                | 1991 |
| 5    | Evidence for an immune-response in major depression - A review and hypothesis                                                                                                                                                                | 820                | 1995 |
| 6    | Expression of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes                                                                                                                                      | 738                | 2004 |
| 7    | Cytokines and psychopathology: Lessons from interferon- $\alpha$                                                                                                                                                                             | 443                | 2004 |
| 8    | Mechanism of interferon-gamma action-characterization of<br>indoleamine 2,3-dioxygenase in cultured human-cells<br>induced by interferon-gamma and evaluation of the enzyme-<br>mediated tryptophan degradation in its anticellular activity | 438                | 1988 |
| 9    | Interferon-alpha-induced changes in tryptophan metabolism:<br>Relationship to depression and paroxetine treatment                                                                                                                            | 377                | 2003 |
| 10   | Enumeration of human colonic bacteria producing phenolic<br>and indolic compounds: Effects of pH, carbohydrate<br>availability and retention time on dissimilatory aromatic<br>amino acid metabolism                                         | 377                | 1996 |

Table S3 Top 10 most cited publications related to tryptophan metabolism and cancer (1955–2004).

We conducted a focused analysis of the top three most cited publications from 1955 to 2004, detailed as follows:

Evidence for a Tumoral Immune Resistance Mechanism Based on Tryptophan Degradation by Indoleamine 2,3-Dioxygenase revealed that constitutive expression of indoleamine 2,3-dioxygenase (IDO) in human tumors contributes to immune escape by suppressing the local accumulation of tumor-specific T lymphocytes. The authors further proposed that pharmacological inhibition of IDO could enhance the efficacy of therapeutic cancer vaccines by restoring antitumor immune responses.

The review article *IDO expression by dendritic cells: tolerance and tryptophan catabolism* systematically delineates the pivotal role of indoleamine 2,3-dioxygenase (IDO) in tumor immune evasion and immune tolerance. IDO catalyzes the degradation of tryptophan, thereby restricting T cell proliferation and activation, which facilitates the establishment of an immunosuppressive microenvironment. The article comprehensively summarizes the immunoregulatory functions of IDO across

various contexts, including cancer, pregnancy, chronic infections, and autoimmune diseases. Furthermore, it proposes an integrated model elucidating how IDO-mediated metabolic pathways induce immune tolerance through nutrient depletion and the generation of immunomodulatory metabolites. This review provides critical theoretical insights underpinning IDO-targeted immunotherapeutic strategies and underscores their significant translational potential in oncology.

Inhibition of T cell proliferation by macrophage tryptophan catabolism demonstrates that macrophages induce the expression of indoleamine 2,3-dioxygenase (IDO) to mediate tryptophan catabolism, leading to proliferative arrest of T cells at the G1 phase and thus regulating immune tolerance. The expression of IDO is triggered by IFN- $\gamma$  and CD40L stimulation, and T cells can only resume proliferation when tryptophan is available alongside a secondary T cell receptor (TCR) signal. This study elucidates, for the first time, the molecular mechanism through which macrophage-expressed IDO controls T cell proliferation, highlighting its critical role in immune regulation and tumor immune evasion, and identifying IDO as a potential target for cancer immunotherapy.

These three seminal publications collectively highlight the critical role of indoleamine 2,3-dioxygenase (IDO) in tumor immune evasion and immune regulation, yet each approaches the topic from distinct perspectives that together form a comprehensive understanding of IDO's function. While all three papers underscore IDO's pivotal role in creating an immunosuppressive microenvironment and identify it as a promising target for cancer immunotherapy, they differ in their emphasis on the cellular sources of IDO (tumor cells, dendritic cells, macrophages) and the mechanistic depth—ranging from tumor microenvironment effects to detailed cell cycle regulation. Together, these studies provide complementary insights that have laid the foundational knowledge for the development of IDO-targeted therapies, highlighting the complexity of tryptophan metabolism's influence on tumor immunity and offering multiple avenues for therapeutic intervention.