Supplementary materials

TABLE S1 The literatures extracted from Scopus and WOS database for systematic review.

ID	River	Dam	Location and Time of Changes	Climate *	Channel morphology	Upstream (U)/Downstr eam (D) of dam	Data collection method	Morphological changes	Reference
1	Ahar Chai	Sattarkhan	Iran; mountain plain (U: 33.6 Km; D:43.9 Km); 1990 to 2009	BSk	Single thread	U & D	Hydrometric stations data, field works	U: narrowing (8%); incision (18.4%) D: narrowing (27%); incision (42.4%)	Ashouri et al. (2015)
2	Karkheh	Karkheh	Iran; alluvial plain (218 km); 2002 to 2014	BSh & BWh	Single thread	D	Satellite images, survey topography	Narrowing (21%); incision on (0.85% in most reaches)	Adib et al. (2016)
3	Dunajec (single) Smolnik (multi)	Rożnów	Poland; alluvial plain (218 km); 1982 to 2012	Cfb	Single thread and multi- thread	U	Aerial photographs and orthophotos	Narrowing (55.86 %); increasing sinuosity; stabilization of channel planform in single-thread; decreasing braided index	Liro (2017)
4	Lower Yellow River	Xiaolan gdi	China, alluvial plain (792.18 km); 1986 to	BSk	Single thread and multi- thread	D	Hydrological dataset, top ograp hic maps, hydrological survey transects	Narrowing (53.3%); incision (217%); Incision (more than 2 m).	Wang et al. (2022)

5	Hwang	Hapchon	Korea, alluvial plain (45km); 1970 to 2001	Cwa	M ulti-thread	D	Aerial photographs, discharge data, field survey	Incision (maximum 3.5 m and mean depth of bed degradation 1.83 m)	Choi et al. (2005)
6	Yeşilırm ak	Suat Uğurlu	Turkey, alluvial plain (20 km), 1980 to 2019	Csa	Single thread	D	Satellite images, Cross-section data, hydrological data, Sediment sampling	Incision (up to 5.9 m); coastal erosion in the delta; decrease in the meandering tendency	Kale and Ataol (2021)
7	Tone	Clatworthy	Somerse, southwest England	Cfb	Single thread	D	Cross-section data	Reduction of channel capacity	Gregory and Park (1974)
8	Yegua Creek	Somerville	Texas, alluvial plain (19 km), 1967 to 2000	Cfa	Single thread	D	Measured cross sections	Channel capacity decreased; channel depth decreasing (an average of 61%); channel width remained stable with an average decrease (9 %)	Chin et al. (2002)

9	Saint- M aurice	La Gabelle	Quebec, Canada Alluvial plain (20 km), 1948 to 2008	Dfb	Single thread	D	Aerial photographs	No significant change in the mean of bankfull width; increase in the surface area of islets; sediment	Vadnais et al. (2012)
10	Yamuna	Wazirabad	India, alluvial plain (25.5 km), 1912 to 2017	BSh	Multi-thread	D	Top ographic and antique maps, satellite image	accumulation Bar areas were reduced; braided index declined; reduction in channel belt area, bar area and its width.	Kumar et al. (2019)
11	Guadalet e	Arcos	Spain, alluvial plain (65 km), 1956 to 2004	Csa	Sin gle thread	D	Field work and aerial photographs surveys	Narrowing (75%); reduction in total corridor area (30%); aggradation and vegetation encroach ment	del Tanago et al. (2015)
12	Yangtze	Three Gorges Dam (2006 2012) Gezhouba Dam (198)	China, mountain and alluvial plain (~30 km), 2002 to 2016	Cfa	Single thread	D	Cross-sectional profiles survey	Incision; narrowing	Zhou et al. (2021)

13	Barakar	Maithon Dam Tilaiy a Dam	India; mountain and alluvial plain (up to 10 km), 2011	Aw	Single thread and multi-thread	U & D	Satellite images, digital elevation models data, Topographical maps	U: Increase of width–depth ratio in upstream; increase braid channel ratio D: decrease of width–depth ratio decrese braid–channel ratio; increase (>18%) in the channel sinuosity at the downstream comparison to the upstream U: decrease of width–depth ratio; D: Increase of width–depth ratio and suddenly reduced downstream	Biswas and Pani (2021)
14	Yizhi reach (YZR) in the Middle Yangtze	Three Gorges Dam (TGD) and Gezhouba dam	China, alluvial plain (59.3km), 2002 to 2015	Cwa	Sin gle thread	D	Grain-size distributions of bed material, Topographic data	Increasing cross-sectional area and depth; decreasing bed roughness	Zhou et al. (2018)

15	Lower Yellow River	Sanmen xia, Liuji a xia, Longy an gxi a and Xiaolan gdi Dams	China, alluvial plain (128 km) 1951 to 2006	Cwa	Single thread and multi- thread	D	At-a-station hydraulic geometry data	Incision; narrowing; the channel has been subject to substantial deposition due to the flushing of sediment from Sanmenxia Dam, resulting in a marked reduction in bankfull cross- sectional area; changes in channel form are not entirely synchronous	Ma et al. (2012)
16	Lower Trinity	Livingston Dam	Texas, alluvial plain and coastal plain (175 km) 1995–2003	Cfa	Single thread	D	Resurveys of channel cross-sections	60 km from dam; incision; widening; bank erosion; lateral channel migration; coarsening of channel sediment and a decrease in channel slope. Between about 60 km and the Trinity delta no morphological response to the dam is observed	Phillips et al. (2005)

17	Brazos Sabine Rivers	Brazos (several dams, Lake Whitney, Belton Lake, Lake Limestone)	USA, coastal p lain (~625 km)(~225 km), 1925– 2007	Cfa	Single thread	D	Historical cross- sections, photographs, flood- frequency analysis	Incision	Heitmuller (2014)
		Rivers (Toledo Bend Reservoir)							
18	Serpis	Beniarrés	Spain, alluvial plain (6.4 km), 1945 to 2017	Csa	Single thread	D	Aerial images,	Channel width decreased by 80%, and the active channel area decreased by 89.3% change from wandering to single thread pattern, and total loss of mobility	Sanchis-Ibor et al. (2019)
19	Dunajec	Czorsztyn	Poland, alluvial plain (4.6 km), 1977 to 2009	Dfb	Single thread	U	Aerial photographs and orthophotos	Widening; a slight variation sinousity	Liro (2015)
20	middle Yangtze	Three Gorges Dam (TGD)	China, alluvial plain 2003 to 2015	Cfa	Single thread and multi- thread	D	Hydrologic measurements, measurements of suspended sediment, topographic data, bathymetric maps	Incision; decreasing bar area of mid- channel	Li et al. (2019)

21	Lower Yellow River	Xiaolan gdi	China, , alluvial plain (786 km), 1965 to 2015,	BSk	Single thread and multi- thread	D	Cross-sections measurement	Narrowing; aggradation; decreasing width-depth ratio; large migration of the river channel; shrinkage of the channel	Liu et al. (2021)
22	Zambezi	Kariba and Cahora Bassa	M ozambiqu e, alluvial plain and coastal plain (593 km)	BSh	M ulti-thread	D	Historical aerial photography, remote sensing, methods	Sediments into the river delta decreased; downcutting of the main branch channel	M ikhailov et al. (2015)
23	Satsunai	Satsunai River Dam	Japan, Alluvial plain (786 km), 1976 to 2006,	Dfb	multi-thread	D	Flood discharge, dam cross-sections, aerial photographs	Decreased area of active channel	Takahashi and Nakamura (2011)
24	Maule	Colbún– M achicura	Chile, alluvial plain (36 km),	Csb	M ulti-thread	D	Satellite images, flow data	12% decrease in active areas of the river; narrowing of the active area	Pacheco et al. (2022)

1985	tc
2018	

25	Vistula	Wloclawek Reservoir	Poland, alluvial plain (19 km)	Cfa	Sin gle thread	D	Hydrological data, aerial photograph, longitudinal and cross channel profiles, IHA-RVa model	Narrowing; incision; evolved towards the anabranching type system.	Gierszewski et al. (2020)
26	Hanjian g	Danjian gkou	China; alluvial and mountain plain (160 km), 1959 to 1979	Cfa	Sin gle thread	D	Measurement of cross-section	Incision; after the exposure of the gravel layer the channel slope becomes steeper; due to the influence of the exposed gravel layer, a tendency towards widening occurs where the bank material erosional resistance is low, leading the channel to a wider and shallower cross section.	Jiongxin (1996)

27	Huanghe River (Yellow River)	Xiaolan gdi Reservoir,	China, alluvial plain (86 km), 1976 to 2012	BSk	Single thread	D	Discharge and sediment load data, cross-sectional data	Decrease and shrinkage of the channel transect	Wang et al. (2020)
28	Lower Yellow River	Xiaolan gdi	China, alluvial plain, (248.6) 1983–2019	BSk	Single thread	D	Discharge and suspended sediment concentrations (SSC) data, cross- sectional profiles, IHA-RVA approach	Erosion of the riverbed and lowered the water level, causing the main channel to be narrower and deeper	Lu et al. (2022)
29	Lower Sabine River	Toledo Bend	UAS, alluvial plain (230 km); 1967 to 2000	Cfa	Single thread	D	Field mapping, dendrogeomorpholo gy and vegetation evidence, sediment sampling, aerial photographs, digital orthophotoquads, stream gauge records	Incision, bank erosion, widening the channel is scoured; channels shifting, sandbars are migrating,	Phillips et al. (2005)
30	Yichang -Datong reach of the Yangtze	Three Gorges Dam	China, alluvial plain, (1183 km), 1955–2016	Cfa	Single thread	D	Hydrological stations data	Incision; widening	Yang et al. (2021)
31	Trinity River, downstre am tributarie s	Livingston	USA, alluvial plain and coastal, (60 km)	BSh	Single thread	D	Channel cross sections surveyed from bridge crossings, at-a- station hydraulic geometry, aerial photos	Incision; widening; channel migration	Musselman (2011)

32	Lower Volga	Volgo grad	Russia; alluvial plain (357 km); 1914 to 2001	Dfa	Single thread and multi- thread	D	Navigation maps and satellite imagery, field surveys	Incision (2 m); bar erosion; channel bank accretion; cut- off of meanders	Middelkoop et al. (2015)
33	Shashi reach of the Yangtze	Three Gorges Project Gezhou dam	China, alluvial plain (52 km), 1975 to 2018	Cwa	Single thread	D	Topographic surveys data, runoff and sediment transportation data, topographic	Incision (93.1%, in low-water channel); narrowing; sandbar area decreased, river morphological coefficients decreased	Yang et al. (2021)
34	Tigris	M osul dam	M osul, alluvial plain (8.3 km),	BSh	Sin gle thread	D	Cross-sections survey, sediment sampling	Bed erosion	Al-Ansari and Rimawi (1997)
35	Jingjiang reach of the Yangtze	Three Gorges Dam	China, alluvial plain (347 km)	Cfa	Single thread and multi- thread	D	Cross sections measured, hy drological data	Incision; intensive channel scouring; decrease width- depth ratio	Li et al. (2018)

36	Kurobe	Unazuki	Japan, alluvial plain (13.2 km) 1947-2008	Cfa	M ulti-thread	D	Sampling sediment bar and vegetation coverage, aerial photographs	Aggradation; vegetative encroachment	Asaeda and Rashid (2012)
37	Yangtze	Three Gorges Dam	China, alluvial plain (km) 1982 to 2010	Cwa	Single thread	D	Sediment concentration, tidal flat model	Deposition	van Maren et al. (2013)
38	Quevedo	Baba	Ecuador, alluvial plain (125 km), 1986–2019	Aw	Sin gle thread	D	Satellite images	Decrease in sinuosity, decrease total reach length mainly caused by cutoffs	Clavijo- Rivera et al. (2023)

39	Lower Peixe	Quatiara	Brazil, alluvial plain (70- km) 1962–2008	Cfa	Single thread	D	Aerial photographs and satellite imagery, historical map	Decrease in sinuosity (from ~2.6 to ~1.7), average wavelength of bends has increased from~200 to ~500 m, the planform has become much simpler	Morais et al. (2016)
40	Yangtze	Three Gorges Dam	China, alluvial plain (1183 km) 1998-2016	Cfa	Single thread	D	Hydrological data (discharge, suspended sediment concentration (SSC), and water levels), cross sections data	Incision, bedload coarsening, and changes in the water surface slope, river scouring	Gao et al. (2021)
41	Green	Flaming Gorge Dam	USA, alluvial plain and mountain plain (162 km) 1952 to 1987	BSk	Single thread	D	Historical aerial photographs. published sediment and discharge records, and sediment data	Narrowing; decreasing channel surface area	Lyons et al. (1992)

42	YiHao reach (YHR) in the M iddle Yangtze River	Three Gorges Dam	China; alluvial plain (203 km) 1982 to 2018	Cfa	Single-thread and multi- thread	D	Field observations and numerical modelling, hydrological and sediment dataset, topographic and flow velocity data, bed material samples	Incision; gravel— sand transition migration	He et al. (2022)
43	Lhasa	Zhikong	China, intermontan e plain (105.5 km); 2001–2016	BSk	Single-thread and multi- thread	D	Satellite images, discharges and field observations	Increase number and area of central bars in the braided reach; main channel incision	Wu et al. (2018)
44	Lower Yellow River	Xiaolan gdi	China, alluvial plain 1999-2009	Cwa	Single thread	D	Hydrometric stations data	Incision (66.38%); narrowing	Jian-guo et al., 2012
45	Teesta	TLD3 and TLD4 dams	India, mountain plain (21 km) 2010 to 2019	Cwa	Sin gle thread	U	Bathymetry map of the reservoirs, digital elevation models, satellite images	Sediment deposition	Fields et al. (2021)

46	River Teesta	Teesta Stage Dam III and IV	India, alluvial plain, (~45 km),	Cwa	multi-thread	D	Field and satellite- based observations, suspended sediment concentration (SSC), discharge, boat surveys, morphodynamic model,	Lower relative relief, decreasing channel cross- sectional areas	Sany al (2017)
47	River Rede	Catcleugh Reservoir	UK England, alluvial plain (33.60 km)	Cfb	Single thread	D	Cross-sectional survey	Narrowing (53%); conveyance have been reduced (75%); downstream siltation	Petts et al. (1993)
48	Upper Yangtze Estuary	Three Gorges Dam	China, alluvial plain (80 km) 1995 to 2019	Cfa	Sin gle thread	D	Bathymetry data. discharge, sediment concentration, suspended sediment grain size data	Reduction of the sediment load; channel chan ged from a depositional system to an erosion system; the channel was dominated by extensive erosion, severe local deposition, or severe local erosion	Zhang et al. (2023)
49	Lower Yellow River	Xiaolan gdi	China, alluvial plain, (~860 km) 1987 to 2017	Cwa	Single thread	D	Remotely sensed images, hydrological data	Degradation; intense channel migration; increasing sinuosity, decreasing braided index	Kong et al. (2020)

50	Ningxia- Inner Mongoli a Reach of the Upper Yellow River Huanghe River (Yellow River)	Qingtongxia Dam Liujiaxia and Longyangxi a Reservoirs	China, alluvial plain, (1217 km) 1976 to 2015	Dwb	Single thread	U & D	Stations cross- section data	A slight increase in the discharging capacity of the channel	Su et al. (2019)
51	Lower Yellow River	Xiaolan gdi Reservoir	China, alluvial plain, (200 km), 1986 to 2020	Cwa	multi-thread	D	Sattelite images, runoff and sediment load data	Narrowing (60%); incision (122%); the lateral erosion rate and lateral accretion rate have decreased; the flood transport capacity has increased by nearly 79 %	Wu et al. (2023)
52	Lower Rio Grande	Falcon	Mexico, coastal plain (200 km) 1912 to 2011	BSh	Single thread	D	Lidar DEM data. bathy metric- top ographic profiles, history channel centerline positions, aerial images	Incision; lateral migration of the river shut down and exposed point bars shrunk in size	Goudie (2022)

53	Jingjiang reach of the Yangtze	Three Gorges Dam	China, alluvial plain (350 km) 1981 to 2013	Cfa	Single-thread and multi- thread	D	Topographic data	Incision; narrowing	Han et al. (2018)
54	Middle reach of the Yangtze	Three Gorges Dam	China, alluvial plain, 590 km 1956- 2003	Cfa	Sin gle thread	D	Sediment transport rate, flood level, a numerical simulation	Degradation	Li et al. (2009)

Livingston USA, Cfa stalluvial alluvial plain (120 km), 1924 - 2014		Field measurement, numerical model, discharge, bathy metric surveys. digital elevation model, aerial photography, grain size sampling	Bed erosion, reduction in the sediment volume of channel bars, coarsening of sediment on bar tops, steepening of channel banks, reduction in lateral migration rates of river bends, up to 7 meters of channel-bottom incision, transforming an initially linear profile into a convex-up long profile	Smith and Mohrig (2017)
--	--	---	--	----------------------------

56	Mandaki ni– Alaknan da	Srinagar	India; mountain plain (190 km) 2010–2020 2013 extreme event,	Cwa	Single thread and multi-thread	U & D	Survey of India top osheets, satellite imagery, digital elevation model	U: highest degree shifts in thalweg; increase of the active channel width after the 2013 extreme event, depositional features has significantly higher values for post-flood period in 2013 than in 2012 D: most stable over the investigated time span, no significant difference was observed in the depositional features in relation to the	Agarwal et al. (2022)
								relation to the two time periods	

57	Lower Yellow River	Xiaolan gdi	China, alluvial plain, 248.9 km 1983–2019	Cwa	Single thread	D	Water levels, flow rates, suspended sediment concentrations (SSC), cross-sectional profiles; IHA-RVA and random forest (RF) approach	Incision; narrowing; lowered the water level,. Additionally, in the post-WSRS season, the cross-sectional geo morphic coefficients (CSGC) was lower in the post-dam period, while the average depth of river cross- sections increased.	Lu et al. (2022)
58	Tista	Gazaldoba barrage	India, alluvial plain, (75 km) 1987 to 2017	Cwa	M ulti-thread	D	Satellite images	Downstream erosion of the riverbed and transport of the coarser bedload further down	Ghosh and Chakraborty (2022)
59	Yichang- Chenglin gji Reach of the Middle Yangtze River	Three Gorges Dam	China, alluvial plain, (408 km) 1992 to 2017	Cfa	Single thread	D	Remote sensing images, cross-sectional profiles, hydrological datasets.	Reduction of channel bars area; increase in the length/width ratio (LWR) of the bars	Lyu et al. (2020)

60	Smolnik	Ro znów	Southern Poland, 1.5-km	Cfb	Single thread	U	Bathy metric and geodetic surveys, LiDAR data (dem), hy drody namic model	Average water depth was increased, the average flow velocity was decreased	Liro et al. (2022)
61	M iddle Yangtze River	Three Gorges Dam	China, alluvial plain, (955 km) 2003 to 2020	Cfa	Single thread	D	Discharge and water level, channel topography, bed-material composition, vegetation coverage, cross-sectional profiles	Incision; bankful depth and area increased; increased movable bed roughness	Zhou et al. (2023)
62	Ribb	Ribb	Ethiopia, alluvial plain (77 km); 1995-2010	Aw	Single thread	D	cross-sections data, bed materials, one dimensional model, discharge,	Ded degradation	Mulatu et al. (2021)

63	Yangtze River	Three Gorges	China, alluvial plain,	Cfa	Single thread	D	Topographic data, runoff and sediment concentration data,	Increase erosion, erosional	Yang et al. (2018)
	reach						grad in g of suspended	channels and erosional river	
	between Yichang		(1,183 □km)				sediment, gradation of bed sand particles	floodplain, deep channels	
	and Datong.		1980- 2014				and riverbed, geology data		

64	Lower Changjia ng (Yangtze River)	Three Gorges Dam	China, alluvial plain, 1300 km 1981–2002 and 2002– 2010	Cfa	Single thread	D	Runoff and suspended sediment concentration, suspended sediment fluxes, thalweg depths cross- sections, data of surveyed and literatures	Channel down cutting, erosional channel	Dai and Liu (2013)
65	Yangtze	Three Gorges Reservoir	China, alluvial plain, (660 km) 2003 to 2017	Cfa	Single thread	U	Top ograp hical data	Decreasing the number and area of mid-channel bars (MCBs); decreasing the ratio of length to width of the MCBs leading to a shape adjustment from narrow—long to relatively short—round with the rising of the water level	Tang et al. (2021)

66	Green	Flaming Gorge Dam	USA; bedrock and mountain plain (104.4km)	Dfb	Single thread	D	Historical aerial and oblique photographs, stream-gaging records, and field observations	Narrowing (10–30%); deposition of post-dam sediment and stabilization of pre-dam deposits	Grams and Schmidt (2005)
			1938- 1999					1	

67	Lower Jingjiang Reach	Three Gorges Reservoir	China, alluvial plain, (22.5 km), 1981 to 2017	Cfa	Sin gle thread	D	Hydrological dataset, topographic maps, runoff and sediment load data, field measurements (flow velocity, water level, suspended sediment concentration and size, bed materials,	Erosion on the point bars	Wang et al. (2022)
							size, bed materials, and morphological		
							changes)		

68	Middle Reaches of the Hanjian g River	Danjian gkou Reservoir Six cascade reservoirs Wan gfuzhou Xinji Cuijiay in g Yakou Nianpansha n	China, alluvial plain, (263 km) 1986–2018	Cfa	Sin gle thread	D	Remote sensing images, hydrological data (sediment concentrations, water level and runoff)	Decreasing the mid-channel bars'area (23.19%)	Zhang et al. (2019)
69	Aras	Aras Dam	Iran, alluvial and mountain plain, (160-km)	BSk	Sin gle thread	D	Remote sensing images	Active channel narrowing (2.05 m/year); lateral deposition and narrowing	Fazelpoor et al. (2021)
70	Hwang	Hapchon	1984–2019 Korea, alluvial plain, (25 km) 1982- 1996 2002	Cwa	Sin gle thread	D	Field survey data	Incision; encroachment of riparian vegetation onto previously active bar surfaces	Choi et al. (2005)

71	Jingjian g Reach of the Yangtze River	Three Gorges Dam	China, alluvial plain (347 km) 1975 to 2017	Cfa	Single thread	D	Flow and sediment data, river bathy metry data, river channel topographic maps	Incision; migrating bar surficial erosion and steady bar lateral erosion	Yang et al. (2023a)
72	M iddle Yan gtze (Shashi Reach)	Three Gorges Dam	China, alluvial plain, (194 km) 1980 to 2013	Cfa	Single thread	D	Flow and sediment load, suspended sediment concentration (SSC), suspended sediment discharge (SSD), and suspended sediment data, bed-material grain sizes	Incision; decrease of the width-to-depth ratio	Zhang et al. (2016)
73	Lower Reaches of the Yangtze River	Three Gorges Dam	China, alluvial plain, (753.4 km) 1989–2019	Cfa	Single thread	D	Satellite images, water level data, runoff and sand transport volume, median particle size data topographic maps	Overall change in river morp hology small in the horizontal direction, but the local area changed significantly	Dai et al. (2023)
74	Lower Weihe River	Sanmenxia	China, mountain plain, (208 km) 2006 to 2018	Bsk	Single thread	D	Cross-section data, water and sediment data	Flushing at both ends and siltation in the middle, while continuing to exhibit non-flood flushing and flood	Ma et al. (2022)

siltation features

75	M iddle-	Three	China,	Cfa	meandering	D	Cross-sectional	Incision; local	Yang et al.
	lower	Gorges Dam	alluvial		channel		profiles,	changes of	(2023b)
	Yangtze		plain,		patterns and		bathy metric maps	channel bar	
					anabranch in g			erosion;	
			(1231 km)		channel			riverbank retreat	
			,		patterns			and bed material	
			2002-2016					coarsening	

76	Tisza	Novi Becej	Hungary, alluvial plain, 1876 and 2017	Cfa	Single thread	D	Flow data, hydrologic monitoring stations data	Flood level increased; river stages for low flows have decreased, and the water slope has decreased	Kiss et al. (2019)
77	Yellow and lower Wei Rivers	Sanmen xia dam	China, alluvial plain, (~ 260-km) 1960–2018	BSk	Sin gle thread	U	Cross-sectional surveys	Aggradation; the retrogressive aggradation. the erosion/depositi on centers migrated towards the dam by ~50–60 km during 1974–2010 and migrated upstream after ~2010.	Zheng et al. (2022)
78	Dunajec	Czorsztyn Reservoir	Poland, alluvial plain, (4.5-km) (1982–2013)	Dfb	Single thread	U	Aerial photographs and orthophotos, LiDAR data	Increase av erage bar area; increase width- depth ratio	Liro (2016)
79	Lower Yangtze River	Three Gorges dam	China, alluvial plain (~118k); 1981-2016	Cfa	Single thread	D	Field surveys, hydrological station records, satellite images, topographic data, historical practice reports	Rapid bar growth; riverbed at the Heishazhou reach, experienced apparent erosion	Yan et al. (2022)

80	Stony Creek	Black Butte	California, alluvial plain, (8 km) 1950 to 1990	Csa	multi-thread	D	Historical cross sections survey	Incision (over 5 m); changed from an active braided channel to an incised, single-thread channel	Kondolf and Swanson (1993)
81	Karoon	Gotvand	Iran,, alluvial plain, (128- km)	BSh	Single thread	D	Remote sensed data	Widening (+3.5 m); decrease meander neck length (274 m); decrease flow length and river sinuosity	Yousefi et al. (2016)

82	Dry	Warm	USA, Dry	Csb	pre-dam	D	Aerial photographs	Stream length	Gordon and
	Creek	Springs	Creek study		multithread			varied 64% less;	M eentemey er
		Dam	reach (10.5					channel incision	(2006)
			km)		post-dam			and constrained	
					channel was			channel	
					a single-			migration	
					thread				
					meandering				
					stream				

83	Lowland English River	Leighs reservoirs	England, alluvial plain,	Cfb	Single thread	D	Field data	Increase of channel capacity	Petts and Pratts (1983)
	River Ter		1966 to 1981						
84	- Magdale na River,	-Betania and Prado, (22km), 1969-2020	Colombia, alluvial and mountain reach	Am	Single thread multi-thread	U & D	Aerial photographs, satellite images	D Urrá I: widening (17%), sinuosity decreased. sinuosity decreased -	Alvarado et al. (2023)
	-Cauca River,	-Salvajina,						1.31% on average	
	-Sinú	(7.7 km)1961- 2020						U: widening (600% and 562%)	
	River							Salvajina : U: widening, with	
	Verde River	-Urrá I Dams (26						some changes in sinuosity D:	
	Yaguará River	km) 1991- 2020						narrowing by -0.17 m (-0.21%) and the sinuosity by 0.09 (4.74%)	
								D:Betania and Prado Dams: without important changes in sinuosity	
								U: widening up to 249%. sinuosity, remains almost	

constant

85	Thirteen river reaches Ebro basin	Several reservoirs	Iberian Peninsula, alluvial plain and mountain plain (from 3.47 to 25.09 km); 1957 to 2010	Cfb	Sin gle thread	D	Aerial images, discharge data	Narrowing; decrease sediment bar mean surface and number	Besne and Ibisate (2015)
86	Upper Connecti cut River basin	Dams	USA; alluvial plain	Cfa	Sin gle thread	D	Aerial photographs, at-a-station data, field-measured U.S. Geological Survey, stream gauge data, channel hy draulic geometry and discharge data	No to minor channel morp hology chan ges	Magilligan et al. (2008)
87	Italian rivers	Pieve di Cadore	Italy; mountane and alluvial plain (~220 km); 1900s-1991	Cfa/Cfb	M ulti-thread	D	Maps and aerial photographs	Narrowing (more than 50%); decrease of braiding index; incision (up to 2 – 3 m); changes in channel pattern (from braided to wandering)	Surian (1999)

88	White River	Lake Francis Case	US, alluvial plain (120 km), 1954 to 2011	Dfa	Single thread	U	Field survey, field sampling and GIS mapping, historical aerial photos	Original White River channel and adjacent floodplain aggraded by up to 12 m	Volke et al. (2019)
89	Upper Missouri River	Garrison and Oahe Dams	US, alluvial plain (512 km), 1958 to 2007	Dfb	Single thread	U & D	Aerial photography, stream gage data, cross sectional surveys	D: removal islands in channel; eroding the bed, banks, and islands, increase in cross-sectional area U: crational of large islands on the outside of the bends from sediment drop off and backwater effects, increase in islands and sand bars and minimal change in channel cross-sectional area, Channel widening	Skalak et al. (2013)

90	Po River	Isola Serafini dam	Italy, alluvial plain (70 km), 1954 to 2014	Csc	Single thread	U	Orthophotos and satellite images, top ographic surveys, Samples of river bed sediment, borehole logs, gauging station	Lateral migration rate of the channel is up to 45 m/yr upstream of the influence of backwater flow and ca.10 m/yr at the transition from normal to backwater flow conditions (30 km from the dam), deposition of coarsegrained sediment and 46 the emergence of the gravel-sand transition of the river.	M aselli et al. (2016)
91	Carpathi a Rivers (San, Wisłok, Ropa, Raba and Dunajec, Rivers)	Solina- Myczkowce, Besko, Klimkówka, Dobczyce, Czorsztyn- Sromowce Reservoirs	Polish Carpathian Mountains, mountane and alluvial plain (1.0– 1.5 km and 2.0–2.5 km above each reservoir; 0.5–1.0 km and 1.5–2.0 km below the dams)	Dfb, Cfb	Single thread	U & D	Field research	Proportion of mid-channel bars is different in upstream and downstream, of dams	Wiejaczka and Kijowska-Str ugała (2015)

92	M issouri River	Several dams	US, mountain and alluvial plain (575.4 km)	BSk, Dfa, Dfb	Sin gle thread	U	Aerial ima gery	Formations of many deltas contain thick sediments	Volke et al. (2015)
93	Weihe	Sanmen xia	Chaina, mountain p lain	BSk	Single thread	U	Field survey, hydrological data, maps	Rise in base level, aggradation, bed shallower and wider, neck- cutoff, decrease sinousity	Xu (1990)
94	Laohahe River and the Yangcha ngzihe River	Hongshan	China, alluvial plain	BSk	Single thread	U	Hydrological data, field survey, aerial images	Sedimentation,	Xu (2001)
95	Laohahe	Hongshan	China, alluvial plain	BSk	Sin gle thread	U	Aerial images, hy drological data	Changes from wandering to meandering channel, narrowing, sedimentation, smaller width to depth ratio, increase sinuosity, lower degree of braiding	Xu and Shi (1997a)

^{*}Aw: Tropical wet and dry (savanna climate); BSh: Hot semi-arid climate; BSk: Cold semi-arid climate; Cfa: Humid subtropical climate; Cfb: Temperate oceanic climate or subtropical highland climate; Csa: Hot-summer Mediterranean climate; Csb: Warm-summer Mediterranean climate; Cwa: Monsoon; Dfa:

Hot-summer humid continental climate; Dfb: Warm-summer humid continental climate; Dwb: Monsoon-influenced warm-summer humid continental climate.

- Adib, A., Foladfar, H., Roozy, A., 2016. Role of construction of large dams on river morphology (case study: the Karkheh dam in Iran). Arabian Journal of Geosciences 9(15), 661.
- Agarwal, S., Sundriyal, Y., Srivastava, P., 2022. Dam in Himalaya induces geomorphic disconnectivity during extreme hydrological event: Evaluating a case of 2013 Kedarnath Disaster. Journal of Earth System Science 131, 263.
- Al-Ansari, N.A., Rimawi, O., 1997. The influence of the Mosul dam on the bed sediments and morphology of the River Tigris. IAHS-AISH Publication 245, 291-300.
- Alvarado, D.C., Vargas-Luna, A., Giraldo-Osorio, J.D., 2023. Upstream and Downstream Changes in the Channel Width and Sinuosity Due to Dam Construction in Tropical Rivers: The Case of Colombia. Applied Sciences 13, 7109.
- Asaeda, T., Rashid, M.H., 2012. The impacts of sediment released from dams on downstream sediment bar vegetation. Journal of hydrology 430, 25-38.
- Ashouri, M., Piry, Z., Rezaei Moghaddam, M.H., 2015. A comparison of the influence of the Sattarkhan reservoir dam on the upstream and downstream of the Ahar Chai River, NW Iran. Environmental Earth Sciences 73, 4099-4108.
- Besne, P., Ibisate, A., 2015. River channel adjustment of several river reaches on Ebro basin. Ouaternary International 364, 44-53.
- Biswas, S.S., Pani, P., 2021. Changes in the hydrological regime and channel morphology as the effects of dams and bridges in the Barakar River, India. Environmental Earth Sciences 80.
- Chin, A., Harris, D.L., Trice, T.H., Given, J.L., 2002. Adjustment of stream channel capacity following dam closure, Yegua Creek, Texas. Journal of the American Water Resources Association 38, 1521-1531.
- Choi, S.U., Yoon, B., Woo, H., 2005. Effects of dam-induced flow regime change on downstream river morphology and vegetation cover in the Hwang River, Korea. River Research and Applications 21, 315-325.
- Clavijo-Rivera, A., Sanc lemente, E., Altamirano-Moran, D., Muñoz-Ramirez, M., 2023. Temporal analysis of the planform morphology of the Quevedo River, Ecuador, using remote sensing. Journal of South American Earth Sciences 128(7), 104467.
- Dai, X., Li, W., Chen, S., Zeng, J., Tong, C., Zhou, J., Xiang, T., Zhang, J., Li, C., Ye, Y., 2023. Evolution of the Chenglingji–Datong Channel in the Middle and Lower Reaches of the Yangtze River and Its Drivers. Water 15, 1484.
- Dai, Z., Liu, J.T., 2013. Impacts of large dams on downstream fluvial sedimentation: An example of the Three Gorges Dam (TGD) on the Changjiang (Yangtze River). Journal of Hydrology 480, 10-18.
- del Tanago, M.G., Bejarano, M.D., de Jalon, P.G., Schmidt, J.C., 2015. Biogeomorphic responses to flow regulation and fine sediment supply in Mediterranean streams (the Guadalete River, southern Spain). Journal of Hydrology 528, 751-762.
- Fazelpoor, K., Yousefi, S., Martinez-Fernanadez, V., de Jalon, D.G., 2021. Geomorphological evolution along international riverine borders: The flow of the Aras River through Iran, Azerbaijan, and Armenia. Journal of Environmental Management 290.
- Fields, A.J., Bhattacharjee, J., Chatterjee, N., 2021. Reservoir bathymetry and riparian corridor assessment in two dammed sections of the Teesta River in Eastern Himalaya. Environmental Monitoring and Assessment 193, 640.
- Gao, Y., Chen, L., Zhang, W., Li, X., Xu, Q.X., 2021. Spatiotemporal variations in characteristic discharge in the Yangtze River downstream of the Three Gorges Dam. Science of the Total Environment 785 (3–4), 147343.
- Ghosh, K., Chakraborty, T., 2022. Impact of human intervention structures on the rivers: An investigation of the spatiotemporal variation of grain size in the Tista River, eastern Himalayas. Earth Surface Processes and Landforms 47, 2245-2265.
- Gierszewski, P.J., Habel, M., Szmanda, J., Luc, M., 2020. Evaluating effects of dam operation on flow regimes and riverbed adaptation to those changes. Science of the Total Environment 710(4):136202.
- Gordon, E., Meentemeyer, R.K., 2006. Effects of dam operation and land use on stream channel morphology and riparian vegetation. Geomorphology 82, 412-429.

- Goudie, A.S., 2022. The impacts of humans on geomorphology. Geological Society Memoir 58, 121-134.
- Grams, P.E., Schmidt, J.C., 2005. Equilibrium or indeterminate? Where sediment budgets fail: Sediment mass balance and adjustment of channel form, Green River downstream from Flaming Gorge Dam, Utah and Colorado. Geomorphology 71, 156-181.
- Gregory, K.J., Park, C., 1974. ADJUSTMENT OF RIVER CHANNEL CAPACITY DOWNSTREAM FROM A RESERVOIR. Water Resources Research 10, 870-873.
- Han, J.Q., Sun, Z.H., Li, Y.T., 2018. Distribution of erosion intensity in the Jingjiang reach influenced by the Three Gorges Dam. Earth Surface Processes and Landforms 43, 2654-2665.
- He, Z.C., Sun, Z.H., Li, Y.T., Zhao, Q.Y., Hu, Y., Chen, Z.H., 2022. Response of the gravel-sand transition in the Yangtze River to hydrological and sediment regime changes after upstream damming. Earth Surface Processes and Landforms 47, 383-398.
- Heitmuller, F.T., 2014. Channel adjustments to historical disturbances along the lower Brazos and Sabine Rivers, south-central USA. Geomorphology 204, 382-398.
- Jiongxin, X., 1996. Underlying gravel layers in a large sand bed river and their influence on downstream-dam channel adjustment. Geomorphology 17, 351-359.
- Kale, M.M., Ataol, M., 2021. The effects of dams on river channel morphology: a case study at the historical Çarşamba Bridge on the Yeşilırmak River in northern Turkey. Environmental Earth Sciences 80, 624.
- Kiss, T., Fiala, K., Sipos, G., Szatmári, G., 2019. Long-term hydrological changes after various river regulation measures: Are we responsible for flow extremes? Hydrology Research 50, 417-430.
- Kondolf, G.M., Swanson, M.L., 1993. CHANNEL ADJUSTMENTS TO RESERVOIR CONSTRUCTION AND GRAVEL EXTRACTION ALONG STONY-CREEK, CALIFORNIA. Environmental Geology 21, 256-269.
- Kong, D., Latrubesse, E.M., Miao, C., Zhou, R., 2020. Morphological response of the Lower Yellow River to the operation of Xiaolangdi Dam, China. Geomorphology 350, 106931.
- Kumar, R., Pandey, V.K., Sharma, M.C., 2019. Assessing the Human Role in Changing Floodplain and Channel Belt of the Yamuna River in National Capital Territory of Delhi, India. Journal of the Indian Society of Remote Sensing 47, 1347-1355.
- Li, D., Lu, X.X., Chen, L., Wasson, R.J., 2019. Downstream geomorphic impact of the Three Gorges Dam: With special reference to the channel bars in the Middle Yangtze River. Earth Surface Processes and Landforms 44, 2660-2670.
- Li, S., Li, Y., Yuan, J., Zhang, W., Chai, Y., Ren, J., 2018. The impacts of the Three Gorges Dam upon dynamic adjustment mode alterations in the Jingjiang reach of the Yangtze River, China. Geomorphology 318, 230-239.
- Li, Y., Sun, Z., Liu, Y., Deng, J., 2009. Channel degradation downstream from the three gorges project and its impacts on flood level. Journal of Hydraulic Engineering 135, 718-728.
- Liro, M., 2015. Gravel-bed channel changes upstream of a reservoir: The case of the Dunajec River upstream of the Czorsztyn Reservoir, southern Poland. Geomorphology 228, 694-702.
- Liro, M., 2016. Development of sediment slug upstream from the Czorsztyn Reservoir (southern Poland) and its interaction with river morphology. Geomorphology 253, 225-238.
- Liro, M., 2017. Dam-induced base-level rise effects on the gravel-bed channel planform. CATENA 153, 143-156.
- Liro, M., Nones, M., Mikuś, P., Plesiński, K., 2022. Modelling the Effects of Dam Reservoir Backwater Fluctuations on the Hydrodynamics of a Small Mountain Stream. Water (Switzerland) 14.
- Liu, W., Wang, S.J., Sang, Y.F., Ran, L.S., Ma, Y.Y., 2021. Effects of large upstream reservoir operations on cross-sectional changes in the channel of the lower Yellow River reach. Geomorphology 387, 107768.
- Lu, M., Zhao, Q., Ding, S., Wang, S., Hong, Z., Jing, Y., Wang, A., 2022. Hydrogeomorphological characteristics in response to the water-sediment regulation scheme of the Xiaolangdi Dam in the lower Yellow River. Journal of Cleaner Production 335, 130324.
- Lyons, J.K., Pucherelli, M.J., Clark, R.C., 1992. Sediment transport and channel characteristics of

- a sand-bed portion of the green river below flaming gorge dam, Utah, USA. Regulated Rivers: Research & Management 7, 219-232.
- Lyu, Y.W., Fagherazzi, S., Tan, G.M., Zheng, S., Feng, Z.Y., Han, S.S., Shu, C.W., 2020. Hydrodynamic and geomorphic adjustments of channel bars in the Yichang-Chenglingji Reach of the Middle Yangtze River in response to the Three Gorges Dam operation. Catena 193.
- Ma, C.H., Qiu, D.X., Mu, X.M., Gao, P., 2022. Morphological Evolution Characteristics of River Cross-Sections in the Lower Weihe River and Their Response to Streamflow and Sediment Changes. Water 14.
- Ma, Y.X., Huang, H.Q., Nanson, G.C., Li, Y., Yao, W.Y., 2012. Channel adjustments in response to the operation of large dams: The upper reach of the lower Yellow River. Geomorphology 147, 35-48.
- Magilligan, F.J., Haynie, H.J., Nislow, K.H., 2008. Channel adjustments to dams in the Connecticut River Basin: Implications for forested mesic watersheds. Annals of the Association of American Geographers 98, 267-284.
- Maselli, V., Pellegrini, C.C., Bianco, F.D., Mercorella, A., Nones, M., Crose, L., Guerrero, M., Nittrouer, J.A., 2016. River Morphodynamic Evolution Under Dam-Induced Backwater: An Example from the Po River (Italy). Journal of Sedimentary Research.
- Middelkoop, H., Alabyan, A.M., Babich, D.B., Ivanov, V.V., 2015. Post-dam channel and floodplain adjustment along the Lower Volga River, Russia. Geomorphic approaches to integrated floodplain management of lowland fluvial systems in North America and Europe, 245-264.
- Mikhailov, V.N., Kravtsova, V.I., Isupova, M.V., 2015. Impact of reservoirs on the hydrological regime and morphology of the lower reaches and delta of the Zambezi River (Mozambique). Water Resources 42, 170-185.
- Morais, E.S., Rocha, P.C., Hooke, J., 2016. Spatiotemporal variations in channel changes caused by cumulative factors in a meandering river: The lower Peixe River, Brazil. Geomorphology 273, 348-360.
- Mulatu, C.A., Crosato, A., Langendoen, E.J., Moges, M.M., McClain, M.E., 2021. Long-term effects of dam operations for water supply to irrigation on downstream river reaches. The case of the Ribb River, Ethiopia. International Journal of River Basin Management 19, 429-443.
- Musselman, Z.A., 2011. The localized role of base level lowering on channel adjustment of tributary streams in the Trinity River basin downstream of Livingston Dam, Texas, USA. Geomorphology 128, 42-56.
- Pacheco, F., Rojas, O., Hernández, E., Caamaño, D., 2022. Effects on Fluvial Geomorphology and Vegetation Cover following Hydroelectric Power Plant Operation: A Case Study in the Maule River (Chile). Water (Switzerland) 14.
- Petts, G., Armitage, P., Castella, E., 1993. Physical habitat changes and macroinvertebrate response to river regulation: the River Rede, UK. Regulated Rivers: Research & Management 8, 167-178.
- Petts, G.E., Pratts, J., 1983. Channel changes following reservoir construction on a Lowland English River. Catena 10, 77-85.
- Phillips, J.D., Slattery, M.C., Musselman, Z.A., 2005. Channel adjustments of the lower Trinity River, Texas, downstream of Livingston Dam. Earth Surface Processes and Landforms 30, 1419-1439.
- Sanchis-Ibor, C., Segura-Beltran, F., Navarro-Gomez, A., 2019. Channel forms and vegetation adjustment to damming in a Mediterranean gravel-bed river (Serpis River, Spain). River Research and Applications 35, 37-47.
- Sanyal, J., 2017. Predicting possible effects of dams on downstream river bed changes of a Himalayan river with morphodynamic modelling. Quaternary International 453, 48-62.
- Skalak, K.J., Benthem, A.J., Schenk, E.R., Hupp, C.R., Galloway, J.M., Nustad, R.A., Wiche, G.J., 2013. Large dams and alluvial rivers in the Anthropocene: The impacts of the Garrison and Oahe Dams on the Upper Missouri River. Anthropocene 2, 51-64.
- Smith, V.B., Mohrig, D., 2017. Geomorphic signature of a dammed Sandy River: The lower Trinity River downstream of Livingston Dam in Texas, USA. Geomorphology 297, 122-136.
- Su, T., Huang, H.Q., Zhou, Y.Y., Yu, G.A., 2019. Dam Operation for Mitigating Ice Jam

- Flooding Risks under the Adjustment of River Channel-Forms: Implications from an Evaluation in the Ningxia-Inner Mongolia Reach of the Upper Yellow River, China. Water 11.
- Surian, N., 1999. Channel changes due to river regulation: the case of the Piave River, Italy. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group 24, 1135-1151.
- Takahashi, M., Nakamura, F., 2011. Impacts of dam-regulated flows on channel morphology and riparian vegetation: a longitudinal analysis of Satsunai River, Japan. Landscape and Ecological Engineering 7, 65-77.
- Tang, Q.Q., Tan, D.M., Ji, Y.Y., Yan, L.Y., Zeng, S.D., Chen, Q., Wu, S.J., Chen, J.L., 2021. Dynamics of Mid-Channel Bar during Different Impoundment Periods of the Three Gorges Reservoir Area in China. Water 13.
- Vadnais, M.E., Assani, A.A., Landry, R., Leroux, D., Gratton, D., 2012. Analysis of the effects of human activities on the hydromorphological evolution channel of the Saint-Maurice River downstream from La Gabelle dam (Quebec, Canada). Geomorphology 175, 199-208.
- van Maren, D.S., Yang, S.-L., He, Q., 2013. The impact of silt trapping in large reservoirs on downstream morphology: the Yangtze River. Ocean Dynamics 63, 691-707.
- Volke, M.A., Johnson, W.C., Dixon, M.D., Scott, M.L., 2019. Emerging reservoir delta-backwaters: biophysical dynamics and riparian biodiversity. Ecological Monographs 89, e01363.
- Volke, M.A., Scott, M.L., Johnson, W.C., Dixon, M.D., 2015. The ecological significance of emerging deltas in regulated rivers. BioScience 65, 598-611.
- Wang, H.Y., Yao, S.M., Lu, Y.J., Zuo, L.Q., Liu, H.X., Zhao, Z.C., 2022. Morphological Changes of Sharp Bends in Response to Three Gorges Project Operation at Different Discharges. Frontiers in Earth Science 10.
- Wang, Y.H., Xu, C.L., Dong, P., Cui, Y.Q., 2020. Impact of human intervention on channel shrinkage and restoration in the Huanghe Estuary. Environmental Earth Sciences 79.
- Wiejaczka, Ł., Kijowska-Strugała, M., 2015. Assessment of the hydromorphological state of C arpathian rivers above and below reservoirs. Water and Environment Journal 29, 277-287.
- Wu, G., Wang, K., Liang, B., Wu, X., Wang, H., Li, H., Shi, B., 2023. Modeling the Morphological Responses of the Yellow River Delta to the Water-Sediment Regulation Scheme: The Role of Impulsive River Floods and Density-Driven Flows. Water Resources Research 59, e2022WR033003.
- Wu, X., Li, Z., Gao, P., Huang, C., Hu, T., 2018. Response of the downstream braided channel to Zhikong Reservoir on Lhasa River. Water (Switzerland) 10.
- Xu, J., 2001. Modified conceptual model for predicting the tendency of alluvial channel adjustment induced by human activities. Chinese Science Bulletin 46, 51-57.
- Xu, J., Shi, C., 1997. The river channel pattern change as influenced by the floodplain geoecosystem: An example from the Hongshan Reservoir. Zeitschrift für Geomorphologie 41, 97-113.
- Xu, J.X., 1990. COMPLEX RESPONSE IN ADJUSTMENT OF THE WEIHE RIVER CHANNEL TO THE CONSTRUCTION OF THE SANMENXIA RESERVOIR. ZEITSCHRIFT FUR GEOMORPHOLOGIE 34, 233-245.
- Yan, X.F., Duan, H.F., Liu, T.H., Xu, Z.X., Wang, X.K., 2022. Geomorphologic changes around a mid-river bar system at a meandering reach in the lower Yangtze River, China: Impacts of the three Gorges dam (TGD) and human activities. Catena 212.
- Yang, X., Sun, Z., Li, Y., Deng, J., Xiong, H., Li, D., 2023a. Mechanisms of bar adjustments in the Jingjiang Reach of the Yangtze River in response to the operation of the Three Gorges Dam. Journal of Hydrology 616.
- Yang, X.H., Xiong, H.B., Li, D.F., Li, Y.T., Hu, Y., 2023b. Disproportional erosion of the middle-lower Yangtze River following the operation of the Three Gorges Dam. Science of the Total Environment 859.
- Yang, Y., Zhang, M., Sun, Z., Han, J., Wang, J., 2018. The relationship between water level change and river channel geometry adjustment in the downstream of the Three Gorges Dam. Journal of Geographical Sciences 28, 1975-1993.

- Yang, Y., Zheng, J., Zhang, M., Zhu, L., Zhu, Y., Wang, J., Zhao, W., 2021. Sandy riverbed shoal under anthropogenic activities: The sandy reach of the Yangtze River, China. Journal of Hydrology 603, 126861.
- Yousefi, S., Pourghasemi, H.R., Hooke, J., Navratil, O., Kidova, A., 2016. Changes in morphometric meander parameters identified on the Karoon River, Iran, using remote sensing data. Geomorphology 271, 55-64.
- Zhang, J., Wang, Z., Dong, Z., Zhou, Y., Li, Z., Cui, Y., Zheng, S., 2023. Morphological response of the upper Yangtze Estuary to changes in natural and anthropogenic factors. River Research and Applications 39, 214-224.
- Zhang, W., Yuan, J., Han, J.Q., Huang, C.T., Li, M., 2016. Impact of the Three Gorges Dam on sediment deposition and erosion in the middle Yangtze River: a case study of the Shashi Reach. Hydrology Research 47, 175-186.
- Zhang, Y., Cai, X., Yang, C., Li, E., Song, X., Ban, X., 2019. Long-term (1986–2018) evolution of channel bars in response to combined effects of cascade reservoirs in the middle reaches of the Hanjiang River. Water 12, 136.
- Zheng, S., Wang, H., Wu, B., 2022. Delayed morphological adjustment of the Yellow and lower Wei Rivers upstream of the Sanmenxia dam at multi-temporal scales. Catena 212, 106035.
- Zhou, M., Xia, J., Shi, X., Deng, S., Zhang, X., 2023. Hydrologic and geomorphic effects on the reduction of channel discharge capacity in the Middle Yangtze River. Science of the Total Environment 866.
- Zhou, M.R., Xia, J.Q., Deng, S.S., Lu, J.Y., Lin, F.F., 2018. Channel adjustments in a gravel-sand bed reach owing to upstream damming. Global and Planetary Change 170, 213-220.
- Zhou, Y.J., Li, Z.J., Yao, S.M., Shan, M.E., Guo, C., 2021. Case Study: Influence of Three Gorges Reservoir Impoundment on Hydrological Regime of the Acipenser sinensis Spawning Ground, Yangtze River, China. Frontiers in Ecology and Evolution 9.

TABLE S2 Hydrological and physiographic characteristics of the studied rivers.

	River	Drainage basin	Length	Basin	Mean annual	Mean annual
		area (Km²)	(km)	relief (m)	precipitation (mm yr ⁻¹)	discharge (m ³ s ⁻¹)
Ahar Chai		3035	132	2864	330	1.3
Karkheh		51,482	900	3642	477	167
Dunajec		1147		2055	1700	
Lower Yellow River		23,000	768	93.6		1218
Hwang		925	45		1,105	
Yeşilırmak		36,114	810		646	181.10
Stony Creek		1920	200		975	
Ye gua Creek		3,407		148	991	7.95
Saint-Maurice		43,000				
Guadalete		3360	159		600	
Yangtze		1.8×10^{6}	~6,300		1400	5,000
Guadalquivir		57,527	656.2	566	600	118
Karoon		67,500	950	4536		504
Barakar		07,500	113	650		501
Lower Trinity River		46 100				
Brazos		118,350	~625			
Sabine		25,540	~225			
Serpis		752	75		586	1.3
Yellow		752,443	3471	2000	380	1.5
M aule		20,295	34/1	2000		125
Vistula		171000	267			123
Rivers in the Polish		19,600	250		1225	
Carpathians		19,000	230		1223	
Hanjiang		159000	1567			1310
Huanghe		750,000	5464			1310
Italian rivers		301 280	3404	2500	990	
				2300	990	
Lower Sabine River		25 267				
Trinity		46,100 1360000				8000
Volga		1300000				
Tigris		4260		4012		663
Quevedo		4268	200	4012	1200	240
Peixe		10,769	380	405	1300	63.40
Green		115 770			1500	
Thirteen river reaches	s Ebro	85,362			1500	
basin						
YiHao reach		22 451	551	2600		227
Lhasa		32,471	551	3600		237
Teesta		~9500	50			
Rede			58			
Polish Carpathians		19,600	250	774	1225	
Ningxia-Inner			1217		275	
Mongolia Reach						
Coastal Rio Grande		450,000	(>3000		635	~49
Ebro		85,000	930			216.5
Tista				6965	2412	
Smolnik		64.9	15.45			
Zambezi		1330000	2660		1050	22000
Ribb			77	2213	1,300	
Hanjiang		46,800	240		950	
Aras		100,220	1072		900	1100
Po		75,000	651			
Missouri			3768			
Hwang		1325.6	116.9		1,105	
Shashi Reach		68×10^{4}	950			
Ulan Buh			100			
Weihe		134,766	818			
Tisza		157,200	962			
	liver	*			900	