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S1 MODEL DERIVATION

In the presence of a low refractive index contrast, we express the signal and pump fields in the
fibre as a superposition of LP-modes ψm(x) and ϕn(x), respectively (1, 2). In the following, we will
consider a singly polarised electric field distribution, but our results can be extended to a full-vector
case straightforwardly. We denote the signal and pump mode amplitudes as Sm(z) and Pn(z), with
z the propagation direction, and the propagation constants of the signal and pump modes as βm
and β′

n, respectively. With this position, the signal and pump fields are expressed as follows:

Esignal(x, z) =
∑
m
Sm(z)ψm(x) exp (ıβmz) ,

Epump(x, z) =
∑

j

Pj(z)ϕj(x) exp
(
ıβ′

jz
)
,

(S1)

where the slowly varying amplitudes are expressed in units of [V/m]. The total transverse intensity
distributions (expressed in [W/m2]) at the signal λsignal and pump λpump wavelengths read as
follows:

Isignal(x, z) = 1
2ε0c

∑
mn

Sm(z)S∗
n(z)ψm(x)ψ∗

n(x) exp [i(βm − βn)z]

Ipump(x, z) = 1
2ε0c

∑
jk

Pj(z)P ∗
k (z)ϕm(x)ϕ∗

n(x) exp
[
i(β′

j − β′
k)z

]
.

(S2)

In the presence of doping ions, the dynamics of the electromagnetic field propagating and interacting
in the fibre depend on the spatially varying population operators N1(x, z) and N2(x, z) for the
ground and excited levels of the ions, whose steady-state expressions read as follows:

N2(x, z) = Nd(x) [Ip(x, z)σa(λp) + Is(x, z)σa(λs)]
τ21 + Ip(x, z)σa(λp) + Is(x, z)[σa(λs) + σe(λs)]

,

N1(x, z) = Nd(x) −N2(x, z),
(S3)

where Nd(x)is the spatial distribution of dopants (z-invariant), σe,a(λ) are the emission and
absorption scattering cross-sections, and Ip(x, z), Is(x, z) denote the total intensity profiles of
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the signal and pump fields (2, 3, 4, 5). The evolution equations for the system read as follows:

∂zSm(z) = ıβmSm(z) + (1 + ıKric)
∑
n
Sn(z)Gs

mn(z),

∂zPj(z) = ıβ′
jPj(z) + (1 + ıKric)

∑
k

Pk(z)Gp
mn(z),

(S4)

where Kric is the refractive index change constant (4). We define the nonlinear coupling matrices

Gs
mn = exp [ı(βm − βn)z]

∫
dxψm(x)ψ∗

n(x) [σe(λs)N2(x, z) − σa(λs)N1(x, z)] ,

Gp
jk = − exp

[
ı(β′

j − β′
k)z

] ∫
dx ϕm(x)ϕ∗

n(x) [σa(λp)N1(x, z)] .
(S5)

In our simulations, we consider the case σe(λp) = 0, corresponding to the realistic conditions for an
Er-doped fibre (5). Eqs (S4)-(S5) capture the main nonlinear effects originating from the interaction
of the signal and pump fields with the dopant ions, and include saturation and refractive index
effects. Due to the explicit dependence of N1(x, z) and N2(x, z) on the local intensity distributions,
the signal and pump modes are coupled in a nonlinear fashion. The coupling matrices Gs

mn(z)
and Gp

jk(z) depend on the local population densities, which in turn depend on the local intensity
distributions. This self-consistent coupling is crucial for accurately capturing the dynamics of the
system.

S2 SYSTEM PARAMETERS

We considered an Er-doped, step-index multi-mode fibre of length L=1 m and a core diameter of
d=30 µm. In our system, the numerical aperture of the fibre is set as NA = 0.32 and the core index
is set as ncore = 1.45, leading to a number of 94 and 227 supported modes per polarisation at the
signal and pump wavelengths, respectively. For the gain medium, we assumed a dopant density
Nd = 2 × 1025, a slow decay time τ12 = 1 ms, and we used the following values for the absorption
and emission cross-sections:

• σa(λp)=1.7e-25 m2

• σe(λs)=4e-25 m2

• σa(λs)=2.25e-25 m2

Without loss of generality, we assumed the spatial density of dopants Nd(x, z) within the fibre
as constant and uniform across the fibre core. As discussed in the main text, we consider a total
illumination area A = 31.8µm× 31.8µm corresponding to approximately 1.5/

√
(2) times the fibre

core diameter and a pixel size ∆x = 1.06µm. The pixel size corresponds to roughly one internal
wavelength (λs/ncore) for the signal field.

S3 NUMERICAL APPROACH

We solved Eqs. (S4)-(S5) using a modal evolution approach based on a Runge-Kutta 45 ODE solver
(as implemented in MATLAB ode45). The evolution equations were defined and solved in cylindrical
coordinates with radial and angular grids of 200 points each, ensuring accurate representation
of the transverse field profiles. At each propagation step, the population densities N1(x, z) and
N2(x, z) were updated self-consistently using the local intensities Is(x, z) and Ip(x, z). The nonlinear
coupling matrices Gs

mn(z) and Gp
jk(z) were computed at each step by numerically integrating over

the transverse coordinates. The initial modal amplitudes Sm(0) and Pj(0) were set by projecting
the input and pump field distributions onto the corresponding mode profiles, as detailed in Eqs. (8)
in the main manuscript. The resulting set of coupled ODEs was integrated along the fibre length to
obtain the evolution of the modal amplitudes and the output field distributions under a leading
order approximation to optimise the computational workload.
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S4 DETAILS ON THE CALCULATION OF SAMPLE AND FEATURE
KOLMOGOROV COMPLEXITY (KC)

While the main manuscript primarily discusses the sample KC, we also computed an additional
metric, denoted as feature KC, that provides complementary insight into the variability and structure
of each pixel’s response across the full dataset.

As described in the main text, we employ the Kolmogorov Complexity (KC), approximated
numerically via the Lempel–Ziv compression algorithm, to quantify the structural complexity of the
reservoir outputs. Below, we describe the approach used to compute two variants of KC.

The Sample KC quantifies the complexity across features (pixels) for each reservoir output (sample).
For each output sample (a single CCD image, represented as a column of the readout matrix H),
we binarized the pixel intensities by comparing each pixel to the mean intensity across all pixels
within that sample. Specifically, pixel values above the mean are set to 1, and those below are set to
0. This produces a binary string representing each reservoir output, capturing its spatial complexity.
We then apply the Lempel–Ziv algorithm (as described by Kaspar and Schuster (6)) to measure
the compressibility of this binary sequence. The resulting complexity value is normalized by the
complexity of a randomly generated binary sequence of identical length, ensuring that a normalized
KC = 1 corresponds to fully random (incompressible) output, and KC < 1 indicates structured
(compressible) outputs. This procedure is repeated independently for each sample, and the final
sample KC reported in the manuscript figures (main text Fig. 8a–c) is the mean KC averaged across
all samples in the dataset. In Fig. 8d–f of the main text, we include the standard deviation of the
KC statistics normalised to the mean to assess the degree of variability of the sample KC across the
dataset.

The Feature KC, on the contrary, quantifies complexity across samples for each feature (CCD
pixel). For each pixel (a row in the readout matrix H), we binarize the pixel’s intensity values by
comparing each pixel intensity across all samples to the pixel’s mean intensity across the dataset.
Pixel values above this mean are set to 1 and those below to 0, yielding a binary sequence per
pixel across the entire dataset. Again, we compute the complexity of each binary sequence via the
Lempel–Ziv algorithm and normalize it against the complexity of a random binary sequence of
equivalent length. Feature KC thus captures the input-driven complexity of each spatial feature
(pixel). The results are shown in Supplementary Figure S9. Note that, while the sample KC is
an intrinsic feature of the reservoir output, the feature KC depends on the specific ordering of
the dataset. For the regression case, we sorted the input data un. For the classification case, the
input data is two-dimensional and randomly shuffled, leading to KC close to or above one naturally.
Still, some regions are visible even in this case, highlighting the remarkable capability of the KC
to identify structural complexity even within outputs associated with random inputs. Finally, for
the time-series case, the data has a specific ordering dictated by the temporal evolution, leading to
significantly low sample KC across the whole range of parameters.
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SUPPLEMENTARY FIGURES

Figure S1. Modal amplitudes a-c Semi-logarithmic plot of the modal amplitudes log10 |Sn(z)|
as a function of the propagation distance z for the same cases shown in Fig. 2 of the main text. Here,
panel a corresponds to Fig. 2c, panel b corresponds to Fig. 2d, and panel c corresponds to Fig. 2e.
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Figure S2. Gain variation analysis Each panel represents a different derivative of the total
gain across the signal and pump powers. a First derivative with respect to the pump power
dG/dPp (same as Fig. 2b in the main text). b First derivative of the total gain versus signal power
dG/dPs. c Second derivative of the total gain versus pump power d2G/dP 2

p . d Second derivative
derivative of the total gain versus signal power d2G/dP 2

s . e Mixed derivative of the total gain versus
signal and pump powers d2G/dPsPp. f Laplacian of the total gain versus signal and pump powers
d2G/dP 2

s + d2G/dP 2
p .
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Figure S3. Nonlinear Regression. a,b Training (panel a) and Testing (panel b) MSE error for
the task u(k) → sinc(u(k)) as a function of the signal Ps and pump Pp powers. The MSE is plotted
on a logarithmic scale (i.e., log10MSE). The red dots correspond to the prediction results shown in
panels e and f, respectively. c,d Same as panels a and b, but for the case u(k) → sinc(3u(k)). e-h
Plot of the predicted regression output (solid blue line) and the ground truth values (red circles) for
the testing datasets. Each panel corresponds to the operating points highlighted in panels a-d.

Figure S4. Spiral classification examples a Testing classification accuracy (%) as a function of
the signal Ps and pump Pp powers. The accuracy is defined as the percentage of correct classifications.
The white dots correspond to poor (50% accuracy, panel b) and good (100% accuracy, panel c)
classification accuracy. b, c Plot of the spiral points (u1, u2) for the testing dataset in the two
configurations highlighted in panel a. The blue dots correspond to a predicted class c(k) = 0 and the
purple dots to a predicted class c(k) = 1.
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Figure S5. Spiral dataset classification a Test dataset for the spiral dataset as defined by Eqs.
(13) of the main text. The two spiral arms are denoted as blue dots (class c(k) = 0) and orange
dots (class c(k) = 1). Differently from the case reported in the main text, here the winding number
is set as χ = 1, leading to an easily classifiable dataset. b MSE for the training dataset for the
task (u(k)

1 , u
(k)
2 ) → c(k) as a function of the signal Ps and pump Pp powers. The MSE is plotted on

a logarithmic scale (i.e., log10MSE). Here, we report the raw MSE obtained via ridge regression
before winner-takes-all classification is implemented, essentially comparing the raw prediction
outputs to the target values. c,d Training (panel c) and Testing (panel d) classification accuracy
as a function of the signal Ps and pump Pp powers. The accuracy is defined as the percentage of
correct classifications. The white crosses denote points with 100% accuracy. In the highly nonlinear
regimes, the testing accuracy drops below 90%, suggesting overfitting.

Frontiers 7



Marcucci et al. Complexity-driven Photonic RC in ED-MMFs: SM

Figure S6. Liner Algebra metrics of the readout matrix H - nonlinear regression task..
a-c Matrix rank (panel a), edf (panel b) and condition number (panel c) of the readout matrix H
as a function of the signal Ps and pump Pp powers for the nonlinear sinc regression. The size of the
readout matrix is N ×Mtrain with Mtrain = 500. d Total Shannon entropy of the readout matrix
H as a function of the signal Ps and pump Pp powers. The entropy is computed across all entries of
the readout matrix. e Average sample Shannon entropy of the readout matrix H as a function of
the signal Ps and pump Pp powers. For each combination (Ps,Pp), the sample entropy is computed
for each CCD output and averaged across all samples. f Relative variability of sample entropy across
the dataset as a function of the signal Ps and pump Pp powers. The relative variability is the ratio
of the standard deviation associated with each average in panel e divided by the corresponding
average.
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Figure S7. Liner Algebra metrics of the readout matrix H - spiral classification task..
a-c Matrix rank (panel a), edf (panel b) and condition number (panel c) of the readout matrix H
as a function of the signal Ps and pump Pp powers for the nonlinear sinc regression. The size of the
readout matrix is N ×Mtrain with Mtrain = 400. d Total Shannon entropy of the readout matrix
H as a function of the signal Ps and pump Pp powers. The entropy is computed across all entries of
the readout matrix. e Average sample Shannon entropy of the readout matrix H as a function of the
signal Ps and pump Pp powers. For each combination (Ps,Pp), the sample entropy is computed for
each CCD output and averaged across all samples. f Relative variability of sample entropy across
the dataset as a function of the signal Ps and pump Pp powers. The relative variability is the ratio
of the standard deviation associated with each average in panel e divided by the corresponding
average.

Frontiers 9



Marcucci et al. Complexity-driven Photonic RC in ED-MMFs: SM

Figure S8. Liner Algebra metrics of the readout matrix H - time-series prediction tasks..
In this case, all the metrics are computed on the raw readout matrix H before applying the delay
embedding postprocessing. a-c Matrix rank (panel a), edf (panel b) and condition number (panel c)
of the readout matrix H as a function of the signal Ps and pump Pp powers for the nonlinear sinc
regression. The size of the readout matrix is N ×Mtrain with Mtrain = 1000. d Total Shannon
entropy of the readout matrix H as a function of the signal Ps and pump Pp powers. The entropy
is computed across all entries of the readout matrix. e Average sample Shannon entropy of the
readout matrix H as a function of the signal Ps and pump Pp powers. For each combination (Ps,Pp),
the sample entropy is computed for each CCD output and averaged across all samples. f Relative
variability of sample entropy across the dataset as a function of the signal Ps and pump Pp powers.
The relative variability is the ratio of the standard deviation associated with each average in panel
e divided by the corresponding average.
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Figure S9. Feature Kolmogorov Complexity (KC) of the readout matrix H.. a-c Average
feature KC of the readout matrix H as a function of the signal Ps and pump Pp powers for the
regression (panel a), classification (panel b) and time-series prediction (panel c) tasks. For each
combination (Ps,Pp), the feature KC is computed for each CCD pixel and averaged across all
features. The number of features is N = 900 for all datasets. d-f Relative variability of feature KC
across the dataset as a function of the signal Ps and pump Pp powers for the regression (panel d),
classification (panel e), and time-series prediction (panel f) tasks. The relative variability is the ratio
of the standard deviation associated with each average in panels (a-c) divided by the corresponding
average.
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