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1 Cardiovascular model 

Here, we provide a brief description of the mathematical model of the cardiovascular system used in 
our study. A more detailed explanation is available in our previous publications (1,2). 

1.1 Arterial tree  

The vascular tree considered in this study consists of 71 major human arteries (see Supp. Figure 1). 
The geometric properties of the considered arteries are listed in Table 1. Each arterial segment is 
defined by its length 𝐿, inlet internal radius 𝑟in, and outlet internal radius 𝑟୭୳୲. Arterial segments are 
modeled as compliant, axisymmetric, tapering cylinders with impermeable walls. The vessel tapering 
is described by the following equation:  

 
𝑟଴(𝑥) = 𝑟in ൬

𝑟୭୳୲

𝑟୧୬
൰

௫/௅

, (1) 

where 𝑟଴(𝑥) denotes the internal radius of a given artery at point 𝑥 at the nominal pressure 𝑃଴ (3).  
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Supp. Figure 1 Overview of the modelled arterial tree. For more information on individual arteries, 
see Table 1. 
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Table 1 Geometry of the modelled arteries and the corresponding peripheral resistances and 
compliances. Arterial length (as well as inlet and outlet internal radii (𝒓in and 𝒓out) are provided in 

centimeters. Peripheral resistance (𝑹𝑻,  𝟏𝟎𝟒 g/cm𝟒/s) and compliance (𝑪𝑻,  𝟏𝟎𝟔 cm𝟒s𝟐/g) are 
provided only for terminal arteries. L and R stand for left and right, respectively. Data adapted from 
(4,5). 

ID Artery name Length  𝒓𝒊𝒏 𝒓𝒐𝒖𝒕 𝑹𝑻 𝑪𝑻 

1 Ascending aorta 4 1.2 1.18 - - 
2 Aortic arch (I) 2 1.12 1.11 - - 
3 Brachiocephalic 3.4 0.62 0.61 - - 
4 Aortic arch (II) 3.9 1.07 1.06 - - 
5/6 Common carotid R/L 17.7/20.8 0.25 0.25 - - 
7/8 External carotid R/L 17.7 0.15 0.14 5.43 12.7 
9/10 Internal carotid (I) R/L 17.7 0.2 0.2 - - 
11/17 Subclavian (I) R/L 3.4 0.42 0.42 - - 
12/18 Subclavian (II) R/L 42.2 0.4 0.24 - - 
13/19 Radial R/L 23.5 0.17 0.14 5.28 3.52 
14/20 Ulnar (I) R/L 6.7 0.22 0.22 - - 
15/21 Interosseous R/L 7.9 0.1 0.1 8.40 0.22 
16/22 Ulnar (II) R/L 17.1 0.2 0.18 5.28 3.52 
23 Thoracic aorta (I) 5.2 1 1 - - 
24 Intercostals 8 0.2 0.15 1.39 13.38 
25 Thoracic aorta (II) 10.4 0.68 0.65 - - 
26 Celiac (I) 1 0.39 0.39 - - 
27 Hepatic 6.6 0.22 0.22 3.64 5.13 
28 Celiac (II) 1 0.2 0.2 - - 
29 Gastric 7.1 0.18 0.17 5.43 3.44 
30 Splenic 6.3 0.18 0.17 2.32 8.01 
31 Abdominal aorta (I) 5.3 0.61 0.6 - - 
32 Superior mesenteric 5.9 0.44 0.42 0.93 20.0 
33 Abdominal aorta (II) 1 0.6 0.59 - - 
34/36 Renal R/L 3 0.26 0.25 1.13 16.46 
35 Abdominal aorta (III) 1 0.59 0.58 - - 
37 Abdominal aorta (IV) 10.6 0.58 0.55 - - 
38 Inferior mesenteric 5 0.17 0.16 6.89 2.7 
39 Abdominal aorta (V) 1 0.54 0.52 - - 
40/41 Common iliac R/L 5.8 0.37 0.35 - - 
42/48 Internal iliac R/L 5 0.2 0.19 7.96 2.34 
43/49 External Iliac R/L 14.5 0.32 0.27 - - 
44/50 Deep femoral R/L 12.6 0.26 0.19 4.79 3.90 
45/51 Femoral R/L 44.5 0.26 0.19 - - 
46/52 Posterior tibial R/L 32.1 0.16 0.14 4.79 3.90 
47/53 Anterior tibial R/L 34.3 0.13 0.12 5.60 3.33 
54/55 Vertebral R/L 14.8 0.14 0.14 - - 
56 Basilar 3 0.16 0.11 - - 
57/58 Posterior cerebral (I) R/L 0.5 0.11 0.11 - - 
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59/60 Posterior cerebral (II) R/L 8.5 0.11 0.11 11.08 6.20 
61/62 Posterior communicating R/L 1.5 0.07 0.07 - - 
63/64 Internal carotid (II) R/L 0.5 0.2 0.19 - - 
65/66 Middle cerebral R/L 12 0.14 0.12 5.97 11.60 
67/68 Anterior cerebral (I) R/L 1.2 0.12 0.12 - - 
69/70 Anterior cerebral (II) R/L 10 0.12 0.10 8.48 8.20 
71 Anterior communicating 0.3 0.07 0.07 - - 

 

1.2 Blood flow  

The equations governing blood flow in the arteries are derived from the incompressible Navier-
Stokes equations, assuming constant blood density ρ and viscosity μ, and a Poiseuille velocity 
profile. These equations describe the flow rate 𝑄(𝑥, 𝑡), internal cross-sectional area  𝐴(𝑥, 𝑡), and 
transmural pressure 𝑃(𝑥, 𝑡). A system of equations is formed with the following three equations. The 
continuity and momentum equations are derived using standard methods (3,6):  

 ∂𝑄(𝑡, 𝑥)

∂𝑥
+

∂𝐴(𝑡, 𝑥)

∂𝑡
= 0 (2) 

 

 𝑄(𝑡, 𝑥)

∂𝑡
+

∂

∂𝑥
ቆ

𝑄(𝑡, 𝑥)

𝐴(𝑡, 𝑥)
ቇ +

𝐴(𝑡, 𝑥)

ρ

∂𝑃(𝑡, 𝑥)

∂𝑥
= −

8πμ

ρ

𝑄(𝑡, 𝑥)

𝐴(𝑡, 𝑥)
 (3) 

 

The third equation describes the relationship between arterial cross-sectional area and transmural 
pressure 𝑃், assuming the arterial walls are purely elastic (3):  

 
𝑃்(𝑡, 𝑥) − 𝑃଴ = 𝑓(𝑥) ቆ1 − ට

஺బ(௫)

஺(௧,௫)
ቇ, (4) 

where 𝐴଴(𝑥) is the arterial internal cross-sectional area at point 𝑥 at nominal pressure 𝑃଴, i.e., 
𝐴଴(𝑥) = π𝑟଴

ଶ(𝑥), and the function 𝑓(𝑥) describes the elasticity of the artery wall as follows:  

 
𝑓(𝑥) =

4

3
൫𝑘ଵ 𝑒𝑥𝑝൫𝑘ଶ𝑟଴(𝑥)൯ + 𝑘ଷ൯, (5) 

where parameter 𝑘ଵ describes the stiffness of smaller arteries, 𝑘ଶ reflects the transition between the 
large, elastic arteries and smaller, less-elastic arteries, and 𝑘ଷ may be interpreted as the stiffness of 
large arteries (the vast majority of arteries in our model) (7).  

1.3 Model of the cuff inflation 

To model the impact of cuff inflation on arteries beneath the cuff, we used a nonlinear relationship 
between arterial internal cross-section (Ad) and transmural pressure (𝑃்) proposed by Drzewiecki et 
al. (8) (following its calibration, as described below): 
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𝐴ௗ = 𝑑

ln(𝑎𝑃் + 𝑏)

1 + exp(−𝑐𝑃்)
, (6) 

where 𝑎, 𝑏, 𝑐, and 𝑑 are empirical constants. This relationship combines the model of elastic 
distention of arterial wall with the model of its collapse at negative transmural pressures (cross-
sectional area approaching zero), thus describing the (static) arterial cross-sectional area for a wide 
range of transmural pressures. 

For simplicity, we used the above relationship only for the arterial segments under the considered 
cuffs. Moreover, to maintain the computational tractability of our 1-D model of the arterial network, 
we did not use the above relationship explicitly in those arterial segments, but we kept there our 
standard elastic model (equation (4)), which for each simulation (for a given cuff pressure) was 
scaled so that it would approximate locally the above relationship around the new expected mean 
arterial transmural pressure (assuming that the transmural pressure is reduced by an amount equal to 
the cuff pressure). 

Our methodology involved the following calibration process (see. Supp. Figure 2). First, we 
calibrated the parameters 𝑎, 𝑏, 𝑐, and 𝑑 of the Drzewiecki model to closely match our standard 
elastance model of the arterial wall (as given by Olufsen (3)) within the physiological pressure range, 
i.e. the range 80-120 mmHg. This ensured alignment with our baseline model under normal 
conditions. Next, to simulate cuff inflation, we used the Drzewiecki model to predict the reduced 
arterial cross-sectional area at external pressure corresponding to cuff pressure. Then, for each 
considered cuff pressure level, we scaled the Olufsen-based elastance model, i.e., we found the 
values of parameters 𝑃௡௘௪ and 𝑔 modifying equation (4), as follows: 

 
𝑃்(𝑡, 𝑥) = 𝑃଴ + 𝑃௡௘௪ + 𝑔 ⋅ 𝑓(𝑥) ቌ1 − ඨ

𝐴଴(𝑥)

𝐴(𝑡, 𝑥)
ቍ, (7) 
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to approximate locally the Drzewiecki model within ± 20 mmHg around the estimated mean 
transmural pressure (for the given cuff pressure level). This scaling method allowed us to capture the 
nonlinear behavior of selected arterial segments during cuff occlusion while preserving the 
computational efficiency and structure of our existing 0-1D model.  

 

1.4 Arterial bifurcations 

At all modeled arterial bifurcations, we assume pressure continuity and mass conservation (i.e., no 
blood leakage). Let 𝑝 represent the parent vessel and 𝑑ଵ, 𝑑ଶ the daughter vessels. The assumed 
conditions can be expressed as follows: 

 𝑃out,௣ = 𝑃in,ௗభ
= 𝑃୧୬,ௗమ

   and   𝑄out,௣ = 𝑄in,ௗభ
+ 𝑄୧୬,ௗమ

, (8) 
where in and out denote inlet and outlet of a given artery, respectively.  

Supp. Figure 2 Calibration of the arterial pressure-area (P-A) relationship to simulate cuff inflation 
(example provided for the cuff pressure 𝑷𝐜𝐮𝐟𝐟 = 100 mmHg). The calibration process for a given 
artery consists of three steps: (a) calibrating the parameters of the Drzewiecki model (equation 6) to 
fit as closely as possible the default P-A relationship (equation 4, red line) in the physiological 
pressure range (i.e. the range 80-120 mmHg); (b) using the fitted Drzewiecki model (blue line) to 
predict the arterial cross-sectional area at the given cuff pressure (assuming that the transmural 
pressure is reduced by an amount corresponding to the cuff pressure), and (c) scaling the default P-A 
relationship (equation 4) to approximate locally the Drzewiecki model (green line). By 𝑷𝑻 we 
denoted transmural pressure.  
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1.5 Inflow boundary condition 

Since venous return to the heart is not modeled, the inflow boundary conditions represent the outflow 
from the left heart ventricle. This is modeled based on the works of Suga et al. (9,10), and Danielsen 
and Ottesen (11). The pressure in the left ventricle, 𝑃௟௩, is described using a time-varying elastance 
function 𝐸௟௩(𝑡):  

 𝑃௟௩ = 𝐸௟௩(𝑡)(𝑉௟௩(𝑡) − 𝑉଴), (9) 
where 𝑉௟௩(𝑡) is the ventricular volume at time t and 𝑉଴ is the volume of the left ventricle at zero 
transmural pressure. According to (11), the function 𝐸௟௩(𝑡) may be expressed as follows:  

 𝐸௟௩(𝑡) = 𝐸min൫1 − 𝜙(𝑡)൯ + 𝐸max𝜙(𝑡), (10) 
where the parameters 𝐸min and 𝐸max are minimal and maximal values of the elastance function 𝐸௟௩(𝑡). 
Function 𝜙 is defined by the following equation:  

 
𝜙(𝑡) =  ቐ

 sin ൬
𝜋𝑡

𝑡௠
൰ +  sin ൬

2𝜋𝑡

𝑡௠
൰  for  0 ≤ 𝑡 < 𝑡௠

0  for  𝑡௠ ≤ 𝑡 < 𝑇

 

 

(11) 

where 𝑇 is the heart period, 𝑡௠ denotes the time to the onset of constant (minimal) elastance, and 
parameters α and β are responsible for the shape of the 𝜙(𝑡). Additionally, α and β must be chosen 
so that max

௧∈[଴,்]
𝜙 (𝑡) = 1. 

The work of the left ventricle can be divided into four stages. We will begin with isovolumic 
relaxation. During this phase, the pressure in the left ventricle decreases. When 𝑃௟௩ is smaller than the 
pressure in the left atrium, 𝑃௟௔, then the mitral valve opens. 

In the next phase (ventricular filling) blood flows from the left atrium to the left ventricle. This flow, 
𝑄௟௔, is described by the following equation:  

 𝑑𝑄௟௔

𝑑𝑡
=

1

𝐿௟௔

(𝑃௟௔ − 𝑃௟௩) −
𝑅௟௔

𝐿௟௔
𝑄௟௔. (12) 

Parameter 𝐿௟௔ is an inertia term, and 𝑅௟௔ describes the resistance against the flow from the left atrium 
to the left ventricle, caused mainly by the viscous properties of the blood. Simultaneously, due to the 
inflow of blood into the left ventricle, 𝑉௟௩ increases, as given by the following equation:  

 𝑑𝑉௟௩

𝑑𝑡
= 𝑄௟௔. (13) 

When 𝑉௟௩ is greater than the end-diastolic volume 𝑉௘ௗ, the mitral valve closes, and isovolumic 
contraction begins. 

During this phase, there is no flow between the left atrium and ventricle (𝑄௟௔ = 0), and 𝑃௟௩ increases. 
When 𝑃௟௩ is greater than the pressure in the ascending aorta, 𝑃௔, the aortic valve opens, and the last 
phase of the cycle (ventricular ejection) begins.  
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The flow between the left ventricle and aorta is expressed by an equation similar to equation (11), 
namely: 

 𝑑𝑄௟௩

𝑑𝑡
=

1

𝐿௟௩

(𝑃௟௔ − 𝑃௔) −
𝑅௟௩

𝐿௟௩
𝑄௟௩. (14) 

The pressure 𝑃௔ is taken directly from the 1D model of the arterial tree. The volume 𝑉௟௩ decreases 
according to the following equation:  

 𝑑𝑉௟௩

𝑑𝑡
= −𝑄௟௩. (15) 

At the end of this phase, some amount of blood, 𝑉௕, returns from the ascending aorta to the left 
ventricle, which is associated with the negative value of 𝑄௟௩ (backflow). 𝑉௕ is given by the following 
equation:  

 
𝑉௕ = න |𝑄௟௩|

௧

௧∗

,  for 𝑡 > 𝑡∗, (16) 

where 𝑡∗ denotes the moment, when 𝑄௟௩ becomes negative. At the time 𝑡, when 𝑉௕ > 𝑉௕ we end the 
last phase by setting 𝑄௟௩ = 0, and then the cycle repeats. 

1.6 Outflow boundary conditions 

To model blood flow in the small arteries and arterioles downstream from the terminal arteries in our 
vascular model, we use the three-element Windkessel model (12,13):  

 
𝑅ଵ𝑅ଶ𝐶்

𝑑𝑄end(𝑡)

𝑑𝑡
= 𝑅ଶ𝐶்

𝑑𝑃end(𝑡)

𝑑𝑡
+ (𝑃end(𝑡) − 𝑃୲ୣ୰୫) − (𝑅ଵ + 𝑅ଶ)𝑄ୣ୬ୢ(𝑡) (17) 

where 𝑅ଵ, 𝑅ଶ are proximal and distal resistances, respectively, 𝐶் is the compliance of the given 
terminal vascular branch, and 𝑃୲ୣ୰୫ is the reference terminal pressure. We assume that 𝑅ଵ/𝑅் = 0.2, 
where 𝑅் = 𝑅ଵ + 𝑅ଶ is the total terminal resistance (5,14). The assumed values of 𝑅் and 𝐶் are 
shown in Table 1. We personalize the model by applying the scaling factors: 𝑆஼ for compliances and 
𝑆ோ for resistances, see (15) for more details.  

2 Default Parameter Values 

For our baseline model, we employed parameter values representative of a 25-year-old male with a 
height of 175 cm. The values of these parameters are provided in Table 2.  

Table 2 Default parameter values considered in the cardiovascular model. 

Parameter Unit Nominal 
value 

Reference Studied in the 
sensitivity 
analysis 

Sampling range for 
sensitivity analyses 
(± 𝟏𝟎%) 

μ g

cmଷ
 1.04 (13) No - 
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ρ cmଶ

s
 

0.04 (13) No - 

𝑃଴ mmHg 97 (14) No - 

𝑘ଵ g

sଶ ⋅ cm
 3 ⋅ 10଺ (16) Yes [2.7 ⋅ 10଺, 3.3 ⋅ 10଺] 

𝑘ଶ 1

cm
 

−13.5 (7) Yes [-12.15, -14.85] 

𝑘ଷ g

sଶ ⋅ cm
 5.36 ⋅ 10ହ Computed 

for 
age=25 
from (7) 

Yes [4.82, 5.90] ⋅ 10ହ 

𝑎 − 0.9 (11) No - 

𝑏 − 0.25 (11) No - 

𝐸max mmHg

ml
 

2.5 (11) Yes [2.25, 2.75] 

𝐸୫୧୬ mmHg

ml
 

0.049 (11) Yes [0.0441, 0.0539] 

𝑡௠ 𝑠 0.45 (11) Yes [0.405, 0.495] 

𝑇 1

𝑠
 

0.8 assumed Yes [0.72, 0.88] 

𝑉ed ml 127 (11) Yes [114, 140] 

𝑉௕ ml 2 (11) Yes [1.8, 2.2] 

𝑉଴ ml 10 (11) Yes [9, 11] 

𝑉௕ ml 2 (11) No - 

𝑅௟௩ mmHg ⋅ s

ml
 

0.0334 (11) Yes [0.03, 0.037] 

𝐿௟௩ mmHg ⋅ sଶ

ml
 

0.000416 (11) Yes [0.0003744, 
0.0004576] 

𝑅௟௔ mmHg ⋅ s

ml
 

0.000089 (11) Yes [8.0 ⋅ 10ିହ, 
9.8 ⋅ 10ିହ] 

𝐿௟௔ mmHg ⋅ sଶ

ml
 

0.00005 (11) Yes [4.5 ⋅ 10ିହ, 
5.5 ⋅ 10ିହ] 

𝑃௟௔ mmHg 5 (11) Yes [4.5, 5.5] 
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𝑆ோ − 1 assumed Yes [0.9, 1.1] 

𝑆஼ − 1 assumed Yes [0.9, 1.1] 

𝑃୲ୣ୰୫ mmHg 15 (2) No - 
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