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1 Cardiovascular model

Here, we provide a brief description of the mathematical model of the cardiovascular system used in
our study. A more detailed explanation is available in our previous publications (1,2).

1.1 Arterial tree

The vascular tree considered in this study consists of 71 major human arteries (see Supp. Figure 1).
The geometric properties of the considered arteries are listed in Table 1. Each arterial segment is
defined by its length L, inlet internal radius 73, and outlet internal radius 7,,. Arterial segments are
modeled as compliant, axisymmetric, tapering cylinders with impermeable walls. The vessel tapering
is described by the following equation:

1) = i (22, M)

in

where 7,(x) denotes the internal radius of a given artery at point x at the nominal pressure P, (3).
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Supp. Figure 1 Overview of the modelled arterial tree. For more information on individual arteries,
see Table 1.



Table 1 Geometry of the modelled arteries and the corresponding peripheral resistances and
compliances. Arterial length (as well as inlet and outlet internal radii (1, and r,) are provided in
centimeters. Peripheral resistance (Ry, 10 g/cm*/s) and compliance (Cy, 10% cm*s? /g) are
provided only for terminal arteries. L and R stand for left and right, respectively. Data adapted from

(4,5).

ID Artery name Length Tin Tout Ry Cr
1 Ascending aorta 4 1.2 1.18 - -

2 Aortic arch (I) 2 1.12 1.11 - -

3 Brachiocephalic 34 0.62 0.61 - -

4 Aortic arch (II) 3.9 1.07 1.06 |- -
5/6 Common carotid R/L 17.7/20.8 | 0.25 025 |- -
7/8 External carotid R/L 17.7 0.15 0.14 5.43 12.7
9/10 Internal carotid (I) R/L 17.7 0.2 0.2 - -
11/17 Subclavian (I) R/L 3.4 042 (042 |- -
12/18 Subclavian (II) R/L 42.2 0.4 024 |- -
13/19 Radial R/L 23.5 0.17 10.14 |5.28 3.52
14/20 Ulnar (I) R/L 6.7 022 1022 |- -
15/21 Interosseous R/L 7.9 0.1 0.1 8.40 0.22
16/22 Ulnar (IT) R/L 17.1 0.2 0.18 |5.28 3.52
23 Thoracic aorta (I) 5.2 1 1 - -

24 Intercostals 8 0.2 0.15 1.39 13.38
25 Thoracic aorta (II) 10.4 0.68 0.65 - -

26 Celiac () 1 039 1039 |- -

27 Hepatic 6.6 022 1022 364 |5.13
28 Celiac (IT) 1 0.2 0.2 - -

29 Gastric 7.1 0.18 [0.17 |5.43 3.44
30 Splenic 6.3 0.18 1017 232 8.01
31 Abdominal aorta (I) 5.3 0.61 0.6 - -

32 Superior mesenteric 5.9 044 1042 ]0.93 20.0
33 Abdominal aorta (II) 1 0.6 0.59 |- -
34/36 Renal R/L 3 026 |0.25 1.13 16.46
35 Abdominal aorta (IIT) 1 0.59 10.58 - -

37 Abdominal aorta (IV) 10.6 0.58 1055 |- -

38 Inferior mesenteric 5 0.17 10.16 |6.89 2.7
39 Abdominal aorta (V) 1 0.54 ]0.52 |- -
40/41 Common iliac R/L 5.8 037 1035 |- -
42/48 Internal iliac R/L 5 0.2 0.19 |796 |2.34
43/49 External Iliac R/L 14.5 0.32 0.27 - -
44/50 Deep femoral R/L 12.6 026 1019 [4.79 3.90
45/51 Femoral R/L 44.5 0.26 0.19 - -
46/52 Posterior tibial R/L 32.1 0.16 10.14 [4.79 3.90
47/53 Anterior tibial R/L 343 0.13 ]0.12 |5.60 3.33
54/55 Vertebral R/L 14.8 0.14 [0.14 |- -

56 Basilar 3 0.16 0.11 - -
57/58 Posterior cerebral (I) R/L 0.5 0.11 0.11 - -
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59/60 Posterior cerebral (II) R/L 8.5 0.11 0.11 11.08 | 6.20
61/62 Posterior communicating R/L 1.5 0.07 0.07 |- -
63/64 Internal carotid (II) R/L 0.5 0.2 0.19 |- -
65/66 Middle cerebral R/L 12 0.14 1012 |597 11.60
67/68 Anterior cerebral (I) R/L 1.2 0.12 0.12 |- -
69/70 Anterior cerebral (IT) R/L 10 0.12 0.10 8.48 8.20
71 Anterior communicating 0.3 0.07 0.07 |- -

1.2 Blood flow

The equations governing blood flow in the arteries are derived from the incompressible Navier-
Stokes equations, assuming constant blood density p and viscosity p, and a Poiseuille velocity
profile. These equations describe the flow rate Q(x, t), internal cross-sectional area A(x,t), and
transmural pressure P(x,t). A system of equations is formed with the following three equations. The
continuity and momentum equations are derived using standard methods (3,6):

00(t, x) N 0A(t, x) _ 0

dx ot 2)
Qlt,x) 0 (Q(tx))  A(t,x)oP(t,x)  8muQ(tx)
ot + ax <A(t, x)> + P ax p A(t,x) )

The third equation describes the relationship between arterial cross-sectional area and transmural
pressure Pr, assuming the arterial walls are purely elastic (3):

Pr(t,x) — Py = f(x) (1— ’j?T(;))>, )

where A (x) is the arterial internal cross-sectional area at point x at nominal pressure Py, i.e.,
Ay (x) = mr¢(x), and the function f(x) describes the elasticity of the artery wall as follows:

4
fx) = 3 (k1 exp(kzro (x)) + k3), 5)
where parameter k,; describes the stiffness of smaller arteries, k, reflects the transition between the
large, elastic arteries and smaller, less-elastic arteries, and k3 may be interpreted as the stiffness of
large arteries (the vast majority of arteries in our model) (7).

1.3 Model of the cuff inflation

To model the impact of cuff inflation on arteries beneath the cuff, we used a nonlinear relationship
between arterial internal cross-section (44) and transmural pressure (Pr) proposed by Drzewiecki et
al. (8) (following its calibration, as described below):



A =4 In(aPr + b) .
4771 4 exp(—cPp)

where a, b, ¢, and d are empirical constants. This relationship combines the model of elastic

distention of arterial wall with the model of its collapse at negative transmural pressures (cross-
sectional area approaching zero), thus describing the (static) arterial cross-sectional area for a wide
range of transmural pressures.

For simplicity, we used the above relationship only for the arterial segments under the considered
cuffs. Moreover, to maintain the computational tractability of our 1-D model of the arterial network,
we did not use the above relationship explicitly in those arterial segments, but we kept there our
standard elastic model (equation (4)), which for each simulation (for a given cuff pressure) was
scaled so that it would approximate locally the above relationship around the new expected mean
arterial transmural pressure (assuming that the transmural pressure is reduced by an amount equal to
the cuff pressure).

Our methodology involved the following calibration process (see. Supp. Figure 2). First, we
calibrated the parameters a, b, ¢, and d of the Drzewiecki model to closely match our standard
elastance model of the arterial wall (as given by Olufsen (3)) within the physiological pressure range,
1.e. the range 80-120 mmHg. This ensured alignment with our baseline model under normal
conditions. Next, to simulate cuff inflation, we used the Drzewiecki model to predict the reduced
arterial cross-sectional area at external pressure corresponding to cuff pressure. Then, for each
considered cuff pressure level, we scaled the Olufsen-based elastance model, i.e., we found the
values of parameters P,.,, and g modifying equation (4), as follows:

Ao (x)

PT(t'x)=P0+Pnew+g'f(x) 1- A(t,x) )

(M
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to approximate locally the Drzewiecki model within + 20 mmHg around the estimated mean
transmural pressure (for the given cuff pressure level). This scaling method allowed us to capture the
nonlinear behavior of selected arterial segments during cuff occlusion while preserving the
computational efficiency and structure of our existing 0-1D model.
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Supp. Figure 2 Calibration of the arterial pressure-area (P-A) relationship to simulate cuff inflation
(example provided for the cuff pressure Py = 100 mmHg). The calibration process for a given
artery consists of three steps: (a) calibrating the parameters of the Drzewiecki model (equation 6) to
fit as closely as possible the default P-A relationship (equation 4, red line) in the physiological
pressure range (i.e. the range 80-120 mmHg); (b) using the fitted Drzewiecki model (blue line) to
predict the arterial cross-sectional area at the given cuff pressure (assuming that the transmural
pressure is reduced by an amount corresponding to the cuff pressure), and (c) scaling the default P-A
relationship (equation 4) to approximate locally the Drzewiecki model (green line). By Py we
denoted transmural pressure.

1.4 Arterial bifurcations

At all modeled arterial bifurcations, we assume pressure continuity and mass conservation (i.e., no
blood leakage). Let p represent the parent vessel and d4, d, the daughter vessels. The assumed
conditions can be expressed as follows:

Pout,p = Pin,d1 = Pin,dz and Qout,p = Qin,d1 + Qin,dza ®)
where in and out denote inlet and outlet of a given artery, respectively.



1.5 Inflow boundary condition

Since venous return to the heart is not modeled, the inflow boundary conditions represent the outflow
from the left heart ventricle. This is modeled based on the works of Suga et al. (9,10), and Danielsen
and Ottesen (11). The pressure in the left ventricle, Py, is described using a time-varying elastance
function Ep, (t):

Py, = Ep, () (Vi (8) — Vo), C))
where V;,(t) is the ventricular volume at time t and V; is the volume of the left ventricle at zero

transmural pressure. According to (11), the function Ej, (t) may be expressed as follows:

Elv(t) = Emin(1 - d)(t)) + Emaxd)(t)' 10)
where the parameters E,;, and E,,,, are minimal and maximal values of the elastance function E},(t).
Function ¢ is defined by the following equation:

mt 2t
asin (—) + fsin (—) for 0<t<t,
t tm

m

@) =
0 for ¢, <t<T (1

where T is the heart period, t,,, denotes the time to the onset of constant (minimal) elastance, and
parameters o and [ are responsible for the shape of the ¢ (t). Additionally, a and 3 must be chosen
so that tréq[gl')?g] ¢ () =1.

The work of the left ventricle can be divided into four stages. We will begin with isovolumic
relaxation. During this phase, the pressure in the left ventricle decreases. When Py, is smaller than the
pressure in the left atrium, P;,, then the mitral valve opens.

In the next phase (ventricular filling) blood flows from the left atrium to the left ventricle. This flow,
Q4. 1s described by the following equation:

dQa _ 1 Ry

- (p _p)_a
it L. (Pig — Piy) L. Qua- (12)

Parameter L;, is an inertia term, and R;, describes the resistance against the flow from the left atrium
to the left ventricle, caused mainly by the viscous properties of the blood. Simultaneously, due to the
inflow of blood into the left ventricle, V},, increases, as given by the following equation:

avy,
7 - Y (13)

When V;,, is greater than the end-diastolic volume V4, the mitral valve closes, and isovolumic

contraction begins.

During this phase, there is no flow between the left atrium and ventricle (Q;, = 0), and Py, increases.
When Py, is greater than the pressure in the ascending aorta, P,, the aortic valve opens, and the last
phase of the cycle (ventricular ejection) begins.
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The flow between the left ventricle and aorta is expressed by an equation similar to equation (11),
namely:

dle 1 Rlv

it Lo (Pig = Fo) = L, (14)

The pressure P, is taken directly from the 1D model of the arterial tree. The volume V;,, decreases
according to the following equation:

dV,
7 =~ Cw (15)

At the end of this phase, some amount of blood, V},, returns from the ascending aorta to the left

ventricle, which is associated with the negative value of @y, (backflow). V}, is given by the following
equation:

t
Vy =1 1Qul, for t>t", (16)

t*
where t* denotes the moment, when Q;,, becomes negative. At the time t, when V}, > V_b we end the
last phase by setting Q;,, = 0, and then the cycle repeats.

1.6 Outflow boundary conditions

To model blood flow in the small arteries and arterioles downstream from the terminal arteries in our
vascular model, we use the three-element Windkessel model (12,13):

dQena(t dP,.4(t
Qd?( ) = R,Cr — di( ) + (Penda(t) = Peerm) — (R1 + R2)Qenq(t) (17)

where Ry, R, are proximal and distal resistances, respectively, Cr is the compliance of the given

RiR,Cr

terminal vascular branch, and Piepy, is the reference terminal pressure. We assume that R, /Ry = 0.2,
where Ry = R; + R, is the total terminal resistance (5,14). The assumed values of R and Cr are
shown in Table 1. We personalize the model by applying the scaling factors: S for compliances and
Sy for resistances, see (15) for more details.

2 Default Parameter Values

For our baseline model, we employed parameter values representative of a 25-year-old male with a
height of 175 cm. The values of these parameters are provided in Table 2.

Table 2 Default parameter values considered in the cardiovascular model.

Parameter Unit Nominal Reference | Studied in the | Sampling range for
value sensitivity sensitivity analyses
analysis (£ 10%)
m 8 1.04 (13) No -
cm3




p cm? 0.04 (13) No -
S
Py mmHg 97 (14) No -
ky 8 3-10° (16) Yes [2.7 -10°,3.3-10°]
s?-cm
k, i —13.5 (7 Yes [-12.15, -14.85]
cm
ks g 5.36 - 105 | Computed Yes [4.82, 5.90] - 10°
s?-cm for
age=25
from (7)
a — 0.9 (11) No -
b — 0.25 (11) No -
E ax mmHg 2.5 (11) Yes [2.25,2.75]
ml
Ein mmHg 0.049 (11) Yes [0.0441, 0.0539]
ml
tm s 0.45 (11) Yes [0.405, 0.495]
T 1 0.8 assumed Yes [0.72, 0.88]
s
Ved ml 127 (11) Yes [114, 140]
Vy ml 2 (11) Yes [1.8,2.2]
Vo ml 10 (11) Yes [9, 11]
v, ml 2 (11) No -
Ry, mmHg - s 0.0334 (11) Yes [0.03, 0.037]
ml
Ly, mmHg - s? | 0.000416 (11) Yes [0.0003744,
ml 0.0004576]
R, mmHg - s 0.000089 (11) Yes [8.0-1075,
ml 9.8-1079]
L, mmHg - s2 0.00005 (11) Yes [4.5- 1075,
ml 5.5-107]
Py, mmHg 5 (11) Yes [4.5,5.5]
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Sk — 1 assumed Yes [0.9, 1.1]
Sc — 1 assumed Yes [0.9, 1.1]
Piorm mmHg 15 2) No -

10
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