-,\' frontiers

Supplementary Material

Title: Optimization of cervical cord atrophy measurement using a real-world multi-center
dataset in Multiple Sclerosis

Description the software methods for cervical cord segmentation

Calculation of cord area (CSA) and longitudinal cord area changes: for CSA measurements, four
different software methods were used, that have previously been used in large MS cohorts (Rocca et
al. 2011; Lukas etal. 2015; Prados et al. 2016, Mocciaetal. 2020). The firstapproach was the active
surface model (ASM), a semiautomatic software method commercially available with the Jim
Software package (“ cord finder” tool in JIM, v. 7.0 Xinapse Systems, Colchester, UK;
www.Xinapse.com)(Horsfield, Sala et al. 2010, Rocca, Horsfield et al. 2011), the second
semiautomatic method was the watershed-segmentation method available with NeuroQlab (NQL,
Fraunhofer-Mevis, Bremen, Germany; license freely available for research purposes upon request
from Fraunhofer-Mevis) (Lukas, Sombekke et al. 2013, Weiler 2017). In addition to these
semiautomatic approaches, two automatic software methods were chosen: the deformable model
method PropSeg, and the DeepSeg tool that is based on convolutional neural networks, both freely
available with the Spinal cord Toolbox (SCT) (De Leener, Kadoury et al. 2014, De Leener, Levy et
al. 2017, Gros, De Leener et al. 2019) (https://spinalcordtoolbox.com).

ASM (JIM software):

The Active Surface tool requires interactive marking of the center of the cord at a regular distance
along several vertebral levels to be included in the analysis (Horsfield, Sala etal. 2010). Cord center-
line and cord outlines at each slice are then calculated using a segmentation algorithm with a steadily
increasing refinement of the active surface model. This allows a rapid semi-automated segmentation
by measuring the cord CSA along the length of the extracted surface. We used the cord finder tool
included in JIM version 7.0, with the following settings: nominal cord diameter setting: 10 mm,
number of shape coefficients: 18 and order of longitudinal variation: 5. ASM has been shown to be
highly reproducible and the method has been used in previous cross sectional and in longitudinal MS
studies (Rocca, Horsfield et al. 2011, Valsasina, Rocca et al. 2013, Valsasina, Rocca et al. 2015,
Rocca, Valsasina et al. 2019, Weeda, Middelkoop et al. 2019, Bischof, Papinutto et al. 2022,
Valsasina, Gobbi et al. 2022).

NOL.:

NQL (version 4.01) requires as the first step to define interactively the section of the cord to be
analysed by placing an oblique plane through the dataset, which runs through the upper and lower
end of the section (Weiler 2017). This is aided by two perpendicular lines, which allow precise
alignment of the section to the specific vertebral bodies. This step is followed by a semi-automatic
pre-segmentation using a watershed transformation of the pixel intensities. Subsequently, a fully
automated model based volume measurement is performed by fitting the intensity distribution of the
pre-segmented input region using a Gaussian mixture model. The spinal cord volume is modelled
using Gaussian mixture of two tissue classes (spinal cord tissue and CSF) and a separate class
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representing partial volume voxels. The volume s calculated by summation of the spinal cord tissue
class volume and half of the volume of the partial volume class. The center-line of the SC is
calculated and used to determine the mean CSA by normalizing the measured volume to the section
length. The operator can correct the final results interactively. NQL has been shown to be highly
reproducible (Lukas, Sombekke etal. 2013, Weiler 2017) and the method has already been used in
cross-sectional and in longitudinal studies of different neurological diseases including MS (Lukas,
Hahn et al. 2008, Daams, Weiler et al. 2014, Lukas, Knol et al. 2015, Liu, Lukas et al. 2016,
Schneider, Bellenbergetal. 2017, Wilhelms, Bellenberg etal. 2017, Weeda, Middelkoop et al. 2019).

SCT PropSeqg (SCT PS)

The Spinal Cord Toolbox SCT features specific segmentation tools for the spinal cord. The
segmentation algorithm PropSeg is based on an iterative propagation of a deformable model with
adaptive contrast mechanism (De Leener, Kadoury et al. 2014, De Leener, Levy etal. 2017).
Automated detection of the center of the spinal cord is done by ellipse detection and information
from the body symmetry, followed by propagating a tubular surface along the spinal cord edge using
deformable models. SCT_PS has been applied in studies on MS patients (Yiannakas, Mustafa et al.
2016) and has been shown to be highly reproducible (McCoy, Dupont et al. 2019).

SCT DeepSeq (SCT DS)

The DeepSeg algorithm implemented in SCT is based on a deep learning convolutional neural
network (CNN) module trained to effectively segment the spinal cord from MRI images. SCT_DS
was trained from masks generated by SCT_PS, which were manually corrected if necessary (De
Leener, Levy etal. 2017, Gros, De Leener etal. 2019). SCT_DS has been thoroughly evaluated in a
large multi-centre dataset of HC and has been applied in different diseases related to cord atrophy
(McCoy, Dupont et al. 2019, Moccia, Valsecchi et al. 2020, Bautin and Cohen-Adad 2021).

We used SCT (version 5.6, https://spinalcordtoolbox.com) with default settings to segment the
cervical cord and automatically identify different vertebral levels in SCT_PS and SCT_DS. The
segmentation and labeling quality was visually inspected using the implemented quality control tool.
Problems with automatic vertebral labeling in single cases were resolved by using the dedicated
manual labeling procedure.

Average operator times required for a single CSA measurement

For the semiautomated methods ASM and NQL, although the computation times for spinal cord
segmentation are fast (< 1 min), average operator times for a single CSA measurement including
potential error correction, and estimation of normalization measures are 8-10 minutes.

For the automated methods of Spinal Cord Toolbox SCT_DS and SCT_PS the speed of the spinal
cord segmentation and output of results directly depends on the computing power of the system used
and for example takes 7 minutes for cord segmentation using a standalone computer equipped with
quad-core Intel Core i5 64-bit 1.4 GHz CPU and Memory 8 GB 2133 MHz. After automatic
processing of a bulk of examinations additional operator time of 2-3 minutes per scan is required for
quality control and estimation of normalization measures.



Consideration of partial volume effects and of cord curvature in the different software methods:

As laid out in detail in our previous methodological study, the methods have specific differences
related to the definition of the cord edges and handling of partial volume effects at the transition
between cord and surrounding cerebrospinal fluid (CSF)(Lukas, Bellenberg et al. 2021). In addition,
the effects of cord curvature are treated differently between ASM and NQL or SCT_PS and
SCT_DS. Due to the limited image resolution and the small diameter of the SC these effects may
account for a substantial proportion of the segmented volume (Yiannakas, Mustafa et al. 2016,
Weeda, Middelkoop et al. 2019, Lukas, Bellenberg et al. 2021).

The SCT_PS algorithm includes only voxels into the segmentation that are classified as “pure” cord
tissue, without referring to partial volume effects at the margin of the cord contour. As SCT_DS
segmentation was trained on SCT_PS results, the method has the same characteristic as SCT_PS and
excludes voxels that are prone to partial volume effects. In contrast, NQL includes pure cord tissue
voxels and 50% of the partial-volume tissue class in the CSA calculation (Weiler 2017, Yiannakas,
Mustafa etal. 2016). Similarly to NQL, the cord segmentation of ASM includes a fraction of those
voxels subject to partial volume effects between the cord and the surrounding CSF because the cord
surface definitionis partly controlled by seeking high intensity gradients (Horsfield, Sala etal. 2010).
Thus, CSA results of ASM and NQL are typically higher than CSA generated by SCT_PS or
SCT_DS.

Additionally, effects of the cervical cord curvature are treated differently between NQL and ASM or
SCT. While ASM and SCT methods are optimized with regards to variations of the cord curvature
(Horsfield, Sala et al. 2010, De Leener, Kadoury et al. 2014), NQL quantifies the cord volume
between two parallel oblique planes, and uses the centerline merely for calculation of the mean cord
area from the segmented volume (Weiler 2017). Thus, the CSA estimations by NQL might differ
from the corresponding ASM or SCT results, depending of the degree of curvature of the SC, or the
exact choice of the cord section to be analyzed.
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Supplementary Figures and Tables
Supplementary Figures

Supplementary Figure S1: Example of receiver operating characteristic (ROC) curves for the
differentiation between rMS and pMS using unnormalized or normalized CSA measured at the C1-7
vertebral level using the method ASM and NQL (upper row), SCT_DS and SCT_PS (lower row);
color coding: black: unnormalized CSA, green: C1-C2 normalized CSA (nCSAci.c2), blue: C1-C3
normalized CSA (NCSAc1.c3), orange: C1-C7 normalized CSA (nCSAc1c7), green: C1-C2
normalized CSA (NCSAc1-c2), purple: C3-area normalized CSA (NCSA3-area)
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Supplementary Tables

Supplementary Table S1: Sequence parameters of 3D-T1w imaging used with the 3Tesla scanners

at the participating centers

Supplementary Material

Site Nr 1 2 3 4 5
Vendor GE Discovery Sieme_ns Trio Phil_ips Philips Phil_ips
MR750 Tim Achieva Intera Achieva
Magnet length / bore 5, e, 198/ 60 157/60  157/60  157/60
diameter [cm]
Coil type HNS array 16  head-neck ~ SENSE-NV-  SENSE-  SENSE-NV-
ch. array 16 ch. 16 ch. NV-16 ch. 16 ch.
Head MRI (3D-T1-weighted)
Seqguence FSPGR MPRAGE TFE TFE TFE
Number of Slices 172 192 180 204 180
Orientation sagittal sagittal Sagittal Sagittal sagittal
TR (ms) 7.8 2300 10 7.1 6.8
TE (ms) 3 3 4.6 3.2 3.1
T1 (ms) 450 900 1000 900 825
FA 12° 9° 8° 9° 8°
Voxel Size (mm)  0.98x0.98x1 1x1x1 Ix1x1 Ix1x1 1x1x1
Cervical cord MRI (3D-T1-weighted)
Sequence FSPGR MPRAGE TFE TFE TFE
Number of Slices 172 128 64 64 128
Orientation sagittal sagittal sagittal sagittal sagittal



TR (ms) 7.3 2300 8 8 8

TE (ms) 3 3.26 3.5 3.5 3.7
T1 (ms) 450 900 1000 1000 856
FA 15° 9° 8° 8° 8°
Voxel Size (mm) 1x1x1 1x1x1 Ix1x1 Ix1x1 Ix1x1

Abbreviations: TR Repetition time; TE Echo time. Tl Inversion time; FA Flip angle; TFE Turbo
field echo; MPRAGE Magnetization prepared rapid acquisition gradient echo; FSPGR Fast spoiled
gradient recalled echo; Site Numbers: 1= Amsterdam UMC, Amsterdam; 2= Hospital Universitari
Vall d’Hebron Barcelona; 3= Ruhr-University of Bochum; Bochum; 4= IRCCS San Raffaele
Scientific Institute; Milano; 5= University College London; London.
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Supplementary Table S2: Cord cross-sectional area (CSA unnormalized) in MS subgroups and HC for different software, cervical cord

levels and brain or cord MRI. P-value and effect size calculations between groups were adjusted for center, age and sex.

a method ASM NQL SCT_PS SCT_DS

:’_’I vertebral

< | level C1-2 C1-2 c1-7 C1-2 c1-2 c1-7 c1-2 C1-2 c1-2 c1-7

(1]

:c: MRI tvpe cervical cervical cervical cervical cervical cervical cervical cervical

- yp brain cord cord brain cord cord brain cord cord brain cord cord

(]

E HC 824+96 839+11.1 79.1+99 | 827+96 824+96 82.7+95| 72470 740+7.8 748+90|682+76 645+80 62.9+85

: MS 754+91 766+97 726+9.7| 750493 76.0+10.0 76.0+10.7| 66.3+89 685+10.3 69.6+11.9| 61.5+88 605+9.1 58.8+8.2

I rvs 770+85 784+91 749+85|77.1+87 784+89 791+86| 67.9+85 705+97 727+10.7| 63.4+83 62.3+87 60.7+7.3
pMS 702+89 709+9.6 653+96|682+80 680+93 660+106| 61.3+86 624298 59.9+10.8|558+80 549+81 52.8+8.1

£ p (HC-MS) 0.12 0.12 0.12 0.12 0.197 0.275 0.12 0.236 0.549 0.12 0.185 0.129

o | Effect size n2 0.07 0.08 0.07 0.09 0.04 0.03 0.07 0.03 0.01 0.10 0.05 0.06

T | (95% cI) (0.00:0.25) (0.00;0.25) (0.00;0.24) [ (0.00;0.26) (0.00;0.19) (0.00;0.17)| (0.00;1.0) (0.00;0.92) (0.00;0.12)] (0.00;0.27) (0.00;0.21) (0.00;0.23)
p (HC-pMS)2 0.024 0.08 0.034 0.012 0.021 0.012 0.062 0.366 0.344 0.021 0.096 0.096
Effect size n2 0.32 0.28 0.34 0.41 0.37 0.44 0.29 0.15 0.18 0.37 0.22 0.29

£ (95% CI) (0.06;0.55) (0.01;0.56) (0.05;0.59) | (0.15;0.61) (0.09;0.60) (0.17:0.64)| (0.02;0.55) 0.01;0.48) (0.01;0.53)| (0.10;0.59) (0.0;0.53) (0.00;0.59)

Q.| p (HC-rMs)? 0.566 0.566 0.566 0.566 0.888 0.999 0.556 0.888 0.999 0.556 0.888 0.739

§ Effect size n2 0.07 0.07 0.05 0.07 0.03 0.02 0.06 0.03 0.04 0.10 0.03 0.04

= | (95% i) (0.00:0.25) (0.00:0.23) (0.000.21) [ (0.00;0.24) (0.01;0.17) (0.0;0.15) | (0.00;0.23) (0.00;0.17) (0.00;0.11)] (0.00;0.27) (0.00;0.18) (0.00;0.20)

Q p (rMS-

I DM 0.196 0.458 0.196 0.084 0.084 0.048 0.405 0.917 0.458 0.196 0.458 0.458
Effect size n2 0.15 0.11 0.19 0.24 0.27 0.36 0.12 0.06 0.14 0.16 0.11 0.15
(95% CI) (0.00;0.25)  (0.00:0.40) (0.000.46) | (0.03;0.46) (0.04;0.50) (0.12;0.56)| (0.00;0.39) (0.00;0.37) (0.00;0.48) | (0.00;0.46) (0.00;0.42) (0.00;0.47)

Abbreviations: HC healthy controls, tMS relapsing MS, pMS progressive MS, SCT DS SCT deepseg, SCT PS SCT propseg, NQL
NeuroQLab, ASM active surface method. p: all p-values extracted by linear mixed effect models adjusting for age and sex with center as
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random intercept; a : pairwise contrast with Bonferroni correction for MS subgroup analyses; all p-values corrected for multiple
comparisons between methodologies (Benjamini-Holm correction across methods, MRI type, vertebral level); p-values <0.05 are marked in
bold font; Effect size n2: partial eta squared of CSA differences between groups.
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Supplementary Table S3: Linear regression (general linear model) with CSA or EDSS as dependent variables with inclusion of age as
covariate, sex (male=0, female=1) as fixed factor and scanner (center no. 1,2,3,4,5) as a random factor.

HC MS MS
CSA CSA EDSS
Regression Regression Regression
Coefficient | Std.- Coefficient | Std.- Coefficient | Std.-
Parameter B Error |p B Error | p B Error | p
constant 79.18(10.701| <0.001 61.78| 6.827| <0.001 3.29] 1.015]0.002
age [years] -0.032| 0.3230.923 -0.066| 0.103| 0.525 0.05| 0.015| 0.003
sex -1.64| 8.386|0.848 15.57| 4.669( 0.001 0.36| 0.696| 0.61
[center=1] -0.74110.981| 0.947 14.94| 4.675(0.002 -2.421 0.697|0.001
[center=2] n.a. n.a. n.a. 19.04| 5.057] <0.001 -3.36| 0.754] <0.001
[center=3] 15.56| 9.14|0.114 17.51| 5.477(0.002 -3.02] 0.801| <0.001
[center=4] 0 n.a. n.a. 16.44| 4.685| 0.001 -1.75] 0.699] 0.014
[center=5] n.a. n.a. n.a. Oln.a. n.a. 0|n.a n.a.

Abbreviations: HC: healthy controls, MS: multiple sclerosis, Std.: standard, p: significance, n.a.: not applicable.
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Supplementary Table S4: Comparison between unnormalized cord cross-sectional area (CSA)
using different software methods, separately for brain or cord MRI at different vertebral levels
(repeated measure ANOVA with 4 software methods as within-subject factor and Bonferroni

correction for multiple comparisons)

MRI type Brain MRI Cord MRI Cord MRI
vertebral level C1-2 C1-2 C1-7
Pairwise comparison Mean CSA | Sig. Mean CSA | Sig. Mean CSA | Sig.
difference difference difference
[95% CIl] [95% CI] [95% CI]
SCT DS vs. SCT_PS -4.80 <0.001 -8.69 <0.001 -11.59 <0.001
[-5.91;-3.70] [-10.65-6.72] [-14.17;-9.01]
SCT_DS vs. NQL -13.51 <0.001 -15.77 <0.001 -17.88 <0.001
[-14.42;-12.60] [-17.03;-14.52] [-19.46;-16.30]
SCT _DS vs. ASM -14.31 <0.001 -16.70 <0.001 -14.48 <0.001
[-15.17;-13.46] [-17.82;-15.57] [-15.65;-13.30]
SCT_PS vs. NQL -8.71 <0.001 -7.09 <0.001 -6.29 <0.001
[-10.05;-7.36] [-8.87;-5.31] [-8.51;-4.07]
SCT_PS vs. ASM -9.51 <0.001 -8.01 <0.001 -2.89 0.003
[-10.79;-8,24] [-9.90;-6.11] [-5.02;-0.75]
NQL vs. ASM -0.81 0.065 -0.92 0.038 -3.40 <0.001
[-1.64;0.03] [-1.81;-0.03] [-4.64;-2.17]

Abbreviations: SCT_DS SCT_deepseg, SCT_PS SCT_propseg, NQL NeuroQLab, ASM active
surface method, vs: versus. Sig: p-values of pairwise comparisons using repeated measure ANOVA
with 4 software methods as within-subject factor and Bonferroni correction for multiple comparisons;
Cl: confidence interval.



Supplementary Table S5: Comparison of cord cross-sectional area (CSA, unnormalized), between
brain and cord MRI at the C1-2 vertebral level in MS and HC for different software methods.

method / CSA [mm?

vertebral level | MRI type mean * standard deviation

ASM MS HC

C1-2 Brain vs. Cord 75.4+£9.1vs. 76.6 £9.7 [82.4+9.6vs.83.9+11.1
Paired t-test p <0.001 0.076
Intra-class ICC 0.979 0.992
correlation [95% CI] [0.951;0.989] [0.973;0.997]

NQL MS HC

C1-2 Brain vs. Cord 75.0+9.3vs. 76.0+£10.0(82.7 £ 9.6 vs. 82.4 £ 9.6
Paired t-test p <0.001 0.063
Intra-class ICC 0.980 0.994
correlation [95% CI| [0.964;0.989] [0.981:;0.998]
SCT_PS MS HC

C1-2 Brain vs. Cord 66.3+8.9vs. 68.5+10.3(724+£7.0vs. 74.0+£7.8
Paired t-test D <0.001 0.232
Intra-class ICC 0.860 0.543
correlation [95% CI] [0.728;0.922] [-2.04;0.832]
SCT_DS MS HC

C1-2 Brain vs. Cord 61.5+8.8vs. 60.5+£9.1 [68.2+7.6vs. 64.5+8.0
Paired t-test p 0.023 0.007
Intra-class ICC 0.957 0.947
correlation [95% CI] [0.931;0.973] [0.760;0.984]

Abbreviations: HC healthy controls, MS Multiple Sclerosis, pMS progressive MS, SCT_DS
SCT_deepseg, SCT_PS SCT_propseg, NQL NeuroQLab, ASM active surface method. p: p-values:
paired t-tests; ICC: intra-class correlation coefficients (two-way mixed effects model for absolute
agreement and 95% confidence interval CI)
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Supplementary Table S6: Normalization measures:

Four different normalization measures were derived from a mid-sagittal view of the 3D-T1w cord
MRI for each participant at each visit: (1) the height of the C1/C2 vertebra, measured from the tip of
C1to the lower border of the C2 vertebral body in the middle of its anterior-posterior extension; (2)
the height of the C1-C3 vertebrae, measured as (1) but down to the lower border of C3 instead of C2;
(3) the entire cervical cord length (C1-C7), extracted from the output of the ASM method; and (4) the
area of the C3 vertebra. The vertebral heights and dimensions were measured using the ITK-SNAP
software viewer (available at www.itksnap.org). Table S4 shows mean (standard deviation) values of
the normalization measures within each group.

Table S4: Normalization measures within each group shown as mean (standard deviation)

Vertebral measure HC rms pMS p-value

height C1-C2 [mm] 35.1(3.0) 33.7(2.9) 35.4(2.3) 0.274

2.9
height C1-C3 [mm] 53.0(4.2) | 50.6(4.4) 52.9(3.8) | 0.172

height C1-C7 [mm] | 125.7(9.2) | 119.3(10.8) | 122.2(9.2) | 0.043

(
(
(
(

area C3 [mm?] 228.6(33.8) | 202.0(40.6) | 227.1(49.8) | 0.035

Abbreviations: HC healthy controls, rMS relapsing MS, pMS progressive MS.

p-values: between-group differences extracted by using analyses of variance (ANCOVA) adjusting
for age and sex, using Bonferroni correction for multiple comparisons between subgroups.

In the ANCOVA analyses the differences in the normalization measures between groups were not
significant for the height of C1-C2 and height of C1-C3, but significant for height of C1-C7 and the
area of C3. There were no between-subjects effects of age, while effects of sex had a significant
impact on differences between the groups. This was in line by lower values of the normalization
measures in the rMS group, which had a higher fraction of female participants.
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Supplementary Table S7: Pearson’s correlation analyses between unnormalized CSA and the
normalization measures in the HC group

CSA Pearson’s | height C1-C2 | height C1-C3 | height C1-C7 | areaC3 [mm?]
method | correlation | [mm] [mm] [mm]

r 0.490 0.395 0.284 -0.217
ASM [95% CI] | [0.187;0.708] | [0.071;0.643] | [-0.054;0.584] | [-0.513;0.125]

p 0.003 0.019 0.098 0.210

r 0.626 0.557 0.450 -0.090
NQL [95% CI] | [0.375;0.792] | [0.280;0.749] | [0.142;0.678] | [-0.407;0.246]

P <0.001 <0.001 0.006 0.602

r 0.435 0.462 0.436 0.009
scT ps | [95% CI] | [0.129;0.665] | [0.162;0.683] | [0.130;0.666] | [-0.316;0.332]

p 0.007 0.004 0.007 0.957

r 0.541 0.456 0.352 -0.089
scT ps | [95% CI] | [0.253;0.741] | [0.145;0.685] | [0.021;0.613] | [0.410;0.251]

P <0.001 <0.001 0.038 0.610

Abbreviations: SCT_DS SCT_deepseg, SCT_PS SCT_propseg, NQL NeuroQLab, ASM active
surface method. p: p-values and r: coefficients of Pearson correlations; Cl: confidence interval.
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Supplementary Table S8: Receiver operating characteristic (ROC) analyses of differentiating between rMS and pMS subtypes regarding
contrasts between normalized and unnormalized CSA x C1-2 and C1-7 levels x brain and cord MRI x NQL and ASM methods. We show the
area under the curve (AUC), 95% confidence interval (Cl) and corrected p-values of pair-wise differences between AUC. All p-values
derived from pairwise AUC comparisons using DeLong’s testing were corrected for multiple comparisons across all contrasts using

Benjamini-Hochberg correction.

Method NQL ASM
VeL':s:Ir al C1-2 C1-2 c1-7 C1-2 C1-2 C1-7
MRI type brain cervical cord cervical cord brain cervical cord cervical cord
AUC 0.771 0.791 0.832 0.692 0.716 0.770
Cl (95%) |[0.655,0.888] | [0.681,0.901] | [0.737,0.926] | [0.559,0.826] | [0.586,0.846] | [0.648,0.891]
P csa/csAnorm - - - - - -
CSA
Pciz2/cr - 0.289 - - 0.179 -
P brain / cord 0.290 - - 0.370 - -
P naL/asm 0.050 .046* 0.064 - - -
AUC 0.840 0.852 0.877 0.769 0.777 0.814
CI (95%) |[0.738,0.942] | [0.751,0.952] | [0.786,0.968] | [0.645,0.893] | [0.651,0.902] | [0.706,0.922]
P_csa/csanorm 0.367 0.370 0.455 0.367 0.370 0.455
nCSAcic;
Pciz2/cr - 0.370 - - 0.370 -
P brain / cord 0.431 - - 0.691 - -
P naL/Asm 0.070 0.064 0.064 - - -
AUC 0.837 0.843 0.866 0.770 0.769 0.807
CI (95%) |[0.737,0.936] | [0.744,0.942] | [0.775,0.956] | [0.648,0.893] | [0.645,0.892] | [0.701,0.913]
nehae P csa/csAnorm 0.367 0.431 0.570 0.367 0.431 0.564
Pca2/as - 0.370 - - 0.370 -




Pbrain/cord 061 6 - - 0961 - -
P naL/Asm 0.138 0.138 0.064 - - -
AUC 0.812 0.829 0.834 0.739 0.752 0.788
Cl(95%) |[0.716,0.908] | [0.738,0.920] | [0.741,0.926] | [0.620,0.858] | [0.633,0.872] | [0.685,0.892]
P csa/csanorm 0.540 0.564 0.961 0.540 0.594 0.748
nCSAcic7
Pca2/ar - 0.875 - - 0.370 -
Pbrain/cord 0397 - - 0651 - -
P naL/asm 0.082 0.077 0.179 - - -
AUC 0.812 0.825 0.834 0.774 0.774 0.799
Cl(95%) |[0.716,0.907] | [0.732,0.918] | [0.741,0.927] | [0.664,0.884] | [0.666,0.882] | [0.700,0.899]
P csa/csAnorm 0.665 0.701 0.961 0.456 0.570 0.729
nCSAC3-area
Pcaa/as - 0.616 - - 0.370 -
Pbrain/cord 0386 - - 0961 - -
P naL/asm 0.299 0.290 0.179 - - -
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Supplementary Table S9: Recommendations for CSA quantification in the cervical cord of patients with MS

CSA quantification in the cervical
spinal cord

Recommendation

Alternative

MRI acquisition type

Pros and Cons

Dedicated cervical cord MRI with isotropic 3D-T1w

Pro: *enable measurements at all cervical cord levels;
Con: * long acquisition times for brain & cord MRI

Brain MRIincl. sagittal 3D_T1w covering the upper
cervical cord

Pro: * shorter acquisition; better patient comfort;
* no significant differences between CSA at C1-2
by brain MRI compared with cord MRI

Con: * limited to upper cervical cord sections

CSA in whole cervical cord or upper
cervical cord?

Pros and Cons

Whole cervical cord (C1-7) with cord MRI

Pro: * Best discrimination between rMS and pMS
subtypes; strongest correlations with EDSS scores.
Con: * Longer acquisition times (cord MRI needed)

Upper cervical cord sections (e.g. C1-2) with brain
or cord MRI

Pro: *Good discrimination between MS and HC at

C1-2 level ;
Con: * Slightly worse discrimination between rMS
and pMS than whole cervical cord measurements;

CSA normalization

Pros and Cons

Use spine skeletal normalization metrics: height of C1-
C2 vertebrae recommended; optional: height of C1-C3
vertebrae

Pro: *Using the vertebral height of C1-C2 for CSA
normalization improves discrimination between
MS subtypes and correlations with EDSS;
*easily available as spine MRI derived number;
Con: *manual intervention needed.

According to published literature (not part of our
study): brain intracranial cavity volume might be
used for normalization, if brain MRI and
automated analysis pipelines are available.
Potential Pros and Cons:

Pro: * automated calculation in brain analysis
pipelines;

Con: * volumetric brain analysis and brain MRI
necessary

Image analysis software
Suitability dependent on sample size

Active surface (ASM) NQL
Semiautomated Semiautomated

SCT_PS
Fully automated

SCT_DS
Fully automated
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