
   

Supplementary Material 

Title: Optimization of cervical cord atrophy measurement using a real-world multi-center 

dataset in Multiple Sclerosis 

Description the software methods for cervical cord segmentation 

Calculation of cord area (CSA) and longitudinal cord area changes: for CSA measurements, four 
different software methods were used, that have previously been used in large MS cohorts (Rocca et 
al. 2011; Lukas et al. 2015; Prados et al. 2016, Moccia et al. 2020). The first approach  was the active 
surface model (ASM), a semiautomatic software method commercially available with the Jim 

Software package (“ cord finder” tool in JIM, v. 7.0 Xinapse Systems, Colchester, UK; 
www.xinapse.com)(Horsfield, Sala et al. 2010, Rocca, Horsfield et al. 2011), the second 
semiautomatic method was the watershed-segmentation method available with NeuroQlab (NQL, 
Fraunhofer-Mevis, Bremen, Germany; license freely available for research purposes upon request 

from Fraunhofer-Mevis) (Lukas, Sombekke et al. 2013, Weiler 2017). In addition to these 
semiautomatic approaches, two automatic software methods were chosen: the deformable model 
method PropSeg, and the DeepSeg tool that is based on convolutional neural networks, both freely 
available with the Spinal cord Toolbox (SCT) (De Leener, Kadoury et al. 2014, De Leener, Levy et 

al. 2017, Gros, De Leener et al. 2019) (https://spinalcordtoolbox.com).  

ASM (JIM software): 

The Active Surface tool requires interactive marking of the center of the cord at a regular distance 
along several vertebral levels to be included in the analysis (Horsfield, Sala et al. 2010). Cord center-

line and cord outlines at each slice are then calculated using a segmentation algorithm with a steadily 
increasing refinement of the active surface model. This allows a rapid semi-automated segmentation 
by measuring the cord CSA along the length of the extracted surface. We used the cord finder tool 
included in JIM version 7.0, with the following settings: nominal cord diameter setting: 10 mm, 

number of shape coefficients: 18 and order of longitudinal variation: 5. ASM has been shown to be 
highly reproducible and the method has been used in previous cross sectional and in longitudinal MS 
studies (Rocca, Horsfield et al. 2011, Valsasina, Rocca et al. 2013, Valsasina, Rocca et al. 2015, 
Rocca, Valsasina et al. 2019, Weeda, Middelkoop et al. 2019, Bischof, Papinutto et al. 2022, 

Valsasina, Gobbi et al. 2022).  

NQL: 

NQL (version 4.01)  requires as the first step to define interactively the section of the cord to be 
analysed by placing an oblique plane through the dataset, which runs through the upper and lower 

end of the section (Weiler 2017). This is aided by two perpendicular lines, which allow precise 
alignment of the section to the specific vertebral bodies. This step is followed by a semi-automatic 
pre-segmentation using a watershed transformation of the pixel intensities. Subsequently, a  fully 
automated model based volume measurement is performed by fitting the intensity distribution of the 

pre-segmented input region using a Gaussian mixture model. The spinal cord volume is modelled 
using Gaussian mixture of two tissue classes (spinal cord tissue and CSF) and a separate class 
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representing partial volume voxels.  The volume is calculated by summation of the spinal cord tissue 
class volume and half of the volume of the partial volume class. The center-line of the SC is 
calculated and used to determine the mean CSA by normalizing the measured volume to the section 
length. The operator can correct the final results interactively. NQL has been shown to be highly 

reproducible (Lukas, Sombekke et al. 2013, Weiler 2017) and the method has already been used in 
cross-sectional and in longitudinal studies of different neurological diseases including MS (Lukas, 
Hahn et al. 2008, Daams, Weiler et al. 2014, Lukas, Knol et al. 2015, Liu, Lukas et al. 2016, 
Schneider, Bellenberg et al. 2017, Wilhelms, Bellenberg et al. 2017, Weeda, Middelkoop et al. 2019).  

 

SCT PropSeg (SCT_PS) 

The Spinal Cord Toolbox SCT features specific segmentation tools for the spinal cord. The 
segmentation algorithm PropSeg is based on an iterative propagation of a deformable model with 

adaptive contrast mechanism (De Leener, Kadoury et al. 2014, De Leener, Levy et al. 2017). 
Automated detection of the center of the spinal cord is done by ellipse detection and information 
from the body symmetry, followed by propagating a tubular surface along the spinal cord edge using 
deformable models. SCT_PS has been applied in studies on MS patients (Yiannakas, Mustafa et al. 

2016) and has been shown to be highly reproducible (McCoy, Dupont et al. 2019).  

SCT DeepSeg (SCT_DS) 

The DeepSeg algorithm implemented in SCT is based on a deep learning convolutional neural 
network (CNN) module trained to effectively segment the spinal cord from MRI images. SCT_DS 

was trained from masks generated by SCT_PS, which were manually corrected if necessary (De 
Leener, Levy et al. 2017, Gros, De Leener et al. 2019). SCT_DS has been thoroughly evaluated in a 
large multi-centre dataset of HC and has been applied in different diseases related to cord atrophy 
(McCoy, Dupont et al. 2019, Moccia, Valsecchi et al. 2020, Bautin and Cohen -Adad 2021). 

We used SCT (version 5.6, https://spinalcordtoolbox.com) with default settings to segment the 
cervical cord and automatically identify different vertebral levels in SCT_PS and SCT_DS. The 
segmentation and labeling quality was visually inspected using the implemented quality control tool. 
Problems with automatic vertebral labeling in single cases were resolved by using the dedicated 

manual labeling procedure.  

Average operator times required for a single CSA measurement 

For the semiautomated methods ASM and NQL, although the computation times for spinal cord 
segmentation are fast (< 1 min), average operator times for a single CSA measurement including 

potential error correction, and estimation of normalization measures are 8-10 minutes.  

For the automated methods of Spinal Cord Toolbox  SCT_DS and SCT_PS the speed of the spinal 
cord segmentation and output of results directly depends on the computing power of the system used 
and for example takes 7 minutes for cord segmentation using a standalone computer equipped with 

quad-core Intel Core i5 64-bit 1.4 GHz CPU and Memory 8 GB 2133 MHz. After automatic 
processing of a bulk of examinations additional operator time of 2-3 minutes per scan is required for 
quality control and estimation of normalization measures. 
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Consideration of partial volume effects and of cord curvature in the different software methods:  

As laid out in detail in our previous methodological study, the methods have specific differences 

related to the definition of the cord edges and handling of partial volume effects at the transition 
between cord and surrounding cerebrospinal fluid (CSF)(Lukas, Bellenberg et al. 2021). In addition, 
the effects of cord curvature are treated differently between ASM and NQL or SCT_PS and 
SCT_DS. Due to the limited image resolution and the small diameter of the SC these effects may 

account for a substantial proportion of the segmented volume (Yiannakas, Mustafa et al. 2016, 
Weeda, Middelkoop et al. 2019, Lukas, Bellenberg et al. 2021).  

The SCT_PS algorithm includes only voxels into the segmentation that are classified as “pure” cord 
tissue, without referring to partial volume effects at the margin of the cord contour. As SCT_DS 

segmentation was trained on SCT_PS results, the method has the same characteristic as SCT_PS and 
excludes voxels that are prone to partial volume effects. In contrast, NQL includes pure cord tissue 
voxels and 50% of the partial-volume tissue class in the CSA calculation (Weiler 2017, Yiannakas, 
Mustafa et al. 2016). Similarly to NQL, the cord segmentation of ASM includes a fraction of those 

voxels subject to partial volume effects between the cord and the surrounding CSF because the cord 
surface definition is partly controlled by seeking high intensity gradients (Horsfield, Sala et al. 2010).  
Thus, CSA results of ASM and NQL are typically higher than CSA generated by SCT_PS or 
SCT_DS. 

Additionally, effects of the cervical cord curvature are treated differently between NQL and ASM or 
SCT. While ASM and SCT methods are optimized with regards to variations of the cord curvature 
(Horsfield, Sala et al. 2010, De Leener, Kadoury et al. 2014), NQL quantifies the cord volume 
between two parallel oblique planes, and uses the centerline merely for calculation of the mean cord 

area from the segmented volume (Weiler 2017). Thus, the CSA estimations by NQL might differ 
from the corresponding ASM or SCT results, depending of the degree of curvature of the SC, or the 
exact choice of the cord section to be analyzed. 
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Supplementary Figures and Tables 

Supplementary Figures 

Supplementary Figure S1: Example of receiver operating characteristic (ROC) curves for the 
differentiation between rMS and pMS using unnormalized or normalized CSA measured at the C1-7 

vertebral level using the method ASM and NQL (upper row), SCT_DS and SCT_PS (lower row); 
color coding: black: unnormalized CSA, green: C1-C2 normalized CSA (nCSAC1-C2), blue: C1-C3 
normalized CSA (nCSAC1-C3), orange: C1-C7 normalized CSA (nCSAC1-C7), green: C1-C2 
normalized CSA (nCSAC1-C2), purple: C3-area normalized CSA (nCSAC3-area) 
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Supplementary Tables 

Supplementary Table S1: Sequence parameters of 3D-T1w imaging used with the 3Tesla scanners 

at the participating centers 

 

Site Nr 1 2 3 4 5 

Vendor 
GE Discovery 

MR750 

Siemens Trio 

Tim 

Philips  

Achieva 

Philips 

Intera 

Philips 

Achieva 

Magnet length / bore 

diameter [cm] 
194 /60 198 / 60 157 / 60 157 / 60 157 / 60 

Coil type 
HNS array 16 

ch. 

head-neck 

array 16 ch. 

SENSE-NV-

16 ch. 

SENSE-

NV-16 ch. 

SENSE-NV-

16 ch. 

Head MRI (3D-T1-weighted)     

Sequence FSPGR MPRAGE TFE TFE TFE 

Number of Slices 172 192 180 204 180 

Orientation sagittal sagittal Sagittal Sagittal sagittal 

TR (ms) 7.8 2300 10 7.1 6.8 

TE (ms) 3 3 4.6 3.2 3.1 

TI (ms) 450 900 1000 900 825 

FA 12° 9° 8° 9° 8° 

Voxel Size (mm) 0.98×0.98×1 1×1×1 1x1x1 1x1x1 1x1x1 

Cervical cord MRI (3D-T1-weighted)    

Sequence FSPGR MPRAGE TFE TFE TFE 

Number of Slices 172 128 64 64 128 

Orientation sagittal sagittal sagittal sagittal sagittal 
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TR (ms) 7.3 2300 8 8 8 

TE (ms) 3 3.26 3.5 3.5 3.7 

TI (ms) 450 900 1000 1000 856 

FA 15° 9° 8° 8° 8° 

Voxel Size (mm) 1×1×1 1×1×1 1x1x1 1x1x1 1x1x1 

 

Abbreviations: TR Repetition time; TE Echo time. TI Inversion time; FA Flip angle; TFE Turbo 
field echo; MPRAGE Magnetization prepared rapid acquisition gradient echo; FSPGR Fast spoiled 

gradient recalled echo;  Site Numbers: 1= Amsterdam UMC, Amsterdam; 2= Hospital Universitari 
Vall d’Hebron Barcelona; 3= Ruhr-University of Bochum; Bochum; 4= IRCCS San Raffaele 
Scientific Institute; Milano; 5= University College London; London.  

 

 

  



   

 

  



   

Supplementary Table S2: Cord cross-sectional area (CSA unnormalized)  in MS subgroups and HC for different software, cervical cord 

levels and brain or cord MRI. P-value and effect size calculations between groups were adjusted for center, age and sex. 

C
SA

 [
m

m
²]

 m
e

an
 ±

 S
D

 method ASM NQL SCT_PS SCT_DS 

vertebral 

level C1-2 C1-2 C1-7 C1-2 C1-2 C1-7 C1-2   C1-2 C1-2 C1-7 

MRI type 
brain 

cervical 

cord 

cervical 

cord brain 

cervical 

cord 

cervical 

cord brain 

cervical 

cord 

cervical 

cord brain 

cervical 

cord 

cervical 

cord 

HC 82.4 ± 9.6 83.9 ± 11.1 79.1± 9.9 82.7 ± 9.6 82.4 ± 9.6 82.7 ± 9.5 72.4 ± 7.0 74.0 ± 7.8 74.8 ± 9.0 68.2 ± 7.6 64.5 ± 8.0 62.9± 8.5 

MS 75.4 ± 9.1 76.6 ± 9.7 72.6 ± 9.7 75.0 ± 9.3 76.0 ± 10.0 76.0 ± 10.7 66.3 ± 8.9 68.5 ± 10.3 69.6 ± 11.9 61.5 ± 8.8 60.5 ± 9.1 58.8 ± 8.2 

rMS 77.0 ± 8.5 78.4 ± 9.1 74.9 ± 8.5 77.1 ± 8.7 78.4 ± 8.9 79.1 ± 8.6 67.9 ± 8.5 70.5 ± 9.7 72.7± 10.7 63.4± 8.3 62.3 ± 8.7 60.7 ± 7.3 

pMS 70.2 ± 8.9 70.9 ± 9.6 65.3 ± 9.6 68.2 ± 8.0 68.0 ± 9.3 66.0 ± 10.6 61.3 ± 8.6 62.4 ± 9.8 59.9 ± 10.8 55.8 ± 8.0 54.9 ± 8.1 52.8 ± 8.1 

H
C

 -
 M

S p (HC-MS) 0.12 0.12 0.12 0.12 0.197 0.275 0.12 0.236 0.549 0.12 0.185 0.129 

Effect size η2 

(95% CI) 

0.07 

(0.00;0.25) 

0.08 

(0.00;0.25) 

0.07 

(0.00;0.24) 

0.09 

(0.00;0.26) 

0.04 

(0.00;0.19) 

0.03 

(0.00;0.17) 

0.07 

(0.00;1.0) 

0.03 

(0.00;0.92) 

0.01 

(0.00;0.12) 

0.10 

(0.00;0.27) 

0.05 

(0.00;0.21) 

0.06 

(0.00;0.23) 

H
C

 –
 r

M
S 

- 
p

M
S 

p (HC-pMS)a 0.024 0.08 0.034 0.012 0.021 0.012 0.062 0.366 0.344 0.021 0.096 0.096 

Effect size η2 

(95% CI) 

0.32 

(0.06;0.55) 

0.28 

(0.01;0.56) 

0.34 

(0.05;0.59) 

0.41 

(0.15;0.61) 

0.37 

(0.09;0.60) 

0.44 

(0.17;0.64) 

0.29 

(0.02;0.55) 

0.15 

0.01;0.48) 

0.18 

(0.01;0.53) 

0.37 

(0.10;0.59) 

0.22 

(0.0;0.53) 

0.29 

(0.00;0.59) 

p (HC-rMS)a 0.566 0.566 0.566 0.566 0.888 0.999 0.556 0.888 0.999 0.556 0.888 0.739 

Effect size η2 

(95% CI) 

0.07 

(0.00;0.25) 

0.07 

(0.00;0.23) 

0.05 

(0.00;0.21) 

0.07 

(0.00;0.24) 

0.03 

(0.01;0.17) 

0.02 

(0.0;0.15) 

0.06 

(0.00;0.23) 

0.03 

(0.00;0.17) 

0.04 

(0.00;0.11) 

0.10 

(0.00;0.27) 

0.03 

(0.00;0.18) 

0.04 

(0.00;0.20) 

p (rMS-

pMS)a 
0.196 0.458 0.196 0.084 0.084 0.048 0.405 0.917 0.458 0.196 0.458 0.458 

Effect size η2 

(95% CI) 

0.15 

(0.00;0.25) 

0.11 

(0.00;0.40) 

0.19 

(0.00;0.46) 

0.24 

(0.03;0.46) 

0.27 

(0.04;0.50) 

0.36 

(0.12;0.56) 

0.12 

(0.00;0.39) 

0.06 

(0.00;0.37) 

0.14 

(0.00;0.48) 

0.16 

(0.00;0.46) 

0.11 

(0.00;0.42) 

0.15 

(0.00;0.47) 

 

 

Abbreviations: HC healthy controls, rMS relapsing MS, pMS progressive MS, SCT_DS SCT_deepseg, SCT_PS SCT_propseg, NQL 

NeuroQLab, ASM active surface method. p: all p-values extracted by linear mixed effect models adjusting for age and sex with center as 
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random intercept; a : pairwise contrast with Bonferroni correction for MS subgroup analyses; all p-values corrected for multiple 

comparisons between methodologies (Benjamini-Holm correction across methods, MRI type, vertebral level);  p-values < 0.05 are marked in 

bold font; Effect size η2: partial eta squared of CSA differences between groups.   
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Supplementary Table S3: Linear regression (general linear model) with CSA or EDSS as dependent variables with inclusion of age as 
covariate, sex (male=0, female=1) as fixed factor and scanner (center no. 1,2,3,4,5) as a random factor.  

  HC MS MS 

  CSA CSA EDSS 

Parameter 

Regression 
Coefficient 
B 

Std.-
Error p  

Regression 
Coefficient 
B 

Std.-
Error p  

Regression 
Coefficient 
B 

Std.-
Error p  

                    

constant 79.18 10.701 <0.001 61.78 6.827 <0.001 3.29 1.015 0.002 

age [years] -0.032 0.323 0.923 -0.066 0.103 0.525 0.05 0.015 0.003 

sex -1.64 8.386 0.848 15.57 4.669 0.001 0.36 0.696 0.61 

[center=1] -0.74 10.981 0.947 14.94 4.675 0.002 -2.42 0.697 0.001 

[center=2] n.a. n.a. n.a. 19.04 5.057 <0.001 -3.36 0.754 <0.001 

[center=3] 15.56 9.14 0.114 17.51 5.477 0.002 -3.02 0.801 <0.001 

[center=4] 0 n.a. n.a. 16.44 4.685 0.001 -1.75 0.699 0.014 

[center=5] n.a. n.a. n.a. 0 n.a. n.a. 0 n.a. n.a. 

 Abbreviations: HC: healthy controls, MS: multiple sclerosis, Std.: standard, p: significance, n.a.: not applicable.  

  



   

Supplementary Table S4: Comparison between unnormalized cord cross-sectional area (CSA) 

using different software methods, separately for brain or cord MRI at different vertebral levels 

(repeated measure ANOVA with 4 software methods as within-subject factor and Bonferroni 

correction for multiple comparisons) 

MRI type Brain MRI Cord MRI Cord MRI 

vertebral level C1-2 C1-2 C1-7 

Pairwise comparison Mean CSA 
dif ference 

[95% CI] 

Sig. Mean CSA 
dif ference 

[95% CI] 

Sig. Mean CSA 
dif ference 

[95% CI] 

Sig. 

SCT_DS vs. SCT_PS -4.80 

[-5.91;-3.70] 

<0.001 -8.69 

[-10.65-6.72] 

<0.001 -11.59 

[-14.17;-9.01] 

<0.001 

SCT_DS vs. NQL -13.51 

[-14.42;-12.60] 

<0.001 -15.77 

[-17.03;-14.52] 

<0.001 -17.88 

[-19.46;-16.30] 

<0.001 

SCT_DS vs. ASM -14.31 

[-15.17;-13.46] 

<0.001 -16.70 

[-17.82;-15.57] 

<0.001 -14.48 

[-15.65;-13.30] 

<0.001 

SCT_PS vs. NQL -8.71 

[-10.05;-7.36] 

<0.001 -7.09 

[-8.87;-5.31] 

<0.001 -6.29 

[-8.51;-4.07] 

<0.001 

SCT_PS vs. ASM -9.51 

[-10.79;-8,24] 

<0.001 -8.01 

[-9.90;-6.11] 

<0.001 -2.89 

[-5.02;-0.75] 

0.003 

NQL vs. ASM -0.81 

[-1.64;0.03] 

0.065 -0.92 

[-1.81;-0.03] 

0.038 -3.40 

[-4.64;-2.17] 

<0.001 

Abbreviations: SCT_DS SCT_deepseg, SCT_PS SCT_propseg, NQL NeuroQLab, ASM active 
surface method, vs: versus. Sig: p-values of pairwise comparisons using repeated measure ANOVA 
with 4 software methods as within-subject factor and Bonferroni correction for multiple comparisons; 
CI: confidence interval. 
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Supplementary Table S5: Comparison of cord cross-sectional area (CSA, unnormalized), between 

brain and cord MRI at the C1-2 vertebral level in MS and HC for different software methods.  

 

 

 

 

 

 

 

 

 

 

 

 

Abbreviations: HC healthy controls, MS Multiple Sclerosis, pMS progressive MS, SCT_DS 
SCT_deepseg, SCT_PS SCT_propseg, NQL NeuroQLab, ASM active surface method. p: p-values: 
paired t-tests; ICC: intra-class correlation coefficients (two-way mixed effects model for absolute 
agreement and 95% confidence interval CI) 

  

method / 
vertebral level MRI type 

CSA [mm²] 
mean ± standard deviation 

ASM   MS HC 

C1-2 Brain vs. Cord 75.4 ± 9.1 vs. 76.6 ± 9.7 82.4 ± 9.6 vs. 83.9 ± 11.1 

Paired t-test p <0.001 0.076 
Intra-class 
correlation 

ICC 
[95% CI] 

0.979 
[0.951;0.989] 

0.992 
[0.973;0.997] 

NQL  MS HC 

C1-2 Brain vs. Cord 75.0 ± 9.3 vs. 76.0 ± 10.0 82.7 ± 9.6 vs. 82.4 ± 9.6 

Paired t-test p <0.001 0.063 

Intra-class 
correlation 

ICC 
[95% CI] 

0.980 
[0.964;0.989] 

0.994 
[0.981;0.998] 

SCT_PS  MS HC 

C1-2 Brain vs. Cord 66.3 ± 8.9 vs. 68.5 ± 10.3 72.4 ± 7.0 vs. 74.0 ± 7.8 

Paired t-test p <0.001 0.232 

Intra-class 
correlation 

ICC 
[95% CI] 

0.860 
[0.728;0.922] 

0.543 
[-2.04;0.832] 

SCT_DS  MS HC 

C1-2 Brain vs. Cord 61.5 ± 8.8 vs. 60.5 ± 9.1 68.2 ± 7.6 vs. 64.5 ± 8.0 

Paired t-test p 0.023 0.007 

Intra-class 
correlation 

ICC 
[95% CI] 

0.957 
[0.931;0.973] 

0.947 
[0.760;0.984] 



  Supplementary Material 

 16 

 

Supplementary Table S6: Normalization measures: 

Four different normalization measures were derived from a mid-sagittal view of the 3D-T1w cord 

MRI for each participant at each visit: (1) the height of the C1/C2 vertebra, measured  from the tip of 

C1 to the lower border of the C2 vertebral body in the middle of its anterior-posterior extension; (2) 

the height of the C1-C3 vertebrae, measured as (1) but down to the lower border of C3 instead of C2; 

(3) the entire cervical cord length (C1-C7), extracted from the output of the ASM method; and (4) the 

area of the C3 vertebra. The vertebral heights and dimensions were measured using the ITK-SNAP 

software viewer (available at www.itksnap.org). Table S4 shows mean (standard deviation) values of 

the normalization measures within each group. 

 

Table S4: Normalization measures within each group shown as mean (standard deviation)  

Vertebral measure HC rMS pMS p-value 

height C1-C2 [mm] 35.1 (3.0 ) 33.7 (2.9 ) 35.4 (2.3 ) 0.274 

height C1-C3  [mm] 53.0 (4.2 ) 50.6 (4.4 ) 52.9 (3.8 ) 0.172 

height C1-C7  [mm] 125.7 (9.2 ) 119.3 (10.8 ) 122.2 (9.2 ) 0.043 

area C3  [mm²] 228.6 (33.8 ) 202.0 (40.6 ) 227.1 (49.8 ) 0.035 

Abbreviations: HC healthy controls, rMS relapsing MS, pMS progressive MS.   

p-values: between-group differences extracted by using analyses of variance (ANCOVA) adjusting 
for age and sex, using Bonferroni correction for multiple comparisons between subgroups.   

 

In the ANCOVA analyses the differences in the normalization measures between groups were not 
significant for the height of C1-C2 and height of C1-C3, but significant for height of C1-C7 and the 
area of C3.  There were no between-subjects effects of age, while effects of sex had a significant 
impact on differences between the groups. This was in line by lower values of the normalization 
measures in the rMS group, which had a higher fraction of female participants.  

  

http://www.itksnap.org/
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Supplementary Table S7: Pearson’s correlation analyses between unnormalized CSA and the 
normalization measures in the HC group 

 

CSA 
method 

Pearson’s 
correlation 

height C1-C2 
[mm] 

height C1-C3  
[mm] 

height C1-C7  
[mm] 

area C3  [mm²] 

ASM 

r 

[95% CI] 

0.490 

[0.187;0.708] 

0.395 

[0.071;0.643] 

0.284 

[-0.054;0.584] 

-0.217 

[-0.513;0.125] 

p 0.003 0.019 0.098 0.210 

NQL 

r 

[95% CI] 

0.626 

[0.375;0.792] 

0.557 

[0.280;0.749] 

0.450 

[0.142;0.678] 

-0.090 

[-0.407;0.246] 

p <0.001 <0.001 0.006 0.602 

SCT_PS 

r 

[95% CI] 

0.435 

[0.129;0.665] 

0.462 

[0.162;0.683] 

0.436 

[0.130;0.666] 

0.009 

[-0.316;0.332] 

p 0.007 0.004 0.007 0.957 

SCT_DS 

r 

[95% CI] 

0.541 

[0.253;0.741] 

0.456 

[0.145;0.685] 

0.352 

[0.021;0.613] 

-0.089 

[0.410;0.251] 

p <0.001 <0.001 0.038 0.610 

Abbreviations: SCT_DS SCT_deepseg, SCT_PS SCT_propseg, NQL NeuroQLab, ASM active 
surface method. p: p-values and r: coefficients of Pearson correlations; CI: confidence interval. 

 

 

 

 

 

 



   

Supplementary Table S8: Receiver operating characteristic (ROC) analyses of differentiating between rMS and pMS subtypes regarding 

contrasts between normalized and unnormalized CSA x C1-2 and C1-7 levels x brain and cord MRI x NQL and ASM methods. We show the 

area under the curve (AUC), 95% confidence interval (CI) and corrected p-values of pair-wise differences between AUC. All p-values 

derived from pairwise AUC comparisons using DeLong’s testing were corrected for multiple comparisons across all contrasts using 

Benjamini-Hochberg correction. 

  

Method NQL ASM 

Vertebral 
Level 

C1-2 C1-2 C1-7 C1-2 C1-2 C1-7 

MRI type brain cervical cord cervical cord brain cervical cord cervical cord 

CSA 

AUC 

CI (95%) 

0.771 

[0.655,0.888] 

0.791 

[0.681,0.901] 

0.832 

[0.737,0.926] 

0.692 

[0.559,0.826] 

0.716 

[0.586,0.846] 

0.770 

[0.648,0.891] 

p CSA/CSAnorm - - - - - - 

P C1-2 / C1-7 - 0.289 - - 0.179 - 

P brain / cord 0.290 - - 0.370 - - 

P NQL / ASM 0.050 .046* 0.064 - - - 

nCSAC1-C2 

AUC 

CI (95%) 

0.840 

[0.738,0.942] 

0.852 

[0.751,0.952] 

0.877 

[0.786,0.968] 

0.769 

[0.645,0.893] 

0.777 

[0.651,0.902] 

0.814 

[0.706,0.922] 

p CSA/CSAnorm 0.367 0.370 0.455 0.367 0.370 0.455 

P C1-2 / C1-7 - 0.370 - - 0.370 - 

P brain / cord 0.431 - - 0.691 - - 

P NQL / ASM 0.070 0.064 0.064 - - - 

nCSAC1-C3 

AUC 

CI (95%) 

0.837 

[0.737,0.936] 

0.843 

[0.744,0.942] 

0.866 

[0.775,0.956] 

0.770 

[0.648,0.893] 

0.769 

[0.645,0.892] 

0.807 

[0.701,0.913] 

p CSA/CSAnorm 0.367 0.431 0.570 0.367 0.431 0.564 

P C1-2 / C1-7 - 0.370 - - 0.370 - 
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P brain / cord 0.616 - - 0.961 - - 

P NQL / ASM 0.138 0.138 0.064 - - - 

nCSAC1-C7 

AUC 

CI (95%) 

0.812 

[0.716,0.908] 

0.829 

[0.738,0.920] 

0.834 

[0.741,0.926] 

0.739 

[0.620,0.858] 

0.752 

[0.633,0.872] 

0.788 

[0.685,0.892] 

p CSA/CSAnorm 0.540 0.564 0.961 0.540 0.594 0.748 

P C1-2 / C1-7 - 0.875 - - 0.370 - 

P brain / cord 0.397 - - 0.651 - - 

P NQL / ASM 0.082 0.077 0.179 - - - 

nCSAC3-area 

AUC 

CI (95%) 

0.812 

[0.716,0.907] 

0.825 

[0.732,0.918] 

0.834 

[0.741,0.927] 

0.774 

[0.664,0.884] 

0.774 

[0.666,0.882] 

0.799 

[0.700,0.899] 

p CSA/CSAnorm 0.665 0.701 0.961 0.456 0.570 0.729 

P C1-2 / C1-7 - 0.616 - - 0.370 - 

P brain / cord 0.386 - - 0.961 - - 

P NQL / ASM 0.299 0.290 0.179 - - - 
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Supplementary Table S9:  Recommendations for CSA quantification in the cervical cord of patients with MS 

CSA quantification in the cervical 
spinal cord 

Recommendation Alternative 

MRI acquisition type Dedicated cervical cord MRI with isotropic 3D-T1w Brain MRI incl. sagittal 3D_T1w covering the upper 
cervical cord 

Pros and Cons Pro: *enable measurements at all cervical cord levels;     
Con: * long acquisition times for brain & cord MRI 

Pro: * shorter acquisition; better patient comfort;                              
* no significant differences between CSA at C1-2 
by brain MRI compared with cord MRI                              
Con: * limited to upper cervical cord sections 

CSA in whole cervical cord or upper 
cervical cord? 

Whole cervical cord (C1-7) with cord MRI Upper cervical cord sections (e.g. C1-2) with brain 
or cord MRI 

Pros and Cons Pro: * Best discrimination between rMS and pMS 
subtypes; strongest correlations with EDSS scores.                                                                                          
Con: * Longer acquisition times (cord MRI needed) 

Pro: *Good discrimination between MS and HC at 
C1-2 level ;                                                                                     
Con: * Slightly worse discrimination between rMS 
and pMS than whole cervical cord measurements; 

CSA normalization Use spine skeletal normalization metrics: height of C1-
C2 vertebrae recommended; optional: height of C1-C3 
vertebrae 

According to published literature (not part of our 
study): brain intracranial cavity volume might be 
used for normalization, if brain MRI and 
automated analysis pipelines are available. 

Pros and Cons Pro: *Using the vertebral height of C1-C2 for CSA         

           normalization improves discrimination between        
MS subtypes and correlations with EDSS;                                

          *easily available as spine MRI derived number;                                                
Con:  *manual intervention needed. 

Potential Pros and Cons: 

Pro: *  automated calculation in brain analysis 
pipelines;                                                                                          
Con: * volumetric brain analysis and brain MRI 
necessary 

Image analysis software Active surface (ASM) NQL SCT_PS SCT_DS 

Suitability dependent on sample size Semiautomated Semiautomated Fully automated Fully automated 

 


