
'This script is written in Spike2 language (CED, Cambridge, UK). It calculates the muscle
transfer function and creates the values for current injection into the model AGR.

'This script is based on Chuck Geier's thesis (Scott Hooper's laboratory at Ohio University)
http://crab-lab.zool.ohiou.edu/hooper/
'and was initially created by Ralph DiCaprio (Dec 2002) and modified by Dirk Bucher (Dec
2002).
'It creates a muscle tension output from a spike event channel using a te-at function. Initially
used for the p1 muscle in Panulirus interruptus

'assign:

' - number of sequential filters should normally be 3.
' - time constant of the filters is used for all of them
' - time steps sets the "sampling"
interval of the output. this is automatically converted to the nearest multiple of the file time
resolution.
' - % of maximum y range maximum y range is 5V.
This sets the amplitude of the response to a single event. this is important
' because if
the whole channel was scaled, different files would always have different kernel amplitudes.
' - scaling factor this scales the output with a factor that was derived in our
experiments and adapts the output values for use as current injection in the AGR model

'There is no threshold filter built in (see Chuck's thesis).
'--

'This script needs a data file with an event channel containing the times of motor neuron
spikes. In our case the GM neurons
'The output is then scaled with a scaling factor (default = 1.1282) that was determined in our
experiments

'initialize windows etc
if ViewKind() <> 0 then 'checks if the associated window is a
time view...
 Message("This isn't a time view!"); 'if there is no data file
 FrontView (App (3)); 'brings script to front...
 Halt; 'and stops it
endif

WindowVisible (3); 'sets the time view to the front

'define variables
var ok%, cur1, cur2, wholefile%;

if Cursor (2)<Cursor (1) or Cursor (1)=-1 or Cursor (2)=-1 then ' if Cursor (1) and Cursor (2)
are not present or not in the right order....
 DlgCreate("ATTENTION!");
 DlgText("Cursor (1) and (2) not set correctly.",2,1);

 DlgLabel(1, "Analyse whole file?",2,2);
 '...choose if you want to analyse the whole file
 ok%:=DlgShow (wholefile%);

 if ok%=1 then
 'sets analysis to whole file or...
 cur1:= 0;

 cur2:=MaxTime ();
 else
 interact("get Cursors 1 and 2 and select time range for analysis",1023);
 cur1 := Cursor(1);
 'get cursor times
 cur2 := Cursor(2);

 endif

else
 cur1 := Cursor(1);
 'if present and in the right order, get cursor times

 cur2 := Cursor(2);
endif

'define more variable
var name$;
var scale;
var i%,tstep;
var nspks%,spktime[100000];
var mch%;
var mintau;
var tausteps;
var maxtau;
var x;
var ok1%,tau,spkch%,outch%,pexp%, points%, scalingfactor;

 'start dialog for kernal time input
DlgCreate ("Muscle transform Filter");
DlgChan (1, "Import channel:",2);
DlgChan (2, "New channel #:",128);
DlgString (3, "New channel name:",15);
DlgInteger (4,"# of sequential filters:",1,3);
DlgReal (5,"time constant (ms):",0.0,3000);
DlgReal (6,"Time steps [ms]:",0.0000,2000);
DlgReal (7,"% of maximum y range:",0,100);
DlgReal (8,"Scaling factor for output values",0,100);
name$:="muscle";

'dialog presets
scale:=1;

tau:=320;
pexp%:=3;
tstep:=1;

mintau:=10;
tausteps:=10;
maxtau:=3000;
scalingfactor:=1.1282; 'this is used to scale the output for use in the AGR model (as
determined in our experiments).
ok1%:=DlgShow(spkch%,outch%,name$,pexp%,tau,tstep,scale, scalingfactor); 'assign
variables

 if ok1%<>1 then 'if Cancel was clicked
FrontView (App (3)); 'brings script to front...
HALT; '...and stops it
endif

var sinc[100000];
pexp%:=pexp%-1; 'converts # of filters to exponential
tstep:=tstep/1000.0; 'converts time step to seconds

var interv,tfactor%;

interv:=Binsize(); 'reads the file time resolution
tfactor%:= tstep/interv; 'gets nearest multiple of file time interval
if tfactor%=0 then 'resolution can't exceed file time resolution!
 tstep:=interv;
else
 tstep:=tfactor%*interv; 'sets time step to nearest multiple of file time interval
endif

var endbin%;
endbin%:= cur2/tstep; 'gets bin # of analysis window end
var startbin%;
startbin%:=cur1/tstep; 'gets bin # of analysis window start

var tauscale; 'scales the number of points used for the kernel array so
that
if pexp%=0 then 'the function just declines to zero
 tauscale:=0.007;
else
 if pexp%=1 then
 tauscale:=0.01;
 else
 tauscale:=0.012;
 endif
endif
points%:=(tauscale*tau)/tstep;

var muscleout[10000000];

for i% := 0 to points%-1 step 1 do
 'Build muscle impulse response
 sinc[i%]:=Pow(i%*tstep,pexp%)*Exp((-i%*tstep)/(tau/1000.0));
next;

var amp,imax%; 'scale this
function to maximum value of single event response
imax%:=Max(sinc[:points%-1]);
amp:=sinc[imax%];
ArrDiv(sinc[:points%-1],amp);
ArrMul(sinc[:points%-1],scale/20);

nspks%:=ChanData(spkch%,spktime[],cur1,cur2); 'get spike times

var ind%, k%;

mch%:=MemChan(1,0,tstep); 'create waveform buffer
channel

for k% :=0 to nspks%-1 step 1 do 'loop through spike times
 ind%:=spktime[k%]/tstep; 'get bin # of spike (index # in array)
 ArrAdd(muscleout[ind%:ind%+(points%-1)],sinc[:points%-1]); 'add function to
array
next;

ARRmul(muscleout[],scalingfactor); 'muliplies the output by the scalingfactor

MemSetItem(mch%,0,cur1+tstep,muscleout[startbin%:endbin%-startbin%]); 'import array
into waveform channel

 MemSave(mch%,outch%, 0, 0); 'saves buffer channel to a real channel
 ChanDelete(mch%, 0); 'deletes the buffer channel
 ChanShow(outch%); 'shows new channel
 ChanTitle$(outch%,name$); 'names new channel
 Optimise(outch%); 'optimise y-axis

 message("Channel number ",outch%," contains the muscle output");

var xval[100000], xy%, j%;

for j% := 0 to points%-1 step 1 do 'loop through kernel points
 xval[j%]:=j%*tstep; 'fill array with time
values
next;

