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1 The Influence of Auto-correlation Structure onto Diff V

1.1 The time scale of auto-correlation of Gamma process

In Section 3.2 of the main text, we make the statement that for a Gamma process, the time scale of auto-correlation
Teross ™ CT—ZQ when CV > 1, and Teross ~ m when CV < 1, with ry being the rate of the Gamma process.
Here, we make a simple proof.

Gamma process is a renewal process in which the inter-spike intervals are independently identically distributed

as Gamma distribution:

P(la, 8) = F(Of) Sra el 1)

We denote X; to be the ith inter-spike interval, starting from the Oth spike. By defining moment generating function

of Gamma distribution (http://mathworld.wolfram.com/gammadistribution.html)
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it is easy to prove that X = """ | X; (which is the distribution of the interval between the Oth spike and the nth
spike) follows I'(x|na, B), i.e.
n
X =YX ~T(zlna, B). (2)
i=1
1) When o < 1 (i.e. CV = ﬁ > 1), the auto-correlation of a Gamma process concentrates near zero, which
describes the tendency that if the Oth spike is at ¢, then the next few spikes are also near ¢;. From eqf2] we see
that when n = é, X ~T(z|1, 8), which is an exponential distribution. This means that if we choose a spike every n

spikes from the Gamma process, these chosen spikes will form a Poisson process, whose connected auto-correlation



is zero. This suggests that the time scale of the auto-correlation of the Gamma process should be no longer than

the time scale of n inter-spike intervals, which means that
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with r¢ being the firing rate.

2) When a > 1 (i.e. CV = ﬁ < 1), the connected auto-correlation of a Gamma process is oscillating decaying.
This is because that if the Oth spike is at tg, then the next nth spike tend to be near ¢, = tg + %, because of the
regularity of the spike train. From eqJ2] the standard deviation (s.d.) of the distribution of the time of the nth
spike will be 8y/na. The oscillating behavior of the auto-correlation will be damped if the spike time distribution

. . . s . trn_1+tn
of adjacent spikes are overlapped, especially when the probability that a spike appears at —=5—"

is almost the
same as the probability that a spike appears at ,,_1 or t,,. This happens when the s.d. of the distribution is equal

to half of the inter-spike interval:

which gives (using 3 = -X-)
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Therefore, the time scale of the auto-correlation of the Gamma process should be no longer than the time scale of

n inter-spike intervals, which means that

n « 1
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1.2 The derivation of eqs. 21 and 22 in the main text

This subsection will derive egs. 21 and 22 in the main text.
Suppose a spike of the central neuron is at time ¢;, let’s consider the potentiation value caused by it in the ath

non-central neuron, which is
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Under strict regularity, tjjqip = tijaip — (j — 1)At, with At being the inter-spike interval. If we define ty =

i — Tdelay — t1ja,i,p, then the equation above becomes

Z Awg (i, tj\a,i,p) = Ay, exp(—

J
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Under strict regularity, to is uniformly distributed within [—A¢,0], and it is easy to show that if the size of the



converging motif is sufficiently large,
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After considering the depression process, we have

. v A _ (A2 1 A2)7STDP Ltexp(—z707)  2rsrpp
reg = Z ara(z wa,k(tiytj)) = ( at ;D) 2At ‘1 — exp(— At ) B At ]7 (3)
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which is eq.21 in the main text.
Under Poisson processes, the ocurrences of spikes in any two small time bins of length dt¢ are independent, and

the variance of the number of spikes within a time bin is rodt, with 7o being the firing rate. As Aw, ,(¢;,t;) =

A, exp(—qufDP) (with ¢ = t; — Tgetay — tj), we have
Var, Awg o, (t;, t; :AQ/ exp(— rodt
<; pltinty) =45 | exp(= =)o
_ A27STDP
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Therefore,
TSTDP
dpoi = Y Vara(Y_ Awai(ti,t;)) = (A7 + A7) SAL (4)

k=p,d J

which is eq.22 in the main text.
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From eq and eq we know that to prove d,.q, < dp,; is equivalent to prove

which is then equivalent to prove
f(z)=(r+1)exp(—z) <1 forz>0.

This statement above is easy to prove after noting that f(0) =1 and f'(z) < 0 for x > 0.

2 The Interaction of Auto-correlation Structure and Heterogeneity of
Rates

In this section, we will consider the case when the spike trains are stationary processes (so that the trial averaged
firing rates do not change with time), and different non-central neurons have different firing rates. In this case, the

trial averaged synaptic change rate is

dEr(Aw,g) T

dt

=71orq(Ap — Ad)/ exp(— )dr,
0

TSTDP



with ro being the firing rate of the central neuron, r, being the firing rate of the ath non-central neuron. Therefore,

dVar, (Er(Aw,))

DriftV
riftV o T

= [ro(4, — Aq) /000 exp(— Ydr]*Var, (rq).

TSTDP

We see that auto-correlation structure does not enter the formula above, and therefore does not influence DriftV in
this case. To intuitively understand this, we denote the interval between a central spike ¢; and a non-central spike
t; to be At =t; —t;; and note that as we suppose that the central and non-central spike trains are independent,
the distribution of At should be always uniform within (0, co) in the long run, independent on the auto-correlation
structure of their spike trains. This causes the same potentiation and depression under STDP even when the
auto-correlation structure changes.

Next, we want to understand how the auto-correlation structure may change DiffV under heterogeneity of rates.
To do this, we generate spike trains as Gamma processes, with the firing rate of the central neuron being kept
at ro = 20Hz, and the firing rates of the non-central neuron following lognormal distribution with mean ry (by
combining Model Auto & Model Long Tail in Materials and Methods in the main text). The coefficient of
variance (CV) of the spike trains of the central and non-central neurons are the same. We set A, = Ag, so that
DrV =0 and DiV &~ Er(Var,(Aw,)) (see eq.5 in the main text). We then compared Er(Var,(Aw,)) in this model
with that under homogeneity of rate introduced in Section 3.2 of the main text. We find that heterogeneity of
rates hardly changes DiffV when spike trains are bursty, but effectively discounts the increase of DiffV caused by
regularity (Supplementary Figure )

To understand the reason of this phenomenon, suppose that the smallest firing rate of the non-central neurons
is Tmin and the largest is 7,,4., and we can divide the interval [ry,in, Tmaz] into many bins of length 2¢, with € being
a small value. We denote the sth bin to be As = (rs — ¢, 75 + ¢€), with rg being the middle value of this bin. If the
converging motif is very large, then there will be many non-central neurons whose firing rates lie within each bin.

After implementing the theorem of total variance (see eq.2 in the main text), we have that
Var, (Aw,) = E4, (Var,,ca, (Aw;)) + Var 4, (E,,ca, (Awy)). (5)
As DriftV = 0 here, we have Var 4_(E,,c 4. (Aw;)) = 0, so that
Er(Var,(Aw,)) = Er[Ea, (Var,,ea, (Aw))] = Ea, [Er(Var,, e, (Aw))] (6)

which means that the value of Er(Var,(Aw,)) can be understood by investigating how Er(Var,,c 4, (Aw;)) changes
with r,. As A, is a small bin near r,, we can suppose that all the values within A4 can be approximately by r,, so
that

Er(Var,,ca, (Aw;)) =~ Er(Var,, - (Awy)), (7)

in which Ep(Var,,—,, (Aw;)) represents the efficacy variability when the firing rates of all non-central neurons are
approximated to be rs. Using simulations, we found that Ep(Var,,—, (Aw;)) changes with r, in the following
features (Supplementary Figure ):

1) Ep(Var,,—, (Aw;)) tends to increase with rs.

2) When CV <« 1 (i.e. the spike trains are regular), Er(Var,,—, (Aw;)) tends to sharply peak at rs = rq, and
may also peak at 2rg, %ro etc.

To understand the first point above, note that if we regard the synaptic changes under STDP as random walks,
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Figure 1: How the auto-correlation structure changes DiffV under heterogeneity of rates. (A) Variance
per spike (Er(Var,(Aw,))/No, with Ny being the expectation of the spike number of the central neuron) as a
function of CV. We see that heterogeneity of rates does not significantly influence DiffV (as DriftV = 0 here,
Er(Var,(Aw,)) = DiffV) when the spikes are bursty, but removes the increase of DiffV caused by strong regularity.
The spike trains are Gamma processes, with the firing rate of the central neuron being kept at 7o = 20Hz. The firing
rates of the non-central neurons follow lognormal distributions with mean r and shape parameter s (by combining
Model Auto & Model Long Tail in Materials and Methods in the main text). The coefficient of variance (C'V)
of the spike trains of the central and non-central neurons are the same. We set A, = A4, so that DriftV = 0. Error
bars represent s.e.m. (B) Variance per spike as a function of rg, if the firing rate of the central neuron is r¢ and
the firing rates of all the non-central neurons are rs. Error bars are not shown for clarity. In A-B, the size of the
converging motif, the parameters for STDP as well as the simulation time and trials are the same as in Figure 4
in the main text.



then the synaptic change caused by a spike of a non-central neuron can be regarded as a step of the random walk. If
the firing rates of the non-central neurons are large, then the step number of the random walk on a synapse per unit
time will be large, thereby increasing the diffusion strength. In our model, we found Er(Var,,—, (Aw;))&rs (with
& representing “approximately proportional to”) when CV > 1 (Supplementary Figure , upper panels).
From eq6] and [7] this implies that E7(Var,(Aw,))XEs(rs). This means that DiffV will not significantly change
as long as the mean firing rate of the non-central neurons conserves, which explains why Er(Var,(Aw,)) does not
change significantly when the firing rates of the non-central neurons become widely distributed (Supplementary
Figure [TA).

The second point above can be understood using the mechanism transient cross-correlation introduced in Sec-
tion 3.2.2 in the main text. When spike trains are strongly regular, if Nyry = Norg (with N; and Ny being two
positive integers with no common divisor larger than 1), then Ep(Var,,—, (Aw;)) can be enlarged by the correlation
between the synaptic updatings caused by adjacent central spikes. DiffV under strong regularity has a sharp peak
at rs = ro (Supplementary Figure lower panels). So if the firing rates of all the non-central neurons are
ro, then DiffV will be large under strong regularity. However, if the firing rates of the non-central neurons are
heterogeneous, then many rs will be at non-peak values in Supplementary Figure lower panels. From
eq6] and [7] this implies that Ep(Var,(Aw,)) will be decreased. Therefore, heterogeneity of rates decreases DiffV
in regular spike trains (see Supplementary Figure ) by destroying the transient cross-correlation between the

central neuron and the non-central neurons.

3 The Influence of Synchronous Firing onto DiffV

3.1 The Influence of Synchronous Firing onto d

This subsection will derive eqs. 27-29 in the main text.

Because of 755 < TsTpp, We neglect the contribution to the efficacy variance by the random displacements
of spike times in a synchronous event, therefore the efficacy variance is only contributed by the difference of spike
numbers of different neurons in a synchronous event. In this case, suppose an central spike at time ¢;, and a
synchronous event S happening during (t1,t2) with ¢; — Tgelay < t1 < t2, then we approximate the STDP updating
caused by the central spike and any non-central spike in S using the time difference between ¢; and the middle time
tl% of S, i.e.

(t1 +1t2)/2 — (t; — Tdelay)
TSTDP

Awg(ti tjes) = —Aqexp|—

] (8)
Thus, the efficacy variance caused by pairing the central spike and the synchronous event § is

2((t1 + tz)/Q - (ti - Tdelay))
TSTDP

Vara(z Awg(ts, tjes)) = Vara(Na)AZ exp[—
J

]

with N, being the spike number of the ath non-central neuron during §. This approximation will be used in our

following calculations.

Teross < Tdelay -
Given an central spike at time ¢;, we denote the synchronous event that the central spike belongs to as Sg. When

Teross < Tdelay, the interaction of Sp and t; can only depress the synapses. After considering the axonal delay, the



duration of the interval between ¢; and the middle time of Sy is uniformly distributed within (7geqy — T”‘Q““ s Tdelay +
Teras ) therefore, its contribution to Er(Var(d_; Awe,a(ti,t5))) is

) Tdelay+ 5258 1 20
ET(Vara( § Awa,d(tivtj))) = Vara(Na)Ad/ exp(— )dﬂf
: s _Tcross  Teposs TSTDP
jGSO delay P)
2 2Tdelay
~ Var, (N, ) A3 exp(————2). 9)

TSTDP
We again use the fact that 7...ss < TsTpp in the approximation above.
In our model, the occurrence of synchronous events is a Poisson process of rate ro/p. For simplicity, we set

Teross — 0 for the synchronous events other than Sy. In this case,

oo
-2z
ET(Vara(Z Awa,d(ti»tj))) = Vara(Na)A?l/ exp( Jro/pdz]
: 0 TSTDP
J¢So
= Var, (Nu () A5 27 (10)
Similarly,
Er(Vara( Y Awap(ti 1)) = Vary (No(p)) 4275028 an
J€So P
Therefore, combining eqs{9HTT] we have that for Te,oss < Taetays
2 ela
d ~ Var,(N,)[A% exp(— Tdel )+ [oTSTDP (A3 + AIQ;)] (12)
TSTDP 2p

which is eq.27 in the main text. When p is large, Var,(N.(p)) =~ pC’VgpikeNum (Cox (1962); Tuckwell (1988);
Nawrot et al. (2008)), so that

2Tdela ToT,
M) + CVS?pikeNumM(Ai + A;Q)) (13)

d=~pCV3,; Afexp(—
p Spike Num“*d p( TSTDP 2

which is eq.28 in the main text.

Teross = Tdelay -

Suppose that the synchronous event Sy that the central spike t; belongs to lasts during (¢1,t2), then when
Teross > Tdelay, there are two possibilities:

1) If t; < t1 + Tdelay, all the non-central spikes come at the central neuron after ¢;, thereby depressing the
synapses.

2) If t; > t1 + Tdelay, then it is possible that some non-central spikes come at the central neuron earlier than ¢;,
which potentiate the corresponding synapses, while the other non-central spikes come at the central neuron later
than t;, which depress the corresponding synapses.

After considering these two possibilities, we can write the contribution of Sy to Er(Vara(_; Awa,a(ti,t;))) as

ET(Vara( Z Awa,d(tia t])))

J€So
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1 2 Teross TTdelay 1 cross 2 cross 2
= Vara(Na)Ai/ exp(— - )d$+/ Varg (N, Torem 22 x)AZ exp(—u)dx
0

7"'07“;55 Teross TSTDP Teross Teross TSTDP

Teross —Tdelay _
2 Tdela Teross T Tdela 1 2 Teross T Tdela Teross X
~ Var,(N,)A; """ exp(— Y+ AZexp(— 22 - vy, Var, (N, ——— )dz.
Tcross TSTDP Teross 27sTpp 0 Teross
(14)

And we again use the fact that 7..0ss < TsTpp in the approximation above. In this equation, Var,(N,,z) means
that if M, of the N, spikes of the ath non-central neuron are chosen (which means that they lie within an interval
of duration AT with A7/7¢r0ss = « in a synchronous event), then Var,(N,,x) = Var,(M,). In this model (Model
Sync in the main text), the time of each of the N, spikes is independently and uniformly distributed within the
synchronous event Sy, therefore each of them has probability x to be chosen.

Similarly, the contribution of Sp to Ex(Var, (3 ; Awa,p(ti,t5))) is

Teross —Tdelay 1 T 2£E 2
Er(Varg( Y Awap(ti t;) = / Vary (Ng, ——) A} exp(— / )dz
j€So 0 Teross Teross TSTDP
~ AQ Teross — Tdelay Teross T Tdelay z
~ HexXp(———p————) - Var, (N, —)dz. (15)
Teross 27—STDP 0 Teross

And the same as the Tgejay < Teross case (eqs and , we approximate the contribution of the synchronous

events other than Sy as

Er(Vara(3_ Awaaltisty) + Br(Vara( 3 Awap(ti 1)) = Vara(Na(p) 5 25 (A3 + A7), (16)
7¢So i¢So

Egs together give the value of Ex(Vara(d_; Awa,a(ti, t;))) + Er(Vara (32 ; Awa p(ti, t5)))-
Now we calculate the value of Var,(N,,z) in eqs and Suppose that there are N non-central neurons,
and the number of chosen spikes of the ath non-central neuron is M,, then

Mf+M22+--~+M]2V_(M1+M2+-~~+MN)2
N N

Var,(Ny, z) =

Here M, follows binomial distribution, whose mean is N,z and variance is N,x(1 — ). Therefore,
Var,(N,,z) = /dNaq(Na)(Nax(l — )+ N2z?) — (/ dN,q(N,)N,)? - 22

=pz(l—z)+ Vara(Na)x2
~ px(l - .13) +pCV52'pikeNumx2 (17)

with ¢(V,) being the distribution of N,, and we also use the fact that Var,(N,) ~ pC’VgpikeNum if p is large and
[ dN,q(Ng)N, = p. Therefore, we know that in eq

Teross —Tdelay T —
Cross
/ Varg (N, 2255 =~ %) dg
0

TC’I‘OSS

1 Tdela 1 Tdela
= Tcrosspf(l - (7?;)2) + TCTOSSP(CVSQ;DikeNum - 1)5(1 - (7?;)3)7 (18)
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and in eq[I5]
Teross —Tdelay
/ Var, (N, L)dm
0

TC’I”OSS

1 T 1 T
= TeronsP5 (1= ™)) + Teronsp(CVpinenum — Vg (L= 222)%). (19)
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Combining eqs/I4HI9] we have

d ~ p[CVQAZ Tdelay eXp(fTCTOSS + Tdelay) + A3 eXp(fTCTOSS + Tdelay) A

Teross TSTDP 27sTDP
Teross — Tdela ToTSTDP
+A§ exp(fﬁ) ’ B} + CvgplkeNumT(Ag + Az)v (20)
with L1 . )
Tdela Tdela
A= (6 + gCVSgpikeNum) - 5(7_ 9)2 - g(cvgpikeNum - 1)(7_7?/)3
Tdela 1 1 Tdela
B = (1 - 7?!)2(7 + g(CVS?pikeNum - 1)(1 - 7?/))7

Teross Teross

which gives eq.29 in the main text.

3.2 The Influence of Synchronous Firing onto ¢;;

In this section, we will try to understand the influence of synchronous firing onto ¢;; (Supplementary Figure
A4, B4, C4). When p is large, the change of ¢;; with p is small (Supplementary Figure [2| A4, B4, C4),
which suggests that compared to the other factors, c;; contributes little to the increase of DiffV with p. When
Teross < Tdelay, the change of cjr with C'Vspikenum is not strong; and when Teross > Tdelay, crr tends to decrease
with CVspikenum (Supplementary Figure [2| A4, B4, C4), which negatively contributes to the increase of DiffV
with CVspikenum- These facts suggest that cyr is not an important factor to understand the change of DiffV under
synchronous firing. In this section, we will discuss the influence of synchronous firing onto ¢;; only for completeness.
Readers may skip this subsection when reading for the first time.

From Supplementary Figure [2| A4, B4 and C4, we can see that cy; is usually smaller than 1, which, by
definition (eq.15 in the main text), means that ppp is usually negative. The reason for this negative correlation is
the same as that shown in Figure 4D inset in the main text: if the ath non-central neuron fires more (less) spikes,
then both the potentiation and depression imposed on the ath synapses tend to be strong (weak). Therefore, the
total potentiation and depression value tend to be negatively correlated through the heterogeneity of spike numbers
of the non-central neurons. However, c;; increases with the decrease of C'VspikenNum, and becomes larger than 1
when CVgpikenum is small enough. By definition (eq.15 in the main text), ¢;r > 1 means ppp > 0. We will try to
understand this phenomenon in the following discussion.

Suppose a central spike ¢; and the synchronous event Sy that ¢; belongs to, let us consider a synchronous event
S_ that occurs before Sy, and a synchronous event Sy that occurs after Sg. Then under the case that the inter-event
interval p/rg is large enough (which is realized when p is large) and the occurrence of synchronous events is not too
bursty, it is likely that

ti — Tdelay > t;, for all t; € S_
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Figure 2: How the efficacy variability, d, ¢; and c¢;; change with p and CVspikenum. (A1) Variance per
spike as a function of p when C'VgpikenNum = 0.1. The horizontal black line represents the axonal delay 7Tyeiqy = 1ms.
(A2-A4) The same as A1, but for d, ¢; and ¢;;. Spike trains are generated according to Model Sync in the main
text. (B1-B4) The same as A1-A4, but when C'Vspikenum = 0.71. (C1-C4) The same as A1-A4, but when
CVspikeNum = 2. In A1-C4, the size of the converging motif, the parameters for STDP as well as the simulation
time and trials are the same as in Figure 4 in the main text.
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t; — Tdelay < tj, for all tj € S+

If 7.r0ss < TsTDP, then the synaptic updating caused by pairing ¢; with non-central spikes in S4 or S_ will not have
much difference between when 7ross < Tgelay and when Teross > Tdelay, since in both cases the synaptic updatings

can be approximated by
(ti - Tdelay) - tS_

Awa(tiytjes,) ~ Ap eXp(* )7
TSTDP
and . (t )
s — (ti — Tder
Awa(tia tj65+) ~ 7Ad exp(f - . e )7
TSTDP

with £s_ and ¢s, respectively being the middle time of S_ and S . However, the interactions of #; with non-central
spikes in Sy is quite different when 7.poss < Tgelay With those when Teross > Tdetay- When Teross < Tdelay, all the
non-central spikes in Sy depress the synapses after pairing with ¢; (i.e. Awq(ti,tjes,) < 0), but when Teross > Tdelays
some non-central spikes may potentiate the synapses (i.e. Aw,(t;,tjes,) > 0). From Supplementary Figure
A4, B4 and C4, c¢;; decreases with C'VspikeNum When Teposs > Taelay, but does not significantly change when
Teross < Tdelay, Which suggests that the possibility that Aw(t;,tjes,) > 0 under Teposs > Taelay 1S @ key point to
understand the decrease of ppp with C'Vspikenum.-

Intuitively, during a synchronous event (0, Teross) (With Teross > Tdelay), the non-central spikes that are emit-
ted during (0,t; — Tgeiay) Will potentiate the synapses, and the non-central spikes that are emitted during (¢; —
Tdelay, Teross) Will depress the synapses. If CVspikenum is very small, then the ath neuron can fire almost exact p
spikes during a synchronous event. In this case, if these p spikes are within (0,¢; — Tgeiay), then all of them will
potentiate the ath synapses, so that Aw,, is large and Aw, 4 = 0; but if they are all within (¢; — Tgeiay, Teross), then
Aw, p = 0 and Aw, ¢ will be very negative. This seems to be a possible mechanism that positively correlate Awg
and Aw, g when CVspikenum is small and Teross > Tdelay (Supplementary Figure [2( A4). Mathematically, it
is complicated to analytically calculate ppp, but we can implement this idea by using the following simple model,
thereby understand the increase of ppp with the decrease of C'VspireNum Under 7eross > Tdelay-

Let’s suppose Sy happens during (0, Teross) With Teross > Tdelay, and the spike of the central neuron is at
ti — Tdelay = TTeross With 0 < x < 1, so that = portion of the spikes of the non-central neuron potentiate the
synapses, while 1 — x portion depress the synapses. If 7..0ss < TsTpp, then we can suppose that all the spikes
within (0, 27¢r0ss) Will potentiate the synapses by y, ~ A, exp(—;:;ﬁ), and all the spikes within (ZTeross, Teross)
will depress the synapses by —yq ~ —Aqg exp(—%ﬁ;w)). The correlation between the potentiation and depression
values in this model will be calculated in Section below (eq7 the result is

ppp = J dNag(No)Var(M,|Na, z) — (1 — 2)Varg (N,)
VI ANaa(No)Vax (Ma| No, @) + 22Vara(No)] - [ dNag(Na)Var(Ma| No, @) + (1 = 2)2Vara(Na)]

Y

with ¢(V,) being the probability distribution of the spike number of the ath neuron in a synchronous event. We will
explain the general meaning of Var(M,|N,,z) in Section below (eq; but here (i.e. in Supplementary
Figure , we use Model Sync (see Materials and Methods in the main text) to generate our spike trains, in
which case Var(M,|N,, z) can be understood as the variance of the number of chosen spikes if each of the N, spikes

are chosen independently with probability x. In this case, M, follows binomial distribution, whose mean is N,z
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and variance is N,z(1 — z). Therefore (see also eq{I7)),

ppp = [ ANaq(Na)Nyz(1 — 2) — 2(1 — x) Var, (N,)
\/[f dAN,q(Ng )Nz (1 — z) + 22Varg(N,)] - [[ dNag(Ng)Noz(1 — z) + (1 — )2 Var, (N,)]

Jf(l - Z‘) - .13(1 - m)cvégpikeNum
\/[!E(l - .1‘) + ‘T2CVSQpikeNum] ’ [l‘(l - .’L‘) + (1 - x)2CVS%pikeNum]

From this equation, we can see that ppp > 0 if CVspikenum < 1, and ppp < 0 if CVgpikenum > 1. What’s more,

if we let a = CVgpikeNum, then it is easy to show that

dppp (14 a)(1 — z)%2?

da  2/(1—a)z((1 — )z +a®(1 — 2)z 4 a(l — 2z + 222))]3

Asa > 0,0 < x <1, it is easy to show that 8"5% < 0, which means that ppp increases with the decreasing of
CVspikeNum- This explains the decrease of ppp with C'Vepikenum and the positive ppp when CVspikenum is small

under Teross > Tdelay-

4 The Interaction of Synchronous Firing and Auto-correlation Structure

As we mentioned in the main text, auto-correlation structure comes into spike patterns with synchronous firing in
at least three ways:

1) The broadness of the distribution of spike number per neuron per synchronous event (ATspikeNum )-

2) The burstiness,/regularity of the pieces of spike train within synchronous events (AT withinEvent )-

3) The burstiness/regularity of the occurrence of synchronous events (AT events)-

We have already discussed the influence of ATgpikenum onto DiffV in the main text, in the following part of this
section, we will consider AT withinEvent and AT events. Overall, we find that broader distribution of spike number per
neuron per synchronous event (for ATgpikeNum ), burstier spike trains within synchronous events (for AT withinEvent)s
and burstier occurrence of synchronous events tend to increase DiffV (for AT events). These results can be concluded
into a rule of thumb: the burstiness of spike trains tends to increase DiffV, while the regularity tends to decrease
DiffV.

4.1 The Burstiness of the Piece of Spike Train within a Synchronous Event

We use the following model (Model Sync-Auto 1) to generate spike trains in which both ATspikenum and AT WithinEvent
can be explicitly controlled.

Model Sync-Auto 1:

In this model, the occurrence of synchronous events and the spike number that a neuron is to fire during a
synchronous event are determined in the same way as Model Sync in the Materials and Methods of the main
text (CVspikenum = 1 by default). If a neuron is to fire M (M > 0) spikes during a synchronous event of duration

Teross, then the piece of spike train during this interval will be generated as follows:

12



We first define a Gamma process with rate p/7.r0ss (here p has the same meaning as it in Model Sync in the
main text, which is the mean spike number of a neuron during a synchronous event) and coefficient of variance
CVwithinEvent, and then generate M + 2 spikes using this Gamma process. Suppose that the time of the ith
spike of the Gamma process is t; (0 < ¢ < M 4+ 1 and ty = 0), and the synchronous event is within the interval

[tevents tevent T Teross)- Then the jth (with 1 < j < M) spike of the neuron in the synchronous event will be at time

t T,
tevent + MOd((t] - %)ﬁ + xz, Tcross)
2 2

with z being a random number uniformly chosen from the interval [0, 7¢p0s5), and is fixed for all these M spikes.

The idea of this operation is that given a spike train of M + 2 spikes, we first cut the spike train at the middle
time between the 1st and 2nd spikes, and also cut at the middle time between the last 1st and last 2nd spikes.
Then we rescale the left spike train to length 7,55, and translationally shift the spike train by a random interval,
implementing periodic condition to deal with the spikes being moved out of the time boundary of [0, Teress] during
the shift. By doing this, the probability density that a spike appears at any time during the interval [0, 7¢poss] is
the same for different trials.

In this model, the burstiness of the spike train within a synchronous event is controlled by CViyithingvent- 1If
CVwithinEvent 1S small, then the neurons will fire regularly in a synchronous event; if CViyithinEvent 1S large, then

the neurons will fire burstly in a synchronous event.

Our simulations suggest that the burstiness of the piece of spike train within a synchronous event does not
significantly influence DiffV when 7ross < Tdeiay, but it increases DiffV when 7eross > Tgelay (Supplementary
Figure ) We also find that d and cy; are the main reasons for the increase of DiffV with CVivithinEvent, C1
does not has significant effect (Supplementary Figure -D).

4.1.1 The influence of CVWithinEvent to d

To understand the change of d with CViy;thinEvent, Note that under the assumption 7,055 < TsTDP, eq still
applies to the case Tcross < Tdelay, and eqs still apply to the case Tcross > Tdelay. When Teross < Tdelay, the
efficacy variance mainly comes from the difference of spike numbers of different non-central neurons in a synchronous
event, therefore if the distribution of spike numbers per neuron per synchronous event is kept unchanged, then the
burstiness of the piece of spike train within a synchronous event can hardly contribute to the efficacy variance: this
is the reason why CVivithinEvent hardly influences d when Teross < Taelay (Supplementary Figure ) When
Teross > Tdelay, We can see from eqs and that the burstiness of the piece of spike train within Sy (i.e. the
synchronous event that the central spike ¢; lies in) may influence the efficacy variance through changing Var,(N,, ).
As mentioned before, this factor means that if M, of the N, spikes of the ath non-central neuron lie in an interval

of duration A7 (with A7/7..0ss = ) in a synchronous event, then Var,(N,,z) = Var,(M,). Therefore,

ME+MZ+---+ M3  My+My+---+ My

Var,(Ng,z) = N —( N )2

_ / ANaq(No) [Var(Ma|Na, z) + N22?] — ( / ANag(N2)N,)? - 22

13
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Figure 3: How the burstiness of the piece of spike train within a synchronous event influences DiffV.
(A) Variance per spike as a function of CViyithinEvent, When Teross = 0.5ms (blue) or 2.5ms (red) and p = 2 (solid
line) or 5 (dashed line). Tgeiqy = 1ms. Spike trains are generated according to Model Sync-Auto 1 in Section
(B-D) The same as A, but for d, ¢; and ¢;;. In A-D, the size of the converging motif, the parameters for STDP
as well as the simulation time and trials are the same as in Figure 4 in the main text. Error bars represent s.e.m.
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Figure 4: Understanding the influence of CViy,ihingvent onto d. Var(M,|N,, z) (see eqf21) as a function of
CVwithinEvent When © = 0.2 (solid line) or 0.5 (dashed line) and p = 2 (blue) or 5 (red).

= /dNaq(Na)Var(Ma|Na,m) + 2*Var, (N,), (21)

with ¢(N,) being the probability distribution of N,, Var(M,|N,,x) being the variance of M, if the spike number
of the ath non-central neuron is N, and Ep(M,|N,) = Nyx. As the burstiness of the piece of spike train within a
synchronous event (which is, here, quantified by CViyithinEvent) increases Var(M,|N,, z) (Supplementary Figure
4)), it also increases Var,(N,, z) through the equation above, and thereby increases Ex(Var, (>~ €S Awg,q(ti,t5)))
and ET(Vara(EjGSO Awg p(t;,t5))) through eqs and This explains the increase of d with CViyithinEvent

under Teross > Tdelay-

4.1.2 The influence of CViy;ihinEvent tO Cr1

From eqgs.15 and 16 in the main text,

crr =1+ pppfPp

with

B 2\/Vara(2i Zj Awgp(ti, t5)) - Vara (3, Zj Awgalti;t;))
Jro = S VA (5, 3, Bl 1) |

with ppp being the correlation coefficient between the total potentiation and depression values imposed on the same

synapse, and fpp is the coupling factor. To understand the change of c¢;; with CViyithinEvent Under Teross > Tdelay,
we plot ppp and fpp with CViyithingvent, and find that ppp is the main reason for the increase of cy; with
CVWithinEvent, the contribution of the coupling factor is not significant (Supplementary Figure B).

ppp tends to be negative, which is because of the heterogeneity of spike numbers of the non-central neurons. If the
ath non-central neuron fires more spikes, then both the potentiation and depression processes on the ath synapse will
get stronger. This is the reason why Corr,(Awg p, No) > 0 (with N, being the spike number of the ath non-central
neuron) and Corrq(Awg ¢, No) < 0 (Supplementary Figure ), which makes ppp = Corrg(Awg,p, Awg.q) < 0.
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Figure 5: Understanding the influence CViyiihingvent onto crr. (A) ppp as a function of CVivithinEvent,
when 7¢pss = 0.5ms (blue) or 2.5ms (red) and p = 2 (solid line) or 5 (dashed line). Tgeqy = 1ms. Spike trains
are generated according to Model Sync-Auto 1 in Section (B) The same as A, but for fpp. Note that
the percentage of the change of fpp is significantly smaller than that of ppp. (C) The spike number of a non-
central neuron (horizontal coordinate) is positively correlated with the total potentiation (blue) value and negatively
correlated with the total depression (red) value. (D) The potentiation and depression correlation coefficient of the
simple model introduced in Section [4.1.2] The dots with error bars are numeric results, while the solid line is
calculated from eqf22] In A-D, the size of the converging motif, the parameters for STDP as well as the simulation
time and trials are the same as in Figure 4 in the main text. Error bars represent s.e.m.

We find that C'ViyithinEvents hardly influences ppp when Teross < Tdelay, but increases ppp when 7eross > Tdelay
(Supplementary Figure ) Now we try to understand this phenomenon in the following discussion.

Suppose an central spike at time ¢; and the synchronous event Sy that the spike belongs to, let us consider a
synchronous event S_ that occurs before Sy, and a synchronous event S, that occurs after Sg. Then under the
case that the inter-event interval p/rg is large enough (which is realized when p is large) and the occurrence of

synchronous events is not too bursty, it is likely that

ti — Tdelay > tj, for allt; € S_,

t; — Tdelay < tj, for all tj € $+.

If 7eross < TsTDP, then the synaptic updating caused by pairing ¢; and non-central spikes in S_ and S; can be
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approximated by ( )
Ui — Tdelay) — ts_
Awg(ti,tjes ) &~ Apexp(—-— T;Ta;p )s

and t ) |
St — \li = Tdel
Awa(ti7tjes+) ~—Ay exp(f + v elay ’
TSTDP

with ts_ and ts, respectively being the middle time of S_ and S,. In the equations above, we have used similar
approximations as in eqf8] We can see that the spike patterns within S_ and S; hardly have influence onto the
synaptic weights.

Similar arguments also apply to So when 7¢,oss < Tgelay, because in this case, all the spikes of the non-central

neurons within Sy depress the synapses with their interactions with ¢;, and

Awg(ti, tjes,) = —Aa exp(—M ,

TSTDP

so that the spike pattern within Sy also hardly influences synaptic weights. This explains why CViyithinEvent has
little influence onto ppp when Teross < Tgelay (Supplementary Figure )

However, the situation is different when 7cross > Taelay, because the equation above is no longer valid in this
case, and Awg(t;,tjes,) is larger than zero if t; + Tgeiay < t;. From Supplementary Figure , ppp increases
with CVivithinEvent When Teross > Tdelay, bDut not when 7eross < Tgelay, Which suggests that the possibility that
Aw, (t;, tjeso) > 0 under Teross > Tdelay 1S @ key point to understand the increase of ppp with CVivithinEvent-

Intuitively, during a synchronous event (0, Teross) (With Teross > Tdeiay), the non-central spikes that are emit-
ted during (0,t; — Tgeiay) Will potentiate the synapses, and the non-central spikes that are emitted during (¢; —
Tdelay Teross) Will depress the synapses. If CViyiihinEvent 1S large, then the piece of spike train within a synchronous
event will be bursty, so that the following situation is likely to happen: if the ath non-central neuron fires all its
spikes during (0,%; — Tgeiay), then all its spikes potentiate the ath synapse, so that Aw,, > 0 while Aw, 4 = 0;
however, if the ath non-central neuron fires all its spikes during (t; — Tgeiay, Teross), then Aw,, = 0 and Awg 4
will be very negative. This seems to be a possible mechanism that positively correlate Aw,, and Aw,q when
CVwithinEvent 1s large (Supplementary Figure ) Mathematically, it is complicated to analytically calculate
ppD, but we can implement this idea using the following simple model, which focuses on a single synchronous event,
thereby helps to understand the increase of ppp with CVivithinEvent Under Teross > Tdelay-

Let’s suppose So happens during (0, Teross) With Teross > Tdelay, and the spike of the central neuron is at
li — Tdelay = TTeross With 0 < o < 1, so that x portion of the spikes of the non-central neuron potentiate the
synapses, while 1 — x portion depress the synapses. If 7055 < TsTpp, then we can suppose that all the spikes
within (0, 27¢r0ss) Will potentiate the synapses by y, ~ A4, exp(—%), and all the spikes within (27cross, Teross)

DP
Tcross(l_x)

will depress the synapses by —yg ~ —Agexp(— E— ). With the same as eqﬁ, we denote N, as the spike

number of the ath non-central neuron during Sy, and denote M, as the spike number of the ath non-central neuron

within (0, 27cr0ss). Then, the variance of the potentiation value caused by the spikes within (0, 27cross) 1S

VarP = Var,(M,x,) = x?)Varu (M,)

= mi[/ dN,q(N,)Var(M,|N,, z) + 2*Var,(N,)],

where we use eq)21] in the last step. Similarly, the variance of the depression value caused by the spikes within
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(x’rcross ’ Tcross) is

VarD = Var,((N, — My)x4) = x3Var, (N, — M,,)
= 335[/ dNyq(Ny)Var(My|Ny,z) + (1 — x)QVara(Na)].

And the variance of the total STDP updating value caused by the spikes within Sy is

VarTot = Var,(Myz, — (Ng — My)xq)

= 2%Var, (N, — Tp + T M,)
d 7y
2 Zp +Tq Tp + Xd_\2
=z3| dNaq(Na)Var(TdMa|Na, x)+ (1 - Tda@) Var,(N,)]

— (&) + 24)° / AN, g(Ny)Var(Ma|Ny) + (2a(1 — @) — 2p2)*Vara(Na)

Therefore,
opp = VarTot — VarP —VarD
2V/VarP - VarD
_ [ ANaq(Ny)Var(My| Ny, z) — 2(1 — z)Var,(N,) R
V1 ANag(No) Var(Mq| Ny, 2) + 22Vara(No)] - [f dNag(No) Var(Mq| No, 2) + (1 — 2)2Varg (N,)]
If we let

a = /dNaQ(Na)Va‘r(Ma|Naa$)
b = Var,(N,),

then it is easy to show that
dppp bla + b(1 — z)z]

9~ 2l(a+b(1—2)?)(at ba?)]F

Asa >0,b>00<2z <1, B%ZD > 0. Thus, ppp is an increasing function of Var(M,|N,,x). Because

Var(M,|N,, ) increases with CViyithinEvent (Supplementary Figure , ppp increases with CViyihingvent- We

compare numeric results with the results calculated from eqJ22]in Supplementary Figure [5D.

4.1.3 The influence of CVWithinEvent to Cr

From Supplementary Figure [BIC, we know that ¢; does not significantly influence DiffV when CVivithinEvent
changes, which means that it is not an important factor to understand the change of Diff V with CViyithinEvent-
Here, we discuss the change of ¢; with CViyithinEven: Only for completeness. Readers may skip this subsection
when reading for the first time.

Suppose a spike of the central neuron ¢; € S; (with S; being a synchronous event), and a spike of the ath
non-central neuron ¢, ; € So (with Sy also being a synchronous event). If the inter-event interval p/ry is large and
the occurrence of synchronous events is not too bursty, then under 7cross < Tgelay, it is likely that:

1) If S occurs before Sy, then

ti — Tdelay > ta,j, for all ¢, ; € So;
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Figure 6: Understanding the influence of CViythinEvent 0nto cr. (A) ¢r as a function of CViyithinEvent when
Teross = 2.5ms, p = 5. Here, we set Tgeiqy = Oms to understand the effect of 7,055 > Tgelay- Spike trains are
generated according to Model Sync-Auto 1 in Section (B) The same as A, but for Zl,k Pk (see €q.30 in
the main text). We found that p; j, safely decays to zero when ! > 50 in our parameter range, therefore we cut off
at | = 50 when calculating the summation. (C) The same as B, but for ), , fir (see eq.31 in the main text). In
A-C, the size of the converging motif, the parameters for STDP, as well as the simulation time and trials are the
same as in Figure 4 in the main text. Error bars represent s.e.m.

2) If Sy occurs after Sy or So = Sy, then
ti — Tdelay < ta,j, for all 5 ; € So.

Under 7¢ross < Tdelay, the first condition above implies that the synaptic updating caused by pairing ¢; and ¢, ;

can be approximated by
A ts, — (T
wq(ti, ta,j) = Apexp(— &l S_::;;Tdelay) ),

(with ts, and ts, being the middle time of S; and Sz); and the second condition above implies that

(t82 + Tdelay) - t$1 )

Awg(ti, ta,;) = —Agexp(— .
TDP

These two equations suggest that when Teross < Tdelay, the spike pattern within the piece of spike train within a
synchronous event does not have significant effect on the synaptic changes Aw,(t;,, ), which is the reason why c;
hardly changes with CVivithinBvent When Teross < Tgelay (Supplementary Figure )

When 7eross > Tdelay, sSome non-central spikes in S; may potentiate the synapses after pairing with ¢;, and some
others may depress the synapses. In this case, it is difficult to understand the change of ¢; with CViyithinEvent, and
we resorted to simulations. Our simulations suggest that c; may slightly decrease with C'ViyithinEvent in this case,
and the decrease of correlations instead of coupling factors is the reason for this phenomenon (Supplementary

Figure @ But overall, the influence of C'Viy;ihinEvent ONto ¢y is not strong.
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4.2 The Burstiness of the Occurrence of Synchronous Events

To investigate the influence of the burstiness of the occurrence of synchronous events onto DiffV, we use the following

model to generate spike trains:

Model Sync-Auto 2:

In this model, the spike train of a neuron within a synchronous event is determined in the same way as Model
Sync in the main text (we set CVspikenum = 1 by default). The occurrence of synchronous event is a Gamma
process with rate p/7cr0ss and coefficient of variance C'Veyents. If CVepents is small, then synchronous events will

occur regularly; if CV,,enss 18 large, then synchronous events will occur burstly.

Our simulations suggest that the burstiness of the occurrence of synchronous events tends to increase DiffV,
especially when CVepents > 1 (Supplementary Figure ) It does this through d and ¢; (Supplementary
Figure [7BC), while ¢;; contributes negatively (Supplementary Figure [7D).

4.2.1 The influence of CV, s to d

C'Vepents influences d mainly through the synchronous events other than Sy, i.e. Ep(Var, (> S0 Awg q(t;,t;5))) and
Er(Vara (Y ¢s, Awap(ti, t;))) (see eqs and . To understand the underlying mechanism of this influence, we
let Tgeray = 0. In this case, eq{I6] becomes

27’[

23
TSTDP ( )

> Ep(Vara( Y Awai(ti t;))) ~ Vara(Na) (A2 + A7) - Ep[> _exp(—
k=p,d §¢So 1=1
with {r;} (I =0,1,---) being a Gamma process with rate ro/p and coefficient of variance C'Vgyents, starting from

27
TSTDP

70 = 0. From Supplementary Figure |8 we can see that Ep[>,°; exp(— )] monotonically increases with

27

- )] means that
STDP

CVeyents, thereby increasing d if Var,(N,) # 0. Intuitively, the increasing of Ep[> ", exp(—

that more synchronous events can be gathered closer to Sy with the increasing of C'Veyents-

4.2.2 The influence of C'V yepnts to

Following similar procedure as in Figure 7 in the main text, we find that the increase of ¢; with C'Veyents is mainly
due to the increase of correlation coefficients py, n.1 (see €q.17 in the main text) (Supplementary Figure @A),
while the coupling factors fy, ».x (see eq.17 in the main text) don’t have significant contributions (Supplementary
Figure ) To understand the increase of )" <n Pmonk With CVeyengs, let’s for simplicity only consider the case
Teross < Tdelay <K % (with p/ro being the inter-event interval). This calculation will help us gain insight on the
mechanisms how C'Veyents increases pp, .-

In this case, the depression of the ath synapse caused by the mth spike (which belongs to the synchronous event

Sp) of the central neuron can be approximated by

Tl
TSTDP

o0
Tdelan
Awg q(tm € So) ~ —Agexp(———L)[Ny0 + Z Ng,exp(—
TSTDP pt

(24)
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Figure 7: How the burstiness of the occurrence of synchronous events influences DiffV. (A) Variance
per spike as a function of C'Veyents, when 7¢r0ss = 0.5ms (blue) or 2.5ms (red) and p = 2 (solid line) or 5 (dashed
line). Tgelay = 1ms. Spike trains are generated according to Model Sync-Auto 2 in Section (B-D) The same
as A, but for d, ¢; and ¢;;. In A-D, the size of the converging motif, the parameters for STDP, as well as the
simulation time and trials are the same as in Figure 4 in the main text. Error bars represent s.e.m.
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CVepents (see eq. The results were from averaging over 10000 trials of Gamma processes with rate ro/p (here
we set 7o = 20Hz, p = 5).

with {r;} (I =0,1,---) being a Gamma process with rate ro/p and coefficient of variance C'Vgyenes, starting from
7o = 0, and N, ; being the spike number of the ath non-central neuron in the /th synchronous event after Sy. In the
equation above, we omit the contribution to Aw, 4(t,,) by the synchronous events that happens during the interval
[tm — Tdelay, tm]. This approximation is acceptable if Tgeiqy is far smaller than the inter-event interval p/ro (which
is particularly correct when p is large) and when the occurrence of synchronous events is not too bursty. From
eq24] we know that if ¢,, and ¢, are two spikes of the central neuron that belong to two immediately adjacent

synchronous events Sy and Sy, then

Awg.a(tm € So) ~ —Agexp(——2Y )N, o + exp(— ——) Awg.q(tn € S1) (25)
TSTDP TSTDP
Then
Pm,n;d = Corra(Awa,d(tm)7 Awa,d(tn))
= Corr, (X, + bY,,Ys) (26)
with
X, = —Agexp(— 2 N (27)
TSTDP
Y, = Awa)d(tn) (28)
and
b = exp(— i (29)
TSTDP

From eq we can see that Awg ¢(tm) and Aw, q(t,) are correlated together by sharing the term Y, and their
correlation can be increased if the variance of the correlated term bY, is increased, which can be realized by increasing
either |b] or Var,(Y,). We will see how C'V,,ents increases their correlation through b2 and Var,(Y,) in the following

discussion.
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Figure 9: Understanding the influence of CV,yents onto ¢;. (A) The change of >, , i (see €q.30 in the
main text) with CVeyents when 7¢r0ss = 0.5ms (blue) or 2ms (red) and p = 2 (solid line) or 5 (dashed line). Spike
trains are generated according to Model Sync-Auto 2 in Section We found that p;  safely decays to zero
when [ > 50 in our parameter range, therefore we cut off [ at | = 50 when calculating the summation. (B) The
same as A, but for th fik (see eq.31 in the main text). Note that the percentage of the change of th fik is
significantly smaller than that of Y, , pr.x. (C) Er(pm,n,a) as a function of CVeyents, with m and n represent two
central spikes in immediately adjaceht synchronous events. The dots with error bars give simulation results; the
blue line represents results calculated from eql using the distributions of b? and Var,(Y,); the red line represents
results calculated by replacing b? and Var,(Y,) in eq.. 0| with E1(b?) and E(Var,(Y,)). In A-B, the size of the
converging motif, the parameters for STDP, as well as the simulation time and trials are the same as in Figure
4 in the main text. In C, the statistics of b*> was from 10000 trials of the Gamma process, and the statistics of
Var, (Y,) was from simulations of the same conditions as in A and B. Error bars represent s.e.m.

As N, is indepedent of N, ; in eq Corry(X,,Y,) = 0. Therefore eq becomes

b2Var, (Y,)
Pm,n;d = COI’I‘a(Xa + bYU«a Ya) = \/V&ra(Xa) + bQVara(Ya) - (30)

We have to use the distribution of b* and Var,(Y,) to calculate E7(pmn.a). Even if it is possible to do so,

such calculation has little help for us to intuitively understand the physical mechanisms why Er(ppm n.a) changes
with CVeyents- For a good understanding of this mechanism, we will estimate how Er(b?) and Er(Var,(Y,))
change with CVeyents (note that Ep(Var,(X,)) does not change with C'Veyents), and then compare Er(pp, niq) with
Er (02)Ez (Vary (Ya . . . .
\/ Vars( ng +123T?é2)§TEVaZZ(Ya)) in the following discussion.
When the occurrence of synchronous events is a Gamma process of rate rq/p and coefficient of variance CVyents,

the distribution of 7 is

o(n) = fagri es(=hm)

with @« = =—— and From e ..
ovi, and b= gyt q
oo
27 TSTDPTO o
ET(bz) ~ / eXp(— )q(Tl)dTl = ( )cvevents
0 TSTDP TSTDPTO + 2pC events
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To estimate how Er(b?) changes with CVeyents, note that

2 2
log[l + pCVevents ]

lo =
g[ET(b2)] CVve%)ents TSTDPTO

and it is easy to show that log(1 + az)/x is a decreasing function of z if @ > 0. Therefore, Er(b?) is an increasing
function of C'V2

events*
What’s more,

27‘[

Er(Varg(Y,)) = Var, (N, ) A2 exp(—mﬂ){l +Er[) exp(—

TSTDP = TSTDP

Therefore, Ep(Var, (Y, )) will increase with C'Veypents because of the increase of Ep[>",° exp(—%)] (Supplementary
Figure .

The discussions above shows that both Ez(b%) and Eg(Var,(Y,)) increase with CVeyents. AS prnk is an
increasing function of both b? and Var,(Y,) (eqi30)), our calculations above give an understanding on why E1(pm n.4)
increases with CVeyents. From eq we can see that Awg q(t,,) and Aw, 4(t,) are correlated together by sharing
the term Y,, and their correlation can be increased if the variance of the correlated term bY, is increased, which
can be realized by increasing either |b| or Var,(Y,). From the discussions above, we see that C'Vgyents increases the

correlation coefficient through both of the two mechanisms.

Er (b2)Er(Var,(Ya))
Xa)+E7 (b2)Er(Vare (Ya))?

In Supplementary Figure , we compare Ep(pp, n.q) with \/ Vara( we see that al-

E7 (b2)Er(Var, (Ya,)) -
Var, (Xo)+E71 (02)Er (Var, (Ya)) ~

E1(pm.n:a), which suggests that the broad distribution of b* and Var,(Y,) tends to decrease E1(pm. n:a)-

though they do not coincide, they have the same tendency to increase with C'Veyepnts. What’s more, \/

4.2.3 The influence of C'V_yepnis to ¢y

From Supplementary Figure [7D, we know that c¢;; negatively contributes to the increase of Diff V with CVeyents
especially when CVyents > 0.7, which means that c;; is not an important factor to understand the change of
DifftV with CV,yents. Here, we discuss the influence of C'V,yepnts onto ¢y only for completeness, readers may skip
this subsection when reading for the first time. When CV,yents > 0.7, ppp is negative and decreasing, while the
coupling factor fpp is positive and increasing (Supplementary Figure AB). This means that both ppp and
fpp contribute to the decreasing of ¢;; with C'Veyents. We will try to understand the mechanisms underlying their

contributions in this subsection.

The potentiation and depression on the ath synapse can be written as
Awg p = Awg p(same) + Awg p,(diff) (31)

Awg g = Awg g(same) + Aw, q(diff) (32)

with Aw, ,(same) (Aw, q(same)) being the potentiation (depression) caused by pairing central and non-central
spikes that belong to the same synchronous event, and Aw,, ,(diff) (Aw, 4(diff)) being the potentiation (depression)
caused by pairing central and non-central spikes that belong to different synchronous events. Aw, p(same) and

Aw, q(same) are determined by the statistical features of a single synchronous event, while C'Vyenis mainly changes

24



Aw, p(diff) and Awg ¢(diff). To understand the underlying mechanism why ppp decreases with CVeyents when

C'Vepents 1s large, here we consider the correlation between Aw, ,(diff) and Aw, ¢(diff)
ppp(diff) = Corr, (Awg, p(diff), Awg 4(diff))

and set Tyeiqy = 0 and Teross K TsTpp for simplicity.
By definition,

ppp(diff) = Corra(z N sZs ps Z Ny s2s.d)-

In this equation, s is the index for synchronous events. N, s is the spike number of the ath non-central neuron in

the sth synchronous event, and zs, (2s4) is the potentiation (depression) per spike caused by pairing these N, g

non-central spikes with the central spikes that not in the sth synchronous event.

Using the approximation similar to eq it is easy to show that (note that 74eiqy = 0 in our calculation)

oo
T
Zsp = Ap E No,s+1exp(—
TSTDP
1=1
Zs,d = —Aq E No,s+1exp(—
TSTDP

=1

with Ng s being the spike number of the central neuron in the sth synchronous event, {r;} (I =0,1,--

Gamma process with rate ro/p and coeflicient of variance CVgyents starting from 75 = 0.

Therefore,
X-Yy-2Z2
D) = Cota (N, 3 Vi) = S E
with

X = Vara(z Na,s(zs,p + ZS,d))’
Y= Vara(z Na,szs,p)v

Z = Vara(z No.sZs.d)-

-) being a

In our model (Model Sync-Auto 2 in Section , N, s are independent with each other, and Var,(N, ) = p.

Therefore, if we let A, = A; = A, we will have

X = Vara(z Na,s(zs,p + Zs,d))

Zex

TSTDP TSTDP TSTDP

Zex

o0 oo 2
o A*Var,(N,.s) - {pQET[(Z exp(— )2] + pE7[2 Z exp(— L
=1 1

27’[

)]

D2 4 pErf2 > expl—

=1

o pQET[(Z exp(—

T
=1 STDP

7-STDP TSTDP
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Yy = Vara(z Na,s2sp)

Tl 27’[

))?] + pEr[Y_ exp(—

=1

1 o0
x A2§Vara(Na’S) . {pQET[(Z exp(—

-
P STDP

TSTDP

s > 27
+p°E exp(— 2l + pE exp(—
P T[(l; P(= )T+ p T[Z:ZI p(-——

o 1192ET[(§:6XP( ZGX ))2]+1pET[2§:eXP(— 2 )]

2 P TSTDP TSTDP 2 = TSTDP

and
Z = Vara(z Ny s2s.d)

x LB [(iexp( Zex T )+ LpE [2iexp(— )

2t =T TSTDP TSTDP 2T TSTDP

=1 =1

Armed with these results, it is easy to show that

o DA
with -
Tl
A=E - 34
r(y (- T (3)

=1

B=Eq Zexp )?) (35)

TSTDP
€ = BrlY exp(~ ) (36)
= TSTDP

Our analytic calculation well predict the numeric results (Supplementary Figure )
Now let’s understand the change of ppp(diff) with C'Voyents. By definition, B > C, so we can write the
denominator of eq as (p+a)B with 0 < a < 1. From Supplementary Figure left, we can see that a ~ 1

when CVeyents is small, and gradually decreases when CVeyents gets large. Therefore, if p is relatively large, then

from eq33 4
ppp(diff)& — B

with & representing “approximately propotional to”. What’s more,

A2 1 1

T2 T T B_A2x Az
B % VarT [Zl N exp(— TSTDP —L )]
ET[ZZ:l e~ r5rpp 1

+1

Therefore, the change of ppp(diff) basically reflects the change of

Supplementary Figure EC w1thr right).
When CVeyents is small, A, B and C are all small, which makes Var,(Aw, ,(diff)) and Var,(Aw, q(diff)) are

ratio of Y 2, exp(— ) (compare

mean TSTDP
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Figure 10: Understanding the influence of C'V.yents to crr. (A) ppp as a function of CVeyents when 74055 =
0.5ms (blue) or 2.5ms (red) and p = 2 (solid line) or 5 (dashed line). (B) The same as A, but for fpp. In A-B,
spike patterns are generated according to Model Sync-Auto 2 in Section and Tgeiay = 1ms. (C) ppp(diff) as
a function of CVeyents. The dots with error bars are simulation results, while the line is calculated from eqf33}
Spike patterns are also generated according to Model Sync-Auto 2, but 74e1qy = Oms. (D) Statistics of the series
{exp(—TS;"DP )} (1=1,2,3,--+) as a function of CVyents, with {7;} (I =0,1,--) being a Gamma process with rate
ro/p (here we set ro = 20Hz, p = 5) and coefficient of variance C'Veyents starting from 79 = 0. A, B and C in the
left panel are defined in eqs and D in the right panel is the =4 ratio of Yoo exp(——==—). In A-C, the

mean TSTDP
parameters for STDP, the size of converging motifs as well as simulation time and trials are the same as in Figure

4 in the main text, error bars represent s.e.m. In D, the results were from averaging over 100000 trials of Gamma
processes.
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small; so Aw, p(diff) and Aw, ¢(diff) plays a small role in the value of ppp = Corr,(Awg p, Awg q) (see eqs
again for the meaning of Aw, ,(diff) and Aw, ¢(diff) as well as Aw, , and Aw, q). In this case, the interaction of
central and non-central spikes that belong to the same synchronous event dominates. However, when C'V,yents gets
large, Aw, ,(diff) and Aw, q(diff) get strong, and our calculation on ppp(diff) helps to gain insight on ppp in this
s-d_ patio of S50, exp(——2

mean =1 p TSTDP
when CVeyents > 0.7 (Supplementary Figure )

case: the decrease of ) seems to be the key reason for the uniform decrease of ppp

The coupling factor fpp significantly increases with CVeyents, especially when 7eross < Taelay (Supplementary
Figure ) As c;r = 14+ 2pppfpp, and ppp < 0, the increase of fpp also contributes to the decrease of ¢jj.
By definition,

Fop = \/Vara(Awa,p) - Var, (Awg,q)
Pb = Var, (Awg,p) + Varg (Awg, q)

1\/ B [Vara(Awa,p) — Vara(Awa,d)]Q

2 Var, (Awg,p) + Varg (Awg, q)

therefore the increase of fpp reflects the decrease of the difference of Var,(Aw,,,) and Var,(Aw, ) relative to
their total value. From the equation above, we know that the large difference between Var,(w, ,) and Var,(wg ) is
the reason why fpp is small when CV,yenss is small (Supplementary Figure ) From our discussions above,
we know that when CVeyents is small, both Var,(w, ,(diff)) and Var,(w, q(diff)) are small, so Var,(Aw,,) and
Var, (Aw,,q) are largely determined by Var,(w, ,(same)) and Var,(wg q(same)) in this case, which is the variance
caused by the interaction of central and non-central spikes that belong to the same synchronous event. In this
case, the large difference between Var,(w, ) and Var,(wq,q) reflects the large difference between Var,(w, p,(same))
and Var,(w, q(same)). This difference always exists as long as Tgeay # 0, but is particularly strong when
Teross < Tdelay, Decause in this case Var, (wq,p(same))/Ns ~ 0 (with Ny being the number of synchronous events in
the spike pattern), and it is easy to show that Var,(w, 4(same))/Ns =~ p*(p + 1) exp(—%). When C'Veyents in-
creases, both Var, (w, ,(diff)) and Var, (w, q(diff)) increase, and as 7gejq,y is small comparingl to inter-event interval,
Var, (wq,p(diff)) ~ Var,(wq,q(diff)). This reduces the difference of Var,(Aw, ;) and Var,(Awg q) relative to their

total value, which is the reason for the increase of fpp with C'Veyents-

5 Classifying Auto-correlation Structure under Synchronous Firing Us-

ing Rescaled Time Transform

As mentioned in Section 3.4 of the main text, auto-correlation structure may come into spike patterns with
synchronous firing in three ways:

1) The broadness of the distribution of spike number per neuron per synchronous event (ATspikeNum)-

2) The burstiness/regularity of the pieces of spike trains within synchronous events (ATwithinEvent )-

3) The burstiness/regularity of the occurrence of synchronous events (AT events)-

As we mentioned in the main text, using rescaled time transform (Figure 10 of the main text), Auto-correlation
structure under synchronous firing can be classified into two classes: the factors that contributes to C'V;¢scare that
does not influence P-D imbalance, which thereby do not contribute to DriftV under heterogeneity of rates, and

the factors that contributes to C'Veyents that influences P-D imbalance, which thereby contribute to DriftV under
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heterogeneity of rates.
It is easy to think that
1) CVepents is influenced by ATevents-
2) C'Vyescate is influenced by ATspikeNum and ATwithinEvent-
The first point above is apparent. In this section, we will give numeric evidences on the second point above, and

on the influence of C'V,.cscate and CViyents onto P-D imbalance.

5.1 The factors that change CV, s .qe

Given a spike pattern, we calculate C'V,.cscale like this: we first order all the spikes in the pattern, then the CV,¢scaie
of a neuron is defined as the C'V value of the indexes of the spikes of the neuron, then the CV,..4.q1e of the neuronal
population is defined as the averaged CV,escqie Over all the neurons which fired more than 3 spikes during the
simulation time.

We generated spike trains using Model Sync-Auto 1 (see Section , so that we could explicitly control both
ATgpikeNum and ATwithinEvent- We can see that both of these two factors tend to increase C'Vyeseale, but they hardly
change P-D imbalance (Supplementary Figure[11]AB). On the contrary, C'Veyents can hardly influence C'V,escale,
but may strongly change P-D imbalance especially when CViyents > 1 (Supplementary Figure D).

5.2 The influence of C'V,,.,;s on P-D imbalance

To understand how CVyents influences P-D imbalance, we generated spike trains using Model Sync-Auto 2 (see
Section @, and study how E,r(Aw,) changes with CVeyents. We found that this influence may be a little
complicated (Supplementary Figure :

1) Suppose during a synchronous event Sy, the central neuron fires at time #y. Because of the axonal delay
Tdelay, there is usually a time interval between ¢y and when the spikes from non-central neurons arrive at the axonal
terminal, and the typical length of this interval is T4e1qy. If synchronous events are not close to each other, so that
no non-central spikes from synchronous events other than Sy arrive at the central neuron during this interval (i.e.
different synchronous events do not overlap with each other), then E, r(Aw,) will increases (or decreases) with
CVevents if Apexp(Taelay/TsTDpP) > Ad exp(—Tdelay/TsTpP) (0r Ap exp(Taelay/TsTDP) < AdeXp(—Tdelay/TSTDP))-
In this paper, typically Tgeiay < TsTDP, SO these conditions become A, > A4 or A, < Aq4.

2) If synchronous events are allowed to overlap with each other, then C'V,yents will increase the chance of this
overlapping when it is too large (typically when C'Veyents > 1). In this case, E, 17 (Aw,) will decrease (or increase)
with CVeyents if Taetay > 0 (Or Tgeray < 0).

5.2.1 The case when synchronous events do not overlap with each other

Consider a central spike at time ty that belongs to a synchronous event Sy. CVeyents controlls the burstiness
of the occurrence of synchronous events, which influences the efficacy variability as well as P-D imbalance by
changing the STDP interaction of ¢y with the non-central spikes in the synchronous events other than Sy. Suppose
a synchronous event S_ happens before Sy, then if S_ and Sy do not overlap with each other, then because of

Teross <K TSTDP, the interaction between ¢y and a non-central spike in S_ will potentiate the synapse approximately

to—(t—+Tdelay)
TSTDP :

after Sy, then the interaction between ¢y and a non-central spike in Sy will depress the synapse approximately by

by A, exp(— ), with £_ being the mean spike time of S_. Similarly, if a synchronous event S; happens
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Figure 11: How ATspikenum and ATwithinEvent change CVicscqae and P-D imbalance. (A) CVicscale s a
function of C'VspikeNum and CVwithinEvent When p = 2 and 7,05 = 2ms. Spike trains are generated using Model
Sync-Auto 1 (Section . Note that both CVspikeNum and CVivithinEvent are drawn in log scale. (B) The same
as A, but for drift per splke (Ear(Aw,)/No, with Ny being the trial-averaged spike number of the central neuron),
which quantifies P-D imbalance. Note that drift per spike hardly changes with C'Vspirenum and CVivithinEvent-
(C) CVyescale as a function of CVspigenum and CVeyent when p = 2 and 7.r0ss = 2ms. Spike trains are generated
using Model Sync-Auto 2 (Section @D (D) The same as C, but for drift per spike. Note that drift per spike
hardly changes with C'Vpa¢tern, but changes significantly with C'Veyen: especially when C'Veyene > 1. In A-D, the
size of the converging motif, the parameters for STDP, the parameters for synaptic homeostasis and the simulation
time and trials are the same as in Figure 4 in the main text. Error bars represent s.e.m.
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Figure 12: How CV.yents influences P-D imbalance. (A) Drift per spike (Ea,T(AwQ)/NO, with Ny being the
trial-averaged spike number of the central neuron) as a function of CVeyents when 7,055 = 0.5ms and p = 2 (blue),
OF Teross = 0.5ms and p = 5 (red), or 7Teress = 2.5ms and p = 2 (black), or Teross = 2.5ms and p = 5 (green),
under A, =2, Ag =1, T4e1ay = 1ms. The spike trains are generated using Model Sync-Auto 2 (Section . The
dots with error bars represent simulation results, the solid lines connecting the dots are to guide eyes, the dashed
lines are the results calculated from eqeq (B) The same as A, but under A, =1, Ag = 2, Tgeiay = 1lms.
(C) The same as A, but under A, =2, Ag = 1, T4eiqy = Oms. (D) The same as A, but under 4, =1, A5 = 2,
Tdelay = Oms. In A-D, the size of the converging motif, as well as the simulation time and trials are the same as in
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(t4+Tdetay)—to
TSTDP

we have that the trial-averaged change of the ath synapse caused by the interaction of ¢y with the spikes of the ath

Aqexp(— ). After considering all the non-central spikes in all the synchronous events other than Sy,

non-central neuron in all the synchronous events other than Sy is

Z ET[Z Awg k(to, ;)] = p[Ap exp( Tdelay ) — Agexp(— delay Zexp

: TSTDP TSTDP TSTDP
k=p,d J¢So

with p being the mean spike number per neuron per synchronous event, and 7; being the duration of the interval
between Sy and the Ith synchronous event before or after it. In Model Sync-Auto 2 (see Section , we use
Gamma process of rate ro/p (with rg being the firing rate of a neuron) and coefficient of variance C'Vgyents to
model the occurrence of synchronous events. Therefore, {7} (I = 0,1,---) is a Gamma process with rate ro/p
and coeflicient of variance C'V,yents, starting from 7 = 0. Although Gamma process does not avoid synchronous-
events overlap, such overlap is rare when C'Veyents < 1. Therefore, we can still gain understanding on this no-
overlap case by investigating the case when CVyents < 1. From Supplementary Figure [I0D, we see that
A = Er[32, exp(— P
Y kmp.a BT 25, Aak(to, ;)] increases with C'Vepents when A, exp(72224) > Agexp(—7224), but decreases
with CVepents when A exp(:;;l;’;) < Agexp(— %).

Because C'V,yents does not change the STDP interaction between ¢y and the non-central spikes in Sy, the change
of Zk:p d ETingso Awg i (to, t;)] with C'Veyenss also reflect the total change of the ath synapse.

)] continuously increases with C'Veyents. From the equation above, this suggests that

5.2.2 The case when different synchronous events are allowed to overlap with each other

We will focus on the case when 74e14y > 0 in the following discussions, the case when 7gejqy < 0 can be similarly
understood.

Consider a central spike at time ¢y, and suppose that this spike belongs to a synchronous event Sy whose mean
spike time is at t9. Because of the axonal delay Tgejqy, the non-central spikes in Sy typically arrives at the central
neuron at around to + Tgerqy- If another synchronous events S_; happens immediately before Sy, then it is possible
that during the time interval between tq and #y + Tdelay, the non-central spikes in S_; also arrive at the central
neuron. In this case, these non-central spikes in S_; will depress the synapses through their interactions with ¢g.

In Model Sync-Auto 2 (see Section , we use Gamma process of coefficient of variance CV,yenis to model the
occurrence of synchronous events. In this model, such synchronous-events overlap often occurs when C'V,y,ents is large
(typically CVepents > 1), thereby depressing the synapses. In the following discussions, we will perform analytic
calculations on Er(Aw,) when the neurons in converging motifs fire according to the spike patterns generated
by this model, compare the results with simulations, thereby understanding the effect of the synchronous-events
overlap.

It is easy to show that the contribution to synaptic changes by the interaction between ¢y and Sy is:

]_) When Teross S 7_delaya

ETiZ Awa,p(t()ytj)] = Oa

JESo

Tdel
Er[Y " Awga(to,t;)] & —Agpexp(— ==L );
jeSo TSTDP
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2) when Tdelay = Tcrosss

Er[ Z Awa,p(toa tj)]

JE€So
pAp Teross — Tdelay 1 2
~ 2 eXp(_i)f(Tcross - Tdelay) 5 (37)
Taross drsrpp "2
Er| E Awg,a(to, t;)]
JE€So
~ pAd Teross + Tdelay pAd Teross + Tdelay 1 2 2
~ — exp(— B )Tdelay R (747 ’ §(Tcross - Tdelay)' (38)
Tcross TSTDP Téross TSTDP

Now we consider the synchronous events other than Sy. Suppose that the synchronous event immediately before

Sy is S_1, and the synchronous event immediately after Sy is S, then under the approximation that 7..05s — 0,

Tdelay Tdelay — T ° x+Tea
Er| Z Awg q(to,t;)] =~ —/ q(z) - pAqg exp(—%)dx - / q(x) - pAqg exp(—ﬂ)dx, (39)
ies U, 0 TSTDP 0 TSTDP

oo

T — Tdela
ET[ Z Awam(to, tj)} ~ / Q(-'E) . pAp eXp(—ﬂ)dx, (40)
JES_1US1 Tdelay TSTDP

with g(z) = %xo‘*l exp(—pSx) being the inter-event interval distribution with a = 1/CV2 .. and 8 = ro/(CV2 ,.1sP)-
If we suppose that the synchronous events other than S_;, Sp and S; are far away from Sy, so that the interval

between them and t is far larger than 7.,oss and Tgeiay, then their interaction with ¢y can be approximated by

Tl

ST Er[ > Awa(ti,t)] = p(A, — A))Er[) | exp(—

k=p.d FES_1US US: 1=2

(41)
TSTDP

with {r;} (I =0,1,---) being a Gamma process with rate ro/p and coefficient of variance C'Vgyenss, starting from
70 = 0. Note that the summation over [ in the equation above starts from [ = 2, which represents Sy for depression
(k = d) and S_5 for potentiation (k = p).

quq together give the approximation of ) kep.d BT D> ; Awg, k(to,t;)], which can be solved numerically.

We compare the results of the calculations above with simulation results. We can see that our analytic calcu-
lation is able to qualitatively capture the change of Ep(Aw,) with CVeyents (Supplementary Figure . From
Supplementary Figure [I2] we can see that

1) Under the case Tgeiay = lms, if A, > Ay (or A, < Ag),Er(Aw,) may increase (or decrease) with C'Veyents
when CVeyents is not large. But when CVeyents is large (typically CVeyents > 1), Er(Aw,) always decreases with
C'Vepents, reflecting the synaptic depression caused by synchronous-events overlaps.

2) Under the case Tgelqy = Oms, such synchronous-events overlap cannot happen. In this case, Ep(Aw,)
monotonically increases (or decrease) with CVeyents if 4, > Ag (or A, < Ag).

These results suggest that if 74c14y > 0, the synapses can be depressed by synchronous-events overlaps when
C'Vepents 1s large.

When 7geqy < 0, the dendritic delay for the post-synaptic spikes to arrive at the dendritic end is longer than the
delay for the pre-synaptic spikes to arrive at the axonal terminal. In this case, the time when the central spike t

arrives at the dendritic end is typically later than the time when the non-central spikes in Sy arrives at the axonal
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terminal by |Tgeiay|- If the synchronous events Sp and S_; are close to each other, so that a non-central spike t;
in S_; arrives at the axonal terminal during this interval, then the synapse will be potentiated by the interaction

between ty and ¢;. The analysis for 7414y < 0 is similar to the analysis above for 7geqy > 0.

6 The Heterogeneity of Diffusion Strengths Caused by Heterogeneity of

Rates and Heterogeneity of Cross-correlations

The main effect of heterogeneity of rates and heterogeneity of cross-correlations is to induce DriftV. They may also
influence the diffusion of synapses, making different synapses have different diffusion strengths. As DriftV o ¢2 and
DiffV o ¢, DriftV will dominate in a long run as along as DriftV # 0. For completeness, we briefly discuss the
heterogeneity of diffusion strengths under heterogeneity of rates and heterogeneity of cross-correlation, which may
play an important role when DriftV =~ 0.

Till now, our study is based on eq.1 in the main text:
TotalV = DiffV + DriftV,

with DiffV representing the average diffusion strength of all the synapses in the network. But the topic of this
section goes into more details than DiffV, which investigates the heterogeneity of diffusion strengths caused by the
heterogeneity of spike train statistics of different neurons.

We have already encoutered a similar problem in Section [2| where we studied how the heterogeneity of rates of
the non-central neuron influences Diff V. We did this by supposing that the firing rates of all the non-central neurons
are uniformly r, and the firing rate of the central neuron is kept at ry, and then investigating how the diffusion
strength of a converging motif changes with r; (Supplementary Figure , also see eqs. This strategy
is general for studying the problem of heterogeneity of diffusion strengths. If the spike trains of the non-central
neurons or the cross-correlations between the non-central neurons and the central neuron can be quantified by
a set of parameters {pi,p2,--,pn}, then we can first suppose that the statistics of the spike patterns of all the
non-central neurons are uniform and quantified by a dot P, in the n-dimensional parameter space, and study how
the diffusion strength changes with Ps, while keeping the statistics of the central neuron unchanged.

We emphasize again that the heterogeneity of diffusion strengths is important for the learning process only when
DrV = 0.

6.1 The Heterogeneity of Diffusion Strengths Caused by Heterogeneity of Rates

As we discussed in Section 3.5 of the main text, heterogeneity of rates induces DriftV by making use of P-D
imbalance. Therefore, its contribution to DriftV is approximately zero when potentiation and depression almost
balance with each other. In this case, its influence onto heterogeneity of diffusion strengths may become important.
A similar situation has already been discussed in Section [2] in which spike trains are stationary processes with
heterogeneity of rates, and by observing Supplementary Figure we come to the conclusion that:

1) The diffusion strength tends to increase with the firing rate of the non-central neurons;

2) When CV < 1 (i.e. the spike trains are regular), the diffusion strength tends to sharply peak when the firing
rate of the non-central neurons r; and the firing rate of the central neuron ry are equal, and may also peak when

rs = 2ro, %ro etc.
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We already explain these phenomena in Section [2] The first factor is because that more non-central spikes
induce more freedom to increase the synaptic variability during STDP. The second factor is due to transient cross-
correlation. When synchronous firing is added into the spike pattern, transient cross-correlation may be fragile:
as two pieces of spike trains in different synchronous events are hardly correlated with each other, the synaptic
changes caused by two central spikes t,, and ¢, (i.e. > Awa(tm,t;) and 3, Awq(tn,t;)) are hard to be correlated
if t,,, and t,, belong to different synchronous events, even if m and n are nearby by index. The first factor, however,
seems to be a general principle: the diffusion strength should be positively correlated with the firing rate of the

non-central neurons.

6.2 The Heterogeneity of Diffusion Strengths Caused by Heterogeneity of Cross-

correlations

From eq.38 in the main text, we know that the DriftV caused by heterogeneity of cross-correlation is proportional
to r3Var,[r, ffooo AT H (7)Co(—Tdelay — 7)), with r¢ and r, respectively being the firing rate of the central and ath
non-central neuron, and C,(7) being the unit cross-correlation between them (with lim,_,o, Cy(7) = 1). Therefore,
DriftV = 0 if ffooo dTH(7)Co(—Tdelay — 7) = 0 for every a, which may happen when C,(—Tgeiay — 7) is strictly
asymmetric around the STDP time window H(7) (Supplementary Figure . In this case, C,(7) effectively
induces synchronous firing between the central neuron and the ath non-central neuron, thus how diffusion strength
change with C,(7) can be understood with the help of our results on synchronous firing after setting 7414y = 0.

Two important concepts of Co(7) are its strength (i.e. [7_[Co(7) — 1]d7) and its time scale of width:

1) The strength of Cy(7) increases with the mean spike number p per neuron per synchronous event (it is easy
to prove that [* [Co(7) — 1]dT = (p — 70Teross)/ro When the occurrence of synchronous events is Poisson). As
DiffV increases with p (see Section 3.3 in the main text and Supplementary Figure 1, B1, C1), diffusion
strength increases with the strength of cross-correlation.

2) As we focused on the case that 7,055 < TsTpp when discussing synchronous firing, we did not explore the
influence of 7,55 onto DiffV in details in this paper. However, it is not hard to understand the influence of the
time scale of C,(7) onto diffusion strength when 74eiqy = 0. Suppose Ci(7) and Co(7) have the same strength,
but the time window of Cy(7) is narrower than that of Co(7) (Supplementary Figure , then the single-step
change of the 1st synapse will be larger than that of the 2nd synapse during STDP, therefore the 1st synapse tends
to diffuse farther away from its initial value than the 2nd synapse.

Mathematically, r,C,(7) means the probability density to find a spike of the ath non-central neuron at 7, given
an central spike at time 0. If we suppose that the spike train of the ath non-central neuron is Poisson, then d (see

eq.13 in the main text) can be written as

2t

TSTDP

d= Y Var,()_ Awax(ti,t;)) = (A2 + A)) /0°° exp(— VraCa(t)dt
d J

k=p,

If we suppose that

t
Calt) = 22 exp(- 1) 11
then

d— AQ A2 Ac Y- TSTDP AQ A2 aTSTDP
( »t d) T 2TC+TSTDP+( p T d)r 9
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Figure 13: Schematic on how heterogeneity of cross-correlations causes heterogeneity of diffusion
strengths. The STDP window is represented by the black curve. Two cross-correlations C; (1) and Cs(7), indicated
by the blue and red curve respectively, are symmetric around H(7), but have different widths. Both of them cause
zero drift velocity of synaptic efficacies, but the diffusion strength of the 1st synapse is stronger than that of the
2nd one.

we see that d increases with A, but deceases with 7.
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