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1 The Influence of Auto-correlation Structure onto DiffV

1.1 The time scale of auto-correlation of Gamma process

In Section 3.2 of the main text, we make the statement that for a Gamma process, the time scale of auto-correlation
τcross ∼ CV 2

r0
when CV > 1, and τcross ∼ 1

4CV 2·r0 when CV < 1, with r0 being the rate of the Gamma process.
Here, we make a simple proof.

Gamma process is a renewal process in which the inter-spike intervals are independently identically distributed
as Gamma distribution:

Γ(x|α, β) =
1

Γ(α)βα
xα−1e−x/β (1)

We denote Xi to be the ith inter-spike interval, starting from the 0th spike. By defining moment generating function
of Gamma distribution (http://mathworld.wolfram.com/gammadistribution.html)

Q(t) =

∫ ∞
−∞

Γ(x|α, β)extdx,

it is easy to prove that X ≡
∑n
i=1Xi (which is the distribution of the interval between the 0th spike and the nth

spike) follows Γ(x|nα, β), i.e.

X ≡
n∑
i=1

Xi ∼ Γ(x|nα, β). (2)

1) When α < 1 (i.e. CV = 1√
α
> 1), the auto-correlation of a Gamma process concentrates near zero, which

describes the tendency that if the 0th spike is at t0, then the next few spikes are also near t0. From eq.2, we see
that when n = 1

α , X ∼ Γ(x|1, β), which is an exponential distribution. This means that if we choose a spike every n
spikes from the Gamma process, these chosen spikes will form a Poisson process, whose connected auto-correlation
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is zero. This suggests that the time scale of the auto-correlation of the Gamma process should be no longer than
the time scale of n inter-spike intervals, which means that

τcross ∼
n

r0
=

1

αr0
=
CV 2

r0

with r0 being the firing rate.
2) When α > 1 (i.e. CV = 1√

α
< 1), the connected auto-correlation of a Gamma process is oscillating decaying.

This is because that if the 0th spike is at t0, then the next nth spike tend to be near tn = t0 + n
r0
, because of the

regularity of the spike train. From eq.2, the standard deviation (s.d.) of the distribution of the time of the nth
spike will be β

√
nα. The oscillating behavior of the auto-correlation will be damped if the spike time distribution

of adjacent spikes are overlapped, especially when the probability that a spike appears at tn−1+tn
2 is almost the

same as the probability that a spike appears at tn−1 or tn. This happens when the s.d. of the distribution is equal
to half of the inter-spike interval:

β
√
nα =

1

2r0
,

which gives (using β = 1
αr0

)

n =
α

4
.

Therefore, the time scale of the auto-correlation of the Gamma process should be no longer than the time scale of
n inter-spike intervals, which means that

τcross ∼
n

r0
=

α

4r0
=

1

4CV 2r0
.

1.2 The derivation of eqs. 21 and 22 in the main text

This subsection will derive eqs. 21 and 22 in the main text.
Suppose a spike of the central neuron is at time ti, let’s consider the potentiation value caused by it in the ath

non-central neuron, which is

∑
j

∆wa,p(ti, tj|a,i,p) = Ap

∞∑
j=1

exp(−
ti − τdelay − tj|a,i,p

τSTDP
).

Under strict regularity, tj|a,i,p = t1|a,i,p − (j − 1)∆t, with ∆t being the inter-spike interval. If we define t0 =

ti − τdelay − t1|a,i,p, then the equation above becomes

∑
j

∆wa,p(ti, tj|a,i,p) = Ap exp(− t0
τSTDP

)[1 + exp(− ∆t

τSTDP
) + exp(− 2∆t

τSTDP
) + · · ·]

=
Ap exp(− t0

τSTDP
)

1− exp(− ∆t
τSTDP

)
.

Under strict regularity, t0 is uniformly distributed within [−∆t, 0], and it is easy to show that if the size of the
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converging motif is sufficiently large,

Vara(
∑
j

∆wa,p(ti, tj)) = A2
p

1

(1− exp(− ∆t
τSTDP

))2
[
τSTDP

2∆t
(1− exp(− 2∆t

τSTDP
))− τ2

STDP

∆t2
(1− exp(− ∆t

τSTDP
))2]

= A2
p

τSTDP
2∆t

[
1 + exp(− ∆t

τSTDP
)

1− exp(− ∆t
τSTDP

)
− 2τSTDP

∆t
].

After considering the depression process, we have

dreg =
∑
k=p,d

Vara(
∑
j

∆wa,k(ti, tj)) = (A2
d +A2

p)
τSTDP

2∆t
[
1 + exp(− ∆t

τSTDP
)

1− exp(− ∆t
τSTDP

)
− 2τSTDP

∆t
], (3)

which is eq.21 in the main text.
Under Poisson processes, the ocurrences of spikes in any two small time bins of length dt are independent, and

the variance of the number of spikes within a time bin is r0dt, with r0 being the firing rate. As ∆wa,p(ti, tj) =

Ap exp(− t
τSTDP

) (with t = ti − τdelay − tj), we have

Vara(
∑
j

∆wa,p(ti, tj)) = A2
p

∫ ∞
0

exp(− 2t

τSTDP
)r0dt

= A2
p

τSTDP
2∆t

.

Therefore,
dPoi =

∑
k=p,d

Vara(
∑
j

∆wa,k(ti, tj)) = (A2
d +A2

p)
τSTDP

2∆t
, (4)

which is eq.22 in the main text.

From eq.3 and eq.4, we know that to prove dreg < dPoi is equivalent to prove
1+exp(− ∆t

τSTDP
)

1−exp(− ∆t
τSTDP

)
− 2τSTDP

∆t < 1,

which is then equivalent to prove

f(x) = (x+ 1) exp(−x) < 1 for x > 0.

This statement above is easy to prove after noting that f(0) = 1 and f ′(x) < 0 for x > 0.

2 The Interaction of Auto-correlation Structure and Heterogeneity of

Rates

In this section, we will consider the case when the spike trains are stationary processes (so that the trial averaged
firing rates do not change with time), and different non-central neurons have different firing rates. In this case, the
trial averaged synaptic change rate is

dET (∆wa)

dt
= r0ra(Ap −Ad)

∫ ∞
0

exp(− τ

τSTDP
)dτ,
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with r0 being the firing rate of the central neuron, ra being the firing rate of the ath non-central neuron. Therefore,

DriftV ∝ dVara(ET (∆wa))

dt
= [r0(Ap −Ad)

∫ ∞
0

exp(− τ

τSTDP
)dτ ]2Vara(ra).

We see that auto-correlation structure does not enter the formula above, and therefore does not influence DriftV in
this case. To intuitively understand this, we denote the interval between a central spike ti and a non-central spike
tj to be ∆t = ti − tj ; and note that as we suppose that the central and non-central spike trains are independent,
the distribution of ∆t should be always uniform within (0,∞) in the long run, independent on the auto-correlation
structure of their spike trains. This causes the same potentiation and depression under STDP even when the
auto-correlation structure changes.

Next, we want to understand how the auto-correlation structure may change DiffV under heterogeneity of rates.
To do this, we generate spike trains as Gamma processes, with the firing rate of the central neuron being kept
at r0 = 20Hz, and the firing rates of the non-central neuron following lognormal distribution with mean r0 (by
combining Model Auto & Model Long Tail in Materials and Methods in the main text). The coefficient of
variance (CV ) of the spike trains of the central and non-central neurons are the same. We set Ap = Ad, so that
DrV = 0 and DiV ≈ ET (Vara(∆wa)) (see eq.5 in the main text). We then compared ET (Vara(∆wa)) in this model
with that under homogeneity of rate introduced in Section 3.2 of the main text. We find that heterogeneity of
rates hardly changes DiffV when spike trains are bursty, but effectively discounts the increase of DiffV caused by
regularity (Supplementary Figure 1A).

To understand the reason of this phenomenon, suppose that the smallest firing rate of the non-central neurons
is rmin and the largest is rmax, and we can divide the interval [rmin, rmax] into many bins of length 2ε, with ε being
a small value. We denote the sth bin to be As = (rs − ε, rs + ε), with rs being the middle value of this bin. If the
converging motif is very large, then there will be many non-central neurons whose firing rates lie within each bin.
After implementing the theorem of total variance (see eq.2 in the main text), we have that

Vara(∆wa) = EAs(Varrt∈As(∆wt)) + VarAs(Ert∈As(∆wt)). (5)

As DriftV = 0 here, we have VarAs(Ert∈As(∆wt)) = 0, so that

ET (Vara(∆wa)) = ET [EAs(Varrt∈As(∆wt))] = EAs [ET (Varrt∈As(∆wt))] (6)

which means that the value of ET (Vara(∆wa)) can be understood by investigating how ET (Varrt∈As(∆wt)) changes
with rs. As As is a small bin near rs, we can suppose that all the values within As can be approximately by rs, so
that

ET (Varrt∈As(∆wt)) ≈ ET (Varrt=rs(∆wt)), (7)

in which ET (Varrt=rs(∆wt)) represents the efficacy variability when the firing rates of all non-central neurons are
approximated to be rs. Using simulations, we found that ET (Varrt=rs(∆wt)) changes with rs in the following
features (Supplementary Figure 1B):

1) ET (Varrt=rs(∆wt)) tends to increase with rs.
2) When CV � 1 (i.e. the spike trains are regular), ET (Varrt=rs(∆wt)) tends to sharply peak at rs = r0, and

may also peak at 2r0, 1
2r0 etc.

To understand the first point above, note that if we regard the synaptic changes under STDP as random walks,
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Figure 1: How the auto-correlation structure changes DiffV under heterogeneity of rates. (A) Variance
per spike (ET (Vara(∆wa))/N̄0, with N̄0 being the expectation of the spike number of the central neuron) as a
function of CV . We see that heterogeneity of rates does not significantly influence DiffV (as DriftV = 0 here,
ET (Vara(∆wa)) = DiffV) when the spikes are bursty, but removes the increase of DiffV caused by strong regularity.
The spike trains are Gamma processes, with the firing rate of the central neuron being kept at r0 = 20Hz. The firing
rates of the non-central neurons follow lognormal distributions with mean r0 and shape parameter s (by combining
Model Auto & Model Long Tail in Materials and Methods in the main text). The coefficient of variance (CV )
of the spike trains of the central and non-central neurons are the same. We set Ap = Ad, so that DriftV = 0. Error
bars represent s.e.m. (B) Variance per spike as a function of rs, if the firing rate of the central neuron is r0 and
the firing rates of all the non-central neurons are rs. Error bars are not shown for clarity. In A-B, the size of the
converging motif, the parameters for STDP as well as the simulation time and trials are the same as in Figure 4
in the main text.
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then the synaptic change caused by a spike of a non-central neuron can be regarded as a step of the random walk. If
the firing rates of the non-central neurons are large, then the step number of the random walk on a synapse per unit
time will be large, thereby increasing the diffusion strength. In our model, we found ET (Varrt=rs(∆wt))∝̃rs (with
∝̃ representing “approximately proportional to”) when CV > 1 (Supplementary Figure 1B, upper panels).
From eq.6 and 7, this implies that ET (Vara(∆wa))∝̃Es(rs). This means that DiffV will not significantly change
as long as the mean firing rate of the non-central neurons conserves, which explains why ET (Vara(∆wa)) does not
change significantly when the firing rates of the non-central neurons become widely distributed (Supplementary
Figure 1A).

The second point above can be understood using the mechanism transient cross-correlation introduced in Sec-
tion 3.2.2 in the main text. When spike trains are strongly regular, if N1rs = N2r0 (with N1 and N2 being two
positive integers with no common divisor larger than 1), then ET (Varrt=rs(∆wt)) can be enlarged by the correlation
between the synaptic updatings caused by adjacent central spikes. DiffV under strong regularity has a sharp peak
at rs = r0 (Supplementary Figure 1B lower panels). So if the firing rates of all the non-central neurons are
r0, then DiffV will be large under strong regularity. However, if the firing rates of the non-central neurons are
heterogeneous, then many rs will be at non-peak values in Supplementary Figure 1B lower panels. From
eq.6 and 7, this implies that ET (Vara(∆wa)) will be decreased. Therefore, heterogeneity of rates decreases DiffV
in regular spike trains (see Supplementary Figure 1A) by destroying the transient cross-correlation between the
central neuron and the non-central neurons.

3 The Influence of Synchronous Firing onto DiffV

3.1 The Influence of Synchronous Firing onto d

This subsection will derive eqs. 27-29 in the main text.
Because of τcross � τSTDP , we neglect the contribution to the efficacy variance by the random displacements

of spike times in a synchronous event, therefore the efficacy variance is only contributed by the difference of spike
numbers of different neurons in a synchronous event. In this case, suppose an central spike at time ti, and a
synchronous event S happening during (t1, t2) with ti − τdelay < t1 < t2, then we approximate the STDP updating
caused by the central spike and any non-central spike in S using the time difference between ti and the middle time
t1+t2

2 of S, i.e.

∆wa(ti, tj∈S) ≈ −Ad exp[− (t1 + t2)/2− (ti − τdelay)

τSTDP
] (8)

Thus, the efficacy variance caused by pairing the central spike and the synchronous event S is

Vara(
∑
j

∆wa(ti, tj∈S)) ≈ Vara(Na)A2
d exp[−2((t1 + t2)/2− (ti − τdelay))

τSTDP
]

with Na being the spike number of the ath non-central neuron during S. This approximation will be used in our
following calculations.

τcross ≤ τdelay :

Given an central spike at time ti, we denote the synchronous event that the central spike belongs to as S0. When
τcross ≤ τdelay, the interaction of S0 and ti can only depress the synapses. After considering the axonal delay, the
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duration of the interval between ti and the middle time of S0 is uniformly distributed within (τdelay− τcross
2 , τdelay+

τcross
2 ), therefore, its contribution to ET (Var(

∑
j ∆wa,d(ti, tj))) is

ET (Vara(
∑
j∈S0

∆wa,d(ti, tj))) = Vara(Na)A2
d

∫ τdelay+ τcross
2

τdelay− τcross2

1

τcross
exp(− 2x

τSTDP
)dx

≈ Vara(Na)A2
d exp(−2τdelay

τSTDP
). (9)

We again use the fact that τcross � τSTDP in the approximation above.
In our model, the occurrence of synchronous events is a Poisson process of rate r0/p. For simplicity, we set

τcross → 0 for the synchronous events other than S0. In this case,

ET (Vara(
∑
j /∈S0

∆wa,d(ti, tj))) = Vara(Na)A2
d

∫ ∞
0

exp(
−2x

τSTDP
)r0/pdx]

= Vara(Na(p))A2
d

r0τSTDP
2p

(10)

Similarly,
ET (Vara(

∑
j /∈S0

∆wa,p(ti, tj))) = Vara(Na(p))A2
p

r0τSTDP
2p

(11)

Therefore, combining eqs.9-11, we have that for τcross ≤ τdelay,

d ≈ Vara(Na)[A2
d exp(−2τdelay

τSTDP
) +

r0τSTDP
2p

(A2
d +A2

p)] (12)

which is eq.27 in the main text. When p is large, Vara(Na(p)) ≈ pCV 2
SpikeNum (Cox (1962); Tuckwell (1988);

Nawrot et al. (2008)), so that

d ≈ pCV 2
SpikeNumA

2
d exp(−2τdelay

τSTDP
) + CV 2

SpikeNum

r0τSTDP
2

(A2
d +A2

p) (13)

which is eq.28 in the main text.

τcross > τdelay :

Suppose that the synchronous event S0 that the central spike ti belongs to lasts during (t1, t2), then when
τcross > τdelay, there are two possibilities:

1) If ti < t1 + τdelay, all the non-central spikes come at the central neuron after ti, thereby depressing the
synapses.

2) If ti > t1 + τdelay, then it is possible that some non-central spikes come at the central neuron earlier than ti,
which potentiate the corresponding synapses, while the other non-central spikes come at the central neuron later
than ti, which depress the corresponding synapses.

After considering these two possibilities, we can write the contribution of S0 to ET (Vara(
∑
j ∆wa,d(ti, tj))) as

ET (Vara(
∑
j∈S0

∆wa,d(ti, tj)))
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= Vara(Na)A2
d

∫ τdelay+ τcross
2

τcross
2

1

τcross
exp(− 2x

τSTDP
)dx+

∫ τcross−τdelay

0

1

τcross
Vara(Na,

τcross − x
τcross

)A2
d exp(−2(τcross − x)/2

τSTDP
)dx

≈ Vara(Na)A2
d

τdelay
τcross

exp(−τcross + τdelay
τSTDP

) +
1

τcross
A2
d exp(−τcross + τdelay

2τSTDP
) ·
∫ τcross−τdelay

0

Vara(Na,
τcross − x
τcross

)dx.

(14)
And we again use the fact that τcross � τSTDP in the approximation above. In this equation, Vara(Na, x) means
that if Ma of the Na spikes of the ath non-central neuron are chosen (which means that they lie within an interval
of duration ∆τ with ∆τ/τcross = x in a synchronous event), then Vara(Na, x) = Vara(Ma). In this model (Model
Sync in the main text), the time of each of the Na spikes is independently and uniformly distributed within the
synchronous event S0, therefore each of them has probability x to be chosen.

Similarly, the contribution of S0 to ET (Vara(
∑
j ∆wa,p(ti, tj))) is

ET (Vara(
∑
j∈S0

∆wa,p(ti, tj))) =

∫ τcross−τdelay

0

1

τcross
Vara(Na,

x

τcross
)A2

p exp(− 2x/2

τSTDP
)dx

≈ 1

τcross
A2
p exp(−τcross − τdelay

2τSTDP
) ·

∫ τcross−τdelay

0

Vara(Na,
x

τcross
)dx. (15)

And the same as the τdelay < τcross case (eqs.10 and 11), we approximate the contribution of the synchronous
events other than S0 as

ET (Vara(
∑
j /∈S0

∆wa,d(ti, tj))) + ET (Vara(
∑
j /∈S0

∆wa,p(ti, tj))) = Vara(Na(p))
r0τSTDP

2p
(A2

d +A2
p). (16)

Eqs.14-16 together give the value of ET (Vara(
∑
j ∆wa,d(ti, tj))) + ET (Vara(

∑
j ∆wa,p(ti, tj))).

Now we calculate the value of Vara(Na, x) in eqs.14 and 15. Suppose that there are N non-central neurons,
and the number of chosen spikes of the ath non-central neuron is Ma, then

Vara(Na, x) =
M2

1 +M2
2 + · · ·+M2

N

N
− (

M1 +M2 + · · ·+MN

N
)2

Here Ma follows binomial distribution, whose mean is Nax and variance is Nax(1− x). Therefore,

Vara(Na, x) =

∫
dNaq(Na)(Nax(1− x) +N2

ax
2)− (

∫
dNaq(Na)Na)2 · x2

= px(1− x) + Vara(Na)x2

≈ px(1− x) + pCV 2
SpikeNumx

2 (17)

with q(Na) being the distribution of Na, and we also use the fact that Vara(Na) ≈ pCV 2
SpikeNum if p is large and∫

dNaq(Na)Na = p. Therefore, we know that in eq.14,∫ τcross−τdelay

0

Vara(Na,
τcross − x
τcross

)dx

= τcrossp
1

2
(1− (

τdelay
τcross

)2) + τcrossp(CV
2
SpikeNum − 1)

1

3
(1− (

τdelay
τcross

)3), (18)

8



and in eq.15, ∫ τcross−τdelay

0

Vara(Na,
x

τcross
)dx

= τcrossp
1

2
((1− τdelay

τcross
)2) + τcrossp(CV

2
SpikeNum − 1)

1

3
((1− τdelay

τcross
)3). (19)

Combining eqs.14-19, we have

d ≈ p[CV 2A2
d

τdelay
τcross

exp(−τcross + τdelay
τSTDP

) +A2
d exp(−τcross + τdelay

2τSTDP
) · A

+A2
p exp(−τcross − τdelay

2τSTDP
) · B] + CV 2

SpikeNum

r0τSTDP
2

(A2
d +A2

p), (20)

with
A = (

1

6
+

1

3
CV 2

SpikeNum)− 1

2
(
τdelay
τcross

)2 − 1

3
(CV 2

SpikeNum − 1)(
τdelay
τcross

)3

B = (1− τdelay
τcross

)2(
1

2
+

1

3
(CV 2

SpikeNum − 1)(1− τdelay
τcross

)),

which gives eq.29 in the main text.

3.2 The Influence of Synchronous Firing onto cII

In this section, we will try to understand the influence of synchronous firing onto cII (Supplementary Figure
2 A4, B4, C4). When p is large, the change of cII with p is small (Supplementary Figure 2 A4, B4, C4),
which suggests that compared to the other factors, cII contributes little to the increase of DiffV with p. When
τcross ≤ τdelay, the change of cII with CVSpikeNum is not strong; and when τcross > τdelay, cII tends to decrease
with CVSpikeNum (Supplementary Figure 2 A4, B4, C4), which negatively contributes to the increase of DiffV
with CVSpikeNum. These facts suggest that cII is not an important factor to understand the change of DiffV under
synchronous firing. In this section, we will discuss the influence of synchronous firing onto cII only for completeness.
Readers may skip this subsection when reading for the first time.

From Supplementary Figure 2 A4, B4 and C4, we can see that cII is usually smaller than 1, which, by
definition (eq.15 in the main text), means that ρPD is usually negative. The reason for this negative correlation is
the same as that shown in Figure 4D inset in the main text: if the ath non-central neuron fires more (less) spikes,
then both the potentiation and depression imposed on the ath synapses tend to be strong (weak). Therefore, the
total potentiation and depression value tend to be negatively correlated through the heterogeneity of spike numbers
of the non-central neurons. However, cII increases with the decrease of CVSpikeNum, and becomes larger than 1
when CVSpikeNum is small enough. By definition (eq.15 in the main text), cII > 1 means ρPD > 0. We will try to
understand this phenomenon in the following discussion.

Suppose a central spike ti and the synchronous event S0 that ti belongs to, let us consider a synchronous event
S− that occurs before S0, and a synchronous event S+ that occurs after S0. Then under the case that the inter-event
interval p/r0 is large enough (which is realized when p is large) and the occurrence of synchronous events is not too
bursty, it is likely that

ti − τdelay > tj , for all tj ∈ S−
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Figure 2: How the efficacy variability, d, cI and cII change with p and CVSpikeNum. (A1) Variance per
spike as a function of p when CVSpikeNum = 0.1. The horizontal black line represents the axonal delay τdelay = 1ms.
(A2-A4) The same as A1, but for d, cI and cII . Spike trains are generated according to Model Sync in the main
text. (B1-B4) The same as A1-A4, but when CVSpikeNum = 0.71. (C1-C4) The same as A1-A4, but when
CVSpikeNum = 2. In A1-C4, the size of the converging motif, the parameters for STDP as well as the simulation
time and trials are the same as in Figure 4 in the main text.
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ti − τdelay < tj , for all tj ∈ S+

If τcross � τSTDP , then the synaptic updating caused by pairing ti with non-central spikes in S+ or S− will not have
much difference between when τcross ≤ τdelay and when τcross > τdelay, since in both cases the synaptic updatings
can be approximated by

∆wa(ti, tj∈S−) ≈ Ap exp(−
(ti − τdelay)− tS−

τSTDP
),

and
∆wa(ti, tj∈S+

) ≈ −Ad exp(−
tS+
− (ti − τdelay)

τSTDP
),

with tS− and tS+
respectively being the middle time of S− and S+. However, the interactions of ti with non-central

spikes in S0 is quite different when τcross ≤ τdelay with those when τcross > τdelay. When τcross ≤ τdelay, all the
non-central spikes in S0 depress the synapses after pairing with ti (i.e. ∆wa(ti, tj∈S0

) < 0), but when τcross > τdelay,
some non-central spikes may potentiate the synapses (i.e. ∆wa(ti, tj∈S0

) > 0). From Supplementary Figure 2
A4, B4 and C4, cII decreases with CVSpikeNum when τcross > τdelay, but does not significantly change when
τcross ≤ τdelay, which suggests that the possibility that ∆w(ti, tj∈S0

) > 0 under τcross > τdelay is a key point to
understand the decrease of ρPD with CVSpikeNum.

Intuitively, during a synchronous event (0, τcross) (with τcross > τdelay), the non-central spikes that are emit-
ted during (0, ti − τdelay) will potentiate the synapses, and the non-central spikes that are emitted during (ti −
τdelay, τcross) will depress the synapses. If CVSpikeNum is very small, then the ath neuron can fire almost exact p
spikes during a synchronous event. In this case, if these p spikes are within (0, ti − τdelay), then all of them will
potentiate the ath synapses, so that ∆wa,p is large and ∆wa,d = 0; but if they are all within (ti−τdelay, τcross), then
∆wa,p = 0 and ∆wa,d will be very negative. This seems to be a possible mechanism that positively correlate ∆wa,p

and ∆wa,d when CVSpikeNum is small and τcross > τdelay (Supplementary Figure 2 A4). Mathematically, it
is complicated to analytically calculate ρPD, but we can implement this idea by using the following simple model,
thereby understand the increase of ρPD with the decrease of CVSpikeNum under τcross > τdelay.

Let’s suppose S0 happens during (0, τcross) with τcross > τdelay, and the spike of the central neuron is at
ti − τdelay = xτcross with 0 < x < 1, so that x portion of the spikes of the non-central neuron potentiate the
synapses, while 1 − x portion depress the synapses. If τcross � τSTDP , then we can suppose that all the spikes
within (0, xτcross) will potentiate the synapses by yp ≈ Ap exp(− xτcross

2τSTDP
), and all the spikes within (xτcross, τcross)

will depress the synapses by −yd ≈ −Ad exp(− τcross(1−x)
2τSTDP

). The correlation between the potentiation and depression
values in this model will be calculated in Section 4.1 below (eq.22), the result is

ρPD =

∫
dNaq(Na)Var(Ma|Na, x)− x(1− x)Vara(Na)√

[
∫
dNaq(Na)Var(Ma|Na, x) + x2Vara(Na)] · [

∫
dNaq(Na)Var(Ma|Na, x) + (1− x)2Vara(Na)]

,

with q(Na) being the probability distribution of the spike number of the ath neuron in a synchronous event. We will
explain the general meaning of Var(Ma|Na, x) in Section 4.1 below (eq.21); but here (i.e. in Supplementary
Figure 2), we use Model Sync (see Materials and Methods in the main text) to generate our spike trains, in
which case Var(Ma|Na, x) can be understood as the variance of the number of chosen spikes if each of the Na spikes
are chosen independently with probability x. In this case, Ma follows binomial distribution, whose mean is Nax
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and variance is Nax(1− x). Therefore (see also eq.17),

ρPD =

∫
dNaq(Na)Nax(1− x)− x(1− x)Vara(Na)√

[
∫
dNaq(Na)Nax(1− x) + x2Vara(Na)] · [

∫
dNaq(Na)Nax(1− x) + (1− x)2Vara(Na)]

=
x(1− x)− x(1− x)CV 2

SpikeNum√
[x(1− x) + x2CV 2

SpikeNum] · [x(1− x) + (1− x)2CV 2
SpikeNum]

From this equation, we can see that ρPD > 0 if CVSpikeNum < 1, and ρPD < 0 if CVSpikeNum > 1. What’s more,
if we let a = CV 2

SpikeNum, then it is easy to show that

∂ρPD
∂a

= − (1 + a)(1− x)2x2

2[(1− x)x((1− x)x+ a2(1− x)x+ a(1− 2x+ 2x2))]
3
2

As a > 0, 0 < x < 1, it is easy to show that ∂ρPD
∂a < 0, which means that ρPD increases with the decreasing of

CVSpikeNum. This explains the decrease of ρPD with CVSpikeNum and the positive ρPD when CVSpikeNum is small
under τcross > τdelay.

4 The Interaction of Synchronous Firing and Auto-correlation Structure

As we mentioned in the main text, auto-correlation structure comes into spike patterns with synchronous firing in
at least three ways:

1) The broadness of the distribution of spike number per neuron per synchronous event (ATSpikeNum).
2) The burstiness/regularity of the pieces of spike train within synchronous events (ATWithinEvent).
3) The burstiness/regularity of the occurrence of synchronous events (ATevents).
We have already discussed the influence of ATSpikeNum onto DiffV in the main text, in the following part of this

section, we will consider ATWithinEvent and ATevents. Overall, we find that broader distribution of spike number per
neuron per synchronous event (for ATSpikeNum), burstier spike trains within synchronous events (for ATWithinEvent),
and burstier occurrence of synchronous events tend to increase DiffV (for ATevents). These results can be concluded
into a rule of thumb: the burstiness of spike trains tends to increase DiffV, while the regularity tends to decrease
DiffV.

4.1 The Burstiness of the Piece of Spike Train within a Synchronous Event

We use the following model (Model Sync-Auto 1) to generate spike trains in which both ATSpikeNum and ATWithinEvent

can be explicitly controlled.

Model Sync-Auto 1:
In this model, the occurrence of synchronous events and the spike number that a neuron is to fire during a

synchronous event are determined in the same way as Model Sync in the Materials and Methods of the main
text (CVSpikeNum = 1 by default). If a neuron is to fire M (M > 0) spikes during a synchronous event of duration
τcross, then the piece of spike train during this interval will be generated as follows:
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We first define a Gamma process with rate p/τcross (here p has the same meaning as it in Model Sync in the
main text, which is the mean spike number of a neuron during a synchronous event) and coefficient of variance
CVWithinEvent, and then generate M + 2 spikes using this Gamma process. Suppose that the time of the ith
spike of the Gamma process is ti (0 ≤ i ≤ M + 1 and t0 = 0), and the synchronous event is within the interval
[tevent, tevent + τcross]. Then the jth (with 1 ≤ j ≤M) spike of the neuron in the synchronous event will be at time

tevent + Mod((tj −
t1
2

)
τcross

( tM+tM+1

2 − t1
2 )

+ x, τcross)

with x being a random number uniformly chosen from the interval [0, τcross], and is fixed for all these M spikes.
The idea of this operation is that given a spike train of M + 2 spikes, we first cut the spike train at the middle

time between the 1st and 2nd spikes, and also cut at the middle time between the last 1st and last 2nd spikes.
Then we rescale the left spike train to length τcross, and translationally shift the spike train by a random interval,
implementing periodic condition to deal with the spikes being moved out of the time boundary of [0, τcross] during
the shift. By doing this, the probability density that a spike appears at any time during the interval [0, τcross] is
the same for different trials.

In this model, the burstiness of the spike train within a synchronous event is controlled by CVWithinEvent. If
CVWithinEvent is small, then the neurons will fire regularly in a synchronous event; if CVWithinEvent is large, then
the neurons will fire burstly in a synchronous event.

Our simulations suggest that the burstiness of the piece of spike train within a synchronous event does not
significantly influence DiffV when τcross ≤ τdelay, but it increases DiffV when τcross > τdelay (Supplementary
Figure 3A). We also find that d and cII are the main reasons for the increase of DiffV with CVWithinEvent, cI
does not has significant effect (Supplementary Figure 3B-D).

4.1.1 The influence of CVWithinEvent to d

To understand the change of d with CVWithinEvent, note that under the assumption τcross � τSTDP , eq.13 still
applies to the case τcross ≤ τdelay, and eqs.14-16 still apply to the case τcross > τdelay. When τcross ≤ τdelay, the
efficacy variance mainly comes from the difference of spike numbers of different non-central neurons in a synchronous
event, therefore if the distribution of spike numbers per neuron per synchronous event is kept unchanged, then the
burstiness of the piece of spike train within a synchronous event can hardly contribute to the efficacy variance: this
is the reason why CVWithinEvent hardly influences d when τcross ≤ τdelay (Supplementary Figure 3B). When
τcross > τdelay, we can see from eqs.14 and 15 that the burstiness of the piece of spike train within S0 (i.e. the
synchronous event that the central spike ti lies in) may influence the efficacy variance through changing Vara(Na, x).
As mentioned before, this factor means that if Ma of the Na spikes of the ath non-central neuron lie in an interval
of duration ∆τ (with ∆τ/τcross = x) in a synchronous event, then Vara(Na, x) = Vara(Ma). Therefore,

Vara(Na, x) =
M2

1 +M2
2 + · · ·+M2

N

N
− (

M1 +M2 + · · ·+MN

N
)2

=

∫
dNaq(Na)[Var(Ma|Na, x) +N2

ax
2]− (

∫
dNaq(Na)Na)2 · x2
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Figure 3: How the burstiness of the piece of spike train within a synchronous event influences DiffV.
(A) Variance per spike as a function of CVWithinEvent, when τcross = 0.5ms (blue) or 2.5ms (red) and p = 2 (solid
line) or 5 (dashed line). τdelay = 1ms. Spike trains are generated according to Model Sync-Auto 1 in Section 4.1.
(B-D) The same as A, but for d, cI and cII . In A-D, the size of the converging motif, the parameters for STDP
as well as the simulation time and trials are the same as in Figure 4 in the main text. Error bars represent s.e.m.
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=

∫
dNaq(Na)Var(Ma|Na, x) + x2Vara(Na), (21)

with q(Na) being the probability distribution of Na, Var(Ma|Na, x) being the variance of Ma if the spike number
of the ath non-central neuron is Na and ET (Ma|Na) = Nax. As the burstiness of the piece of spike train within a
synchronous event (which is, here, quantified by CVWithinEvent) increases Var(Ma|Na, x) (Supplementary Figure
4), it also increases Vara(Na, x) through the equation above, and thereby increases ET (Vara(

∑
j∈S0

∆wa,d(ti, tj)))

and ET (Vara(
∑
j∈S0

∆wa,p(ti, tj))) through eqs.14 and 15. This explains the increase of d with CVWithinEvent

under τcross > τdelay.

4.1.2 The influence of CVWithinEvent to cII

From eqs.15 and 16 in the main text,
cII = 1 + ρPDfPD

with

fPD =
2
√

Vara(
∑
i

∑
j ∆wa,p(ti, tj)) ·Vara(

∑
i

∑
j ∆wa,d(ti, tj))∑

k Vara(
∑
i

∑
j ∆wa,k(ti, tj))

,

with ρPD being the correlation coefficient between the total potentiation and depression values imposed on the same
synapse, and fPD is the coupling factor. To understand the change of cII with CVWithinEvent under τcross > τdelay,
we plot ρPD and fPD with CVWithinEvent, and find that ρPD is the main reason for the increase of cII with
CVWithinEvent, the contribution of the coupling factor is not significant (Supplementary Figure 5AB).

ρPD tends to be negative, which is because of the heterogeneity of spike numbers of the non-central neurons. If the
ath non-central neuron fires more spikes, then both the potentiation and depression processes on the ath synapse will
get stronger. This is the reason why Corra(∆wa,p, Na) > 0 (with Na being the spike number of the ath non-central
neuron) and Corra(∆wa,d, Na) < 0 (Supplementary Figure 5C), which makes ρPD = Corra(∆wa,p,∆wa,d) < 0.
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are generated according to Model Sync-Auto 1 in Section 4.1. (B) The same as A, but for fPD. Note that
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We find that CVWithinEvents hardly influences ρPD when τcross ≤ τdelay, but increases ρPD when τcross > τdelay

(Supplementary Figure 5A). Now we try to understand this phenomenon in the following discussion.
Suppose an central spike at time ti and the synchronous event S0 that the spike belongs to, let us consider a

synchronous event S− that occurs before S0, and a synchronous event S+ that occurs after S0. Then under the
case that the inter-event interval p/r0 is large enough (which is realized when p is large) and the occurrence of
synchronous events is not too bursty, it is likely that

ti − τdelay > tj , for all tj ∈ S−,

ti − τdelay < tj , for all tj ∈ S+.

If τcross � τSTDP , then the synaptic updating caused by pairing ti and non-central spikes in S− and S+ can be
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approximated by

∆wa(ti, tj∈S−) ≈ Ap exp(−
(ti − τdelay)− tS−

τSTDP
),

and
∆wa(ti, tj∈S+) ≈ −Ad exp(−

tS+
− (ti − τdelay)

τSTDP
),

with tS− and tS+ respectively being the middle time of S− and S+. In the equations above, we have used similar
approximations as in eq.8. We can see that the spike patterns within S− and S+ hardly have influence onto the
synaptic weights.

Similar arguments also apply to S0 when τcross ≤ τdelay, because in this case, all the spikes of the non-central
neurons within S0 depress the synapses with their interactions with ti, and

∆wa(ti, tj∈S0
) ≈ −Ad exp(− τdelay

τSTDP
),

so that the spike pattern within S0 also hardly influences synaptic weights. This explains why CVWithinEvent has
little influence onto ρPD when τcross ≤ τdelay (Supplementary Figure 5A).

However, the situation is different when τcross > τdelay, because the equation above is no longer valid in this
case, and ∆wa(ti, tj∈S0

) is larger than zero if tj + τdelay < ti. From Supplementary Figure 5A, ρPD increases
with CVWithinEvent when τcross > τdelay, but not when τcross ≤ τdelay, which suggests that the possibility that
∆wa(ti, tj∈S0

) > 0 under τcross > τdelay is a key point to understand the increase of ρPD with CVWithinEvent.
Intuitively, during a synchronous event (0, τcross) (with τcross > τdelay), the non-central spikes that are emit-

ted during (0, ti − τdelay) will potentiate the synapses, and the non-central spikes that are emitted during (ti −
τdelay, τcross) will depress the synapses. If CVWithinEvent is large, then the piece of spike train within a synchronous
event will be bursty, so that the following situation is likely to happen: if the ath non-central neuron fires all its
spikes during (0, ti − τdelay), then all its spikes potentiate the ath synapse, so that ∆wa,p > 0 while ∆wa,d = 0;
however, if the ath non-central neuron fires all its spikes during (ti − τdelay, τcross), then ∆wa,p = 0 and ∆wa,d

will be very negative. This seems to be a possible mechanism that positively correlate ∆wa,p and ∆wa,d when
CVWithinEvent is large (Supplementary Figure 5A). Mathematically, it is complicated to analytically calculate
ρPD, but we can implement this idea using the following simple model, which focuses on a single synchronous event,
thereby helps to understand the increase of ρPD with CVWithinEvent under τcross > τdelay.

Let’s suppose S0 happens during (0, τcross) with τcross > τdelay, and the spike of the central neuron is at
ti − τdelay = xτcross with 0 < x < 1, so that x portion of the spikes of the non-central neuron potentiate the
synapses, while 1 − x portion depress the synapses. If τcross � τSTDP , then we can suppose that all the spikes
within (0, xτcross) will potentiate the synapses by yp ≈ Ap exp(− xτcross

2τSTDP
), and all the spikes within (xτcross, τcross)

will depress the synapses by −yd ≈ −Ad exp(− τcross(1−x)
2τSTDP

). With the same as eq.21, we denote Na as the spike
number of the ath non-central neuron during S0, and denote Ma as the spike number of the ath non-central neuron
within (0, xτcross). Then, the variance of the potentiation value caused by the spikes within (0, xτcross) is

V arP = Vara(Maxp) = x2
pVara(Ma)

= x2
p[

∫
dNaq(Na)Var(Ma|Na, x) + x2Vara(Na)],

where we use eq.21 in the last step. Similarly, the variance of the depression value caused by the spikes within
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(xτcross, τcross) is
V arD = Vara((Na −Ma)xd) = x2

dVara(Na −Ma)

= x2
d[

∫
dNaq(Na)Var(Ma|Na, x) + (1− x)2Vara(Na)].

And the variance of the total STDP updating value caused by the spikes within S0 is

V arTot = Vara(Maxp − (Na −Ma)xd)

= x2
dVara(Na −

xp + xd
xd

Ma)

= x2
d[

∫
dNaq(Na)Var(

xp + xd
xd

Ma|Na, x) + (1− xp + xd
xd

x)2Vara(Na)]

= (xp + xd)
2

∫
dNaq(Na)Var(Ma|Na) + (xd(1− x)− xpx)2Vara(Na)

Therefore,

ρPD =
V arTot− V arP − V arD

2
√
V arP · V arD

=

∫
dNaq(Na)Var(Ma|Na, x)− x(1− x)Vara(Na)√

[
∫
dNaq(Na)Var(Ma|Na, x) + x2Vara(Na)] · [

∫
dNaq(Na)Var(Ma|Na, x) + (1− x)2Vara(Na)]

. (22)

If we let
a =

∫
dNaq(Na)Var(Ma|Na, x)

b = Vara(Na),

then it is easy to show that
∂ρPD
∂a

=
b[a+ b(1− x)x]

2[(a+ b(1− x)2)(a+ bx2)]
3
2

.

As a > 0, b > 0, 0 < x < 1, ∂ρPD
∂a > 0. Thus, ρPD is an increasing function of Var(Ma|Na, x). Because

Var(Ma|Na, x) increases with CVWithinEvent (Supplementary Figure 4), ρPD increases with CVWithinEvent. We
compare numeric results with the results calculated from eq.22 in Supplementary Figure 5D.

4.1.3 The influence of CVWithinEvent to cI

From Supplementary Figure 3C, we know that cI does not significantly influence DiffV when CVWithinEvent

changes, which means that it is not an important factor to understand the change of DiffV with CVWithinEvent.
Here, we discuss the change of cI with CVWithinEvent only for completeness. Readers may skip this subsection
when reading for the first time.

Suppose a spike of the central neuron ti ∈ S1 (with S1 being a synchronous event), and a spike of the ath
non-central neuron ta,j ∈ S2 (with S2 also being a synchronous event). If the inter-event interval p/r0 is large and
the occurrence of synchronous events is not too bursty, then under τcross ≤ τdelay, it is likely that:

1) If S2 occurs before S1, then
ti − τdelay > ta,j , for all ta,j ∈ S2;
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Figure 6: Understanding the influence of CVWithinEvent onto cI . (A) cI as a function of CVWithinEvent when
τcross = 2.5ms, p = 5. Here, we set τdelay = 0ms to understand the effect of τcross > τdelay. Spike trains are
generated according to Model Sync-Auto 1 in Section 4.1. (B) The same as A, but for

∑
l,k ρl,k (see eq.30 in

the main text). We found that ρl,k safely decays to zero when l ≥ 50 in our parameter range, therefore we cut off l
at l = 50 when calculating the summation. (C) The same as B, but for

∑
l,k fl,k (see eq.31 in the main text). In

A-C, the size of the converging motif, the parameters for STDP, as well as the simulation time and trials are the
same as in Figure 4 in the main text. Error bars represent s.e.m.

2) If S2 occurs after S1 or S2 = S1, then

ti − τdelay < ta,j , for all ta,j ∈ S2.

Under τcross ≤ τdelay, the first condition above implies that the synaptic updating caused by pairing ti and ta,j
can be approximated by

∆wa(ti, ta,j) ≈ Ap exp(− tS1
− (tS2

+ τdelay)

τSTDP
),

(with tS1 and tS2 being the middle time of S1 and S2); and the second condition above implies that

∆wa(ti, ta,j) ≈ −Ad exp(− (tS2
+ τdelay)− tS1

τSTDP
).

These two equations suggest that when τcross ≤ τdelay, the spike pattern within the piece of spike train within a
synchronous event does not have significant effect on the synaptic changes ∆wa(ti, ta,j), which is the reason why cI
hardly changes with CVWithinEvent when τcross ≤ τdelay (Supplementary Figure 3C).

When τcross > τdelay, some non-central spikes in S1 may potentiate the synapses after pairing with ti, and some
others may depress the synapses. In this case, it is difficult to understand the change of cI with CVWithinEvent, and
we resorted to simulations. Our simulations suggest that cI may slightly decrease with CVWithinEvent in this case,
and the decrease of correlations instead of coupling factors is the reason for this phenomenon (Supplementary
Figure 6). But overall, the influence of CVWithinEvent onto cI is not strong.
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4.2 The Burstiness of the Occurrence of Synchronous Events

To investigate the influence of the burstiness of the occurrence of synchronous events onto DiffV, we use the following
model to generate spike trains:

Model Sync-Auto 2:
In this model, the spike train of a neuron within a synchronous event is determined in the same way as Model

Sync in the main text (we set CVSpikeNum = 1 by default). The occurrence of synchronous event is a Gamma
process with rate p/τcross and coefficient of variance CVevents. If CVevents is small, then synchronous events will
occur regularly; if CVevents is large, then synchronous events will occur burstly.

Our simulations suggest that the burstiness of the occurrence of synchronous events tends to increase DiffV,
especially when CVevents > 1 (Supplementary Figure 7A). It does this through d and cI (Supplementary
Figure 7BC), while cII contributes negatively (Supplementary Figure 7D).

4.2.1 The influence of CVevents to d

CVevents influences d mainly through the synchronous events other than S0, i.e. ET (Vara(
∑
j /∈S0

∆wa,d(ti, tj))) and
ET (Vara(

∑
j /∈S0

∆wa,p(ti, tj))) (see eqs.10 and 11). To understand the underlying mechanism of this influence, we
let τdelay = 0. In this case, eq.16 becomes

∑
k=p,d

ET (Vara(
∑
j /∈S0

∆wa,k(ti, tj))) ≈ Vara(Na)(A2
p +A2

d) · ET [

∞∑
l=1

exp(− 2τl
τSTDP

)] (23)

with {τl} (l = 0, 1, · · ·) being a Gamma process with rate r0/p and coefficient of variance CVevents, starting from
τ0 = 0. From Supplementary Figure 8, we can see that ET [

∑∞
l=1 exp(− 2τl

τSTDP
)] monotonically increases with

CVevents, thereby increasing d if Vara(Na) 6= 0. Intuitively, the increasing of ET [
∑∞
m=1 exp(− 2τl

τSTDP
)] means that

that more synchronous events can be gathered closer to S0 with the increasing of CVevents.

4.2.2 The influence of CVevents to cI

Following similar procedure as in Figure 7 in the main text, we find that the increase of cI with CVevents is mainly
due to the increase of correlation coefficients ρm,n;k (see eq.17 in the main text) (Supplementary Figure 9A),
while the coupling factors fm,n;k (see eq.17 in the main text) don’t have significant contributions (Supplementary
Figure 9B). To understand the increase of

∑
m<n ρm,n;k with CVevents, let’s for simplicity only consider the case

τcross < τdelay � p
r0

(with p/r0 being the inter-event interval). This calculation will help us gain insight on the
mechanisms how CVevents increases ρm,n;k.

In this case, the depression of the ath synapse caused by the mth spike (which belongs to the synchronous event
S0) of the central neuron can be approximated by

∆wa,d(tm ∈ S0) ≈ −Ad exp(− τdelay
τSTDP

)[Na,0 +

∞∑
l=1

Na,l exp(− τl
τSTDP

)] (24)
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line). τdelay = 1ms. Spike trains are generated according to Model Sync-Auto 2 in Section 4.2. (B-D) The same
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we set r0 = 20Hz, p = 5).

with {τl} (l = 0, 1, · · ·) being a Gamma process with rate r0/p and coefficient of variance CVevents, starting from
τ0 = 0, and Na,l being the spike number of the ath non-central neuron in the lth synchronous event after S0. In the
equation above, we omit the contribution to ∆wa,d(tm) by the synchronous events that happens during the interval
[tm − τdelay, tm]. This approximation is acceptable if τdelay is far smaller than the inter-event interval p/r0 (which
is particularly correct when p is large) and when the occurrence of synchronous events is not too bursty. From
eq.24, we know that if tm and tn are two spikes of the central neuron that belong to two immediately adjacent
synchronous events S0 and S1, then

∆wa,d(tm ∈ S0) ≈ −Ad exp(− τdelay
τSTDP

)Na,0 + exp(− τ1
τSTDP

)∆wa,d(tn ∈ S1) (25)

Then
ρm,n;d = Corra(∆wa,d(tm),∆wa,d(tn))

= Corra(Xa + bYa, Ya) (26)

with
Xa = −Ad exp(− τdelay

τSTDP
)Na,0 (27)

,
Ya = ∆wa,d(tn) (28)

and
b = exp(− τ1

τSTDP
) (29)

From eq.26, we can see that ∆wa,d(tm) and ∆wa,d(tn) are correlated together by sharing the term Ya, and their
correlation can be increased if the variance of the correlated term bYa is increased, which can be realized by increasing
either |b| or Vara(Ya). We will see how CVevents increases their correlation through b2 and Vara(Ya) in the following
discussion.
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Figure 9: Understanding the influence of CVevents onto cI . (A) The change of
∑
l,k ρl,k (see eq.30 in the

main text) with CVevents when τcross = 0.5ms (blue) or 2ms (red) and p = 2 (solid line) or 5 (dashed line). Spike
trains are generated according to Model Sync-Auto 2 in Section 4.2. We found that ρl,k safely decays to zero
when l ≥ 50 in our parameter range, therefore we cut off l at l = 50 when calculating the summation. (B) The
same as A, but for

∑
l,k fl,k (see eq.31 in the main text). Note that the percentage of the change of

∑
l,k fl,k is

significantly smaller than that of
∑
l,k ρl,k. (C) ET (ρm,n;d) as a function of CVevents, with m and n represent two

central spikes in immediately adjacent synchronous events. The dots with error bars give simulation results; the
blue line represents results calculated from eq.30, using the distributions of b2 and Vara(Ya); the red line represents
results calculated by replacing b2 and Vara(Ya) in eq.30 with ET (b2) and ET (Vara(Ya)). In A-B, the size of the
converging motif, the parameters for STDP, as well as the simulation time and trials are the same as in Figure
4 in the main text. In C, the statistics of b2 was from 10000 trials of the Gamma process, and the statistics of
Vara(Ya) was from simulations of the same conditions as in A and B. Error bars represent s.e.m.

As Na,0 is indepedent of Na,l in eq.24, Corra(Xa, Ya) = 0. Therefore eq.26 becomes

ρm,n;d = Corra(Xa + bYa, Ya) =

√
b2Vara(Ya)

Vara(Xa) + b2Vara(Ya)
. (30)

We have to use the distribution of b2 and Vara(Ya) to calculate ET (ρm,n;d). Even if it is possible to do so,
such calculation has little help for us to intuitively understand the physical mechanisms why ET (ρm,n;d) changes
with CVevents. For a good understanding of this mechanism, we will estimate how ET (b2) and ET (Vara(Ya))

change with CVevents (note that ET (Vara(Xa)) does not change with CVevents), and then compare ET (ρm,n;d) with√
ET (b2)ET (Vara(Ya))

Vara(Xa)+ET (b2)ET (Vara(Ya)) in the following discussion.
When the occurrence of synchronous events is a Gamma process of rate r0/p and coefficient of variance CVevents,

the distribution of τ1 is

q(τ1) =
βα

Γ(α)
τα−1
1 exp(−βτ1)

with α = 1
CV 2

events
and β = r0

CV 2
eventsp

. From eq.29,

ET (b2) ≈
∫ ∞

0

exp(− 2τ1
τSTDP

)q(τ1)dτ1 = (
τSTDP r0

τSTDP r0 + 2pCV 2
events

)
1

CV 2
events
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To estimate how ET (b2) changes with CVevents, note that

log[
1

ET (b2)
] =

1

CV 2
events

log[1 +
2pCV 2

events

τSTDP r0
],

and it is easy to show that log(1 + ax)/x is a decreasing function of x if a > 0. Therefore, ET (b2) is an increasing
function of CV 2

events.
What’s more,

ET (Vara(Ya)) = Vara(Na)A2
d exp(−2τdelay

τSTDP
){1 + ET [

∞∑
l=1

exp(− 2τl
τSTDP

)]}

Therefore, ET (Vara(Ya)) will increase with CVevents because of the increase of ET [
∑∞
l=1 exp(− 2τl

τSTDP
)] (Supplementary

Figure 8).
The discussions above shows that both ET (b2) and ET (Vara(Ya)) increase with CVevents. As ρm,n;k is an

increasing function of both b2 and Vara(Ya) (eq.30), our calculations above give an understanding on why ET (ρm,n;d)

increases with CVevents. From eq.26, we can see that ∆wa,d(tm) and ∆wa,d(tn) are correlated together by sharing
the term Ya, and their correlation can be increased if the variance of the correlated term bYa is increased, which
can be realized by increasing either |b| or Vara(Ya). From the discussions above, we see that CVevents increases the
correlation coefficient through both of the two mechanisms.

In Supplementary Figure 6C, we compare ET (ρm,n;d) with
√

ET (b2)ET (Vara(Ya))
Vara(Xa)+ET (b2)ET (Vara(Ya)) , we see that al-

though they do not coincide, they have the same tendency to increase with CVevents. What’s more,
√

ET (b2)ET (Vara(Ya))
Vara(Xa)+ET (b2)ET (Vara(Ya)) >

ET (ρm,n;d), which suggests that the broad distribution of b2 and Vara(Ya) tends to decrease ET (ρm,n;d).

4.2.3 The influence of CVevents to cII

From Supplementary Figure 7D, we know that cII negatively contributes to the increase of DiffV with CVevents
especially when CVevents > 0.7, which means that cII is not an important factor to understand the change of
DiffV with CVevents. Here, we discuss the influence of CVevents onto cII only for completeness, readers may skip
this subsection when reading for the first time. When CVevents > 0.7, ρPD is negative and decreasing, while the
coupling factor fPD is positive and increasing (Supplementary Figure 10AB). This means that both ρPD and
fPD contribute to the decreasing of cII with CVevents. We will try to understand the mechanisms underlying their
contributions in this subsection.

The potentiation and depression on the ath synapse can be written as

∆wa,p = ∆wa,p(same) + ∆wa,p(diff) (31)

∆wa,d = ∆wa,d(same) + ∆wa,d(diff) (32)

with ∆wa,p(same) (∆wa,d(same)) being the potentiation (depression) caused by pairing central and non-central
spikes that belong to the same synchronous event, and ∆wa,p(diff) (∆wa,d(diff)) being the potentiation (depression)
caused by pairing central and non-central spikes that belong to different synchronous events. ∆wa,p(same) and
∆wa,d(same) are determined by the statistical features of a single synchronous event, while CVevents mainly changes
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∆wa,p(diff) and ∆wa,d(diff). To understand the underlying mechanism why ρPD decreases with CVevents when
CVevents is large, here we consider the correlation between ∆wa,p(diff) and ∆wa,d(diff)

ρPD(diff) = Corra(∆wa,p(diff),∆wa,d(diff))

and set τdelay = 0 and τcross � τSTDP for simplicity.
By definition,

ρPD(diff) = Corra(
∑
s

Na,szs,p,
∑
s

Na,szs,d).

In this equation, s is the index for synchronous events. Na,s is the spike number of the ath non-central neuron in
the sth synchronous event, and zs,p (zs,d) is the potentiation (depression) per spike caused by pairing these Na,s
non-central spikes with the central spikes that not in the sth synchronous event.

Using the approximation similar to eq.8, it is easy to show that (note that τdelay = 0 in our calculation)

zs,p = Ap

∞∑
l=1

N0,s+l exp(− τl
τSTDP

)

zs,d = −Ad
∞∑
l=1

N0,s+l exp(− τl
τSTDP

)

with N0,s being the spike number of the central neuron in the sth synchronous event, {τl} (l = 0, 1, · · ·) being a
Gamma process with rate r0/p and coefficient of variance CVevents starting from τ0 = 0.

Therefore,

ρPD(diff) = Corra(
∑
s

Na,szs,p,
∑
i

Na,szs,d) =
X − Y − Z

2
√
X · Y

with
X = Vara(

∑
s

Na,s(zs,p + zs,d)),

Y = Vara(
∑
s

Na,szs,p),

Z = Vara(
∑
i

Na,szs,d).

In our model (Model Sync-Auto 2 in Section 4.2), Na,s are independent with each other, and Vara(Na,s) = p.
Therefore, if we let Ap = Ad = A, we will have

X = Vara(
∑
s

Na,s(zs,p + zs,d))

∝ A2Vara(Na,s) · {p2ET [(

∞∑
l=1

exp(− τl
τSTDP

)−
∞∑
l=1

exp(− τl
τSTDP

))2] + pET [2

∞∑
l=1

exp(− 2τl
τSTDP

)]}

∝ p2ET [(

∞∑
l=1

exp(− τl
τSTDP

)−
∞∑
l=1

exp(− τl
τSTDP

))2] + pET [2

∞∑
l=1

exp(− 2τl
τSTDP

)]
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Y = Vara(
∑
s

Na,szs,p)

∝ A2 1

2
Vara(Na,s) · {p2ET [(

∞∑
l=1

exp(− τl
τSTDP

))2] + pET [

∞∑
l=1

exp(− 2τl
τSTDP

)]

+p2ET [(

∞∑
l=1

exp(− τl
τSTDP

))2] + pET [

∞∑
l=1

exp(− 2τl
τSTDP

)]}

∝ 1

2
p2ET [(

∞∑
l=1

exp(− τl
τSTDP

))2 + (

∞∑
l=1

exp(− τl
τSTDP

))2] +
1

2
pET [2

∞∑
l=1

exp(− 2τl
τSTDP

)]

and
Z = Vara(

∑
i

Na,szs,d)

∝ 1

2
p2ET [(

∞∑
l=1

exp(− τl
τSTDP

))2 + (

∞∑
l=1

exp(− τl
τSTDP

))2] +
1

2
pET [2

∞∑
l=1

exp(− 2τl
τSTDP

)]

Armed with these results, it is easy to show that

ρPD(diff) = − pA2

pB + C
(33)

with

A = ET [

∞∑
l=1

exp(− τl
τSTDP

)] (34)

B = ET [(

∞∑
l=1

exp(− τl
τSTDP

))2] (35)

C = ET [

∞∑
l=1

exp(− 2τl
τSTDP

)] (36)

Our analytic calculation well predict the numeric results (Supplementary Figure 10C).
Now let’s understand the change of ρPD(diff) with CVevents. By definition, B > C, so we can write the

denominator of eq.33 as (p+a)B with 0 < a < 1. From Supplementary Figure 10D left, we can see that a ≈ 1

when CVevents is small, and gradually decreases when CVevents gets large. Therefore, if p is relatively large, then
from eq.33

ρPD(diff)∝̃ − A
2

B
with ∝̃ representing “approximately propotional to”. What’s more,

−A
2

B
= − 1

B−A2+A2

A2

= − 1
VarT [

∑∞
l=1

exp(− τl
τSTDP

)]

ET [
∑∞

l=1
exp(− τl

τSTDP
)]2

+ 1

Therefore, the change of ρPD(diff) basically reflects the change of s.d.
mean ratio of

∑∞
l=1 exp(− τl

τSTDP
) (compare

Supplementary Figure 10C with 10D right).
When CVevents is small, A, B and C are all small, which makes Vara(∆wa,p(diff)) and Vara(∆wa,d(diff)) are
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Figure 10: Understanding the influence of CVevents to cII . (A) ρPD as a function of CVevents when τcross =
0.5ms (blue) or 2.5ms (red) and p = 2 (solid line) or 5 (dashed line). (B) The same as A, but for fPD. In A-B,
spike patterns are generated according to Model Sync-Auto 2 in Section 4.2, and τdelay = 1ms. (C) ρPD(diff) as
a function of CVevents. The dots with error bars are simulation results, while the line is calculated from eq.33.
Spike patterns are also generated according to Model Sync-Auto 2, but τdelay = 0ms. (D) Statistics of the series
{exp(− τl

τSTDP
)} (l = 1, 2, 3, · · ·) as a function of CVevents, with {τl} (l = 0, 1, · · ·) being a Gamma process with rate

r0/p (here we set r0 = 20Hz, p = 5) and coefficient of variance CVevents starting from τ0 = 0. A, B and C in the
left panel are defined in eqs.34-36, and D in the right panel is the s.d.

mean ratio of
∑∞
l=1 exp(− τl

τSTDP
). In A-C, the

parameters for STDP, the size of converging motifs as well as simulation time and trials are the same as in Figure
4 in the main text, error bars represent s.e.m. In D, the results were from averaging over 100000 trials of Gamma
processes.
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small; so ∆wa,p(diff) and ∆wa,d(diff) plays a small role in the value of ρPD = Corra(∆wa,p,∆wa,d) (see eqs.31-32
again for the meaning of ∆wa,p(diff) and ∆wa,d(diff) as well as ∆wa,p and ∆wa,d). In this case, the interaction of
central and non-central spikes that belong to the same synchronous event dominates. However, when CVevents gets
large, ∆wa,p(diff) and ∆wa,d(diff) get strong, and our calculation on ρPD(diff) helps to gain insight on ρPD in this
case: the decrease of s.d.

mean ratio of
∑∞
l=1 exp(− τl

τSTDP
) seems to be the key reason for the uniform decrease of ρPD

when CVevents > 0.7 (Supplementary Figure 10A).

The coupling factor fPD significantly increases with CVevents, especially when τcross ≤ τdelay (Supplementary
Figure 10B). As cII = 1 + 2ρPDfPD, and ρPD < 0, the increase of fPD also contributes to the decrease of cII .
By definition,

fPD =

√
Vara(∆wa,p) ·Vara(∆wa,d)

Vara(∆wa,p) + Vara(∆wa,d)

=
1

2

√
1− [

Vara(∆wa,p)−Vara(∆wa,d)

Vara(∆wa,p) + Vara(∆wa,d)
]2,

therefore the increase of fPD reflects the decrease of the difference of Vara(∆wa,p) and Vara(∆wa,d) relative to
their total value. From the equation above, we know that the large difference between Vara(wa,p) and Vara(wa,d) is
the reason why fPD is small when CVevents is small (Supplementary Figure 10B). From our discussions above,
we know that when CVevents is small, both Vara(wa,p(diff)) and Vara(wa,d(diff)) are small, so Vara(∆wa,p) and
Vara(∆wa,d) are largely determined by Vara(wa,p(same)) and Vara(wa,d(same)) in this case, which is the variance
caused by the interaction of central and non-central spikes that belong to the same synchronous event. In this
case, the large difference between Vara(wa,p) and Vara(wa,d) reflects the large difference between Vara(wa,p(same))
and Vara(wa,d(same)). This difference always exists as long as τdelay 6= 0, but is particularly strong when
τcross ≤ τdelay, because in this case Vara(wa,p(same))/Ns ≈ 0 (with Ns being the number of synchronous events in
the spike pattern), and it is easy to show that Vara(wa,d(same))/Ns ≈ p2(p+ 1) exp(− 2τdelay

τcross
). When CVevents in-

creases, both Vara(wa,p(diff)) and Vara(wa,d(diff)) increase, and as τdelay is small comparing to inter-event interval,
Vara(wa,p(diff)) ≈ Vara(wa,d(diff)). This reduces the difference of Vara(∆wa,p) and Vara(∆wa,d) relative to their
total value, which is the reason for the increase of fPD with CVevents.

5 Classifying Auto-correlation Structure under Synchronous Firing Us-

ing Rescaled Time Transform

As mentioned in Section 3.4 of the main text, auto-correlation structure may come into spike patterns with
synchronous firing in three ways:

1) The broadness of the distribution of spike number per neuron per synchronous event (ATSpikeNum).
2) The burstiness/regularity of the pieces of spike trains within synchronous events (ATWithinEvent).
3) The burstiness/regularity of the occurrence of synchronous events (ATevents).
As we mentioned in the main text, using rescaled time transform (Figure 10 of the main text), Auto-correlation

structure under synchronous firing can be classified into two classes: the factors that contributes to CVrescale that
does not influence P-D imbalance, which thereby do not contribute to DriftV under heterogeneity of rates, and
the factors that contributes to CVevents that influences P-D imbalance, which thereby contribute to DriftV under
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heterogeneity of rates.
It is easy to think that
1) CVevents is influenced by ATevents.
2) CVrescale is influenced by ATSpikeNum and ATWithinEvent.
The first point above is apparent. In this section, we will give numeric evidences on the second point above, and

on the influence of CVrescale and CVevents onto P-D imbalance.

5.1 The factors that change CVrescale

Given a spike pattern, we calculate CVrescale like this: we first order all the spikes in the pattern, then the CVrescale
of a neuron is defined as the CV value of the indexes of the spikes of the neuron, then the CVrescale of the neuronal
population is defined as the averaged CVrescale over all the neurons which fired more than 3 spikes during the
simulation time.

We generated spike trains using Model Sync-Auto 1 (see Section 4.1), so that we could explicitly control both
ATSpikeNum and ATWithinEvent. We can see that both of these two factors tend to increase CVrescale, but they hardly
change P-D imbalance (Supplementary Figure 11AB). On the contrary, CVevents can hardly influence CVrescale,
but may strongly change P-D imbalance especially when CVevents > 1 (Supplementary Figure 11CD).

5.2 The influence of CVevents on P-D imbalance

To understand how CVevents influences P-D imbalance, we generated spike trains using Model Sync-Auto 2 (see
Section 7), and study how Ea,T (∆wa) changes with CVevents. We found that this influence may be a little
complicated (Supplementary Figure 12):

1) Suppose during a synchronous event S0, the central neuron fires at time t0. Because of the axonal delay
τdelay, there is usually a time interval between t0 and when the spikes from non-central neurons arrive at the axonal
terminal, and the typical length of this interval is τdelay. If synchronous events are not close to each other, so that
no non-central spikes from synchronous events other than S0 arrive at the central neuron during this interval (i.e.
different synchronous events do not overlap with each other), then Ea,T (∆wa) will increases (or decreases) with
CVevents if Ap exp(τdelay/τSTDP ) > Ad exp(−τdelay/τSTDP ) (or Ap exp(τdelay/τSTDP ) < Ad exp(−τdelay/τSTDP )).
In this paper, typically τdelay < τSTDP , so these conditions become Ap > Ad or Ap < Ad.

2) If synchronous events are allowed to overlap with each other, then CVevents will increase the chance of this
overlapping when it is too large (typically when CVevents > 1). In this case, Ea,T (∆wa) will decrease (or increase)
with CVevents if τdelay > 0 (or τdelay < 0).

5.2.1 The case when synchronous events do not overlap with each other

Consider a central spike at time t0 that belongs to a synchronous event S0. CVevents controlls the burstiness
of the occurrence of synchronous events, which influences the efficacy variability as well as P-D imbalance by
changing the STDP interaction of t0 with the non-central spikes in the synchronous events other than S0. Suppose
a synchronous event S− happens before S0, then if S− and S0 do not overlap with each other, then because of
τcross � τSTDP , the interaction between t0 and a non-central spike in S− will potentiate the synapse approximately
by Ap exp(− t0−(t̄−+τdelay)

τSTDP
), with t̄− being the mean spike time of S−. Similarly, if a synchronous event S+ happens

after S0, then the interaction between t0 and a non-central spike in S+ will depress the synapse approximately by
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Figure 11: How ATSpikeNum and ATWithinEvent change CVrescale and P-D imbalance. (A) CVrescale as a
function of CVSpikeNum and CVWithinEvent when p = 2 and τcross = 2ms. Spike trains are generated using Model
Sync-Auto 1 (Section 4.1). Note that both CVSpikeNum and CVWithinEvent are drawn in log scale. (B) The same
as A, but for drift per spike (Ea,T (∆wa)/N̄0, with N̄0 being the trial-averaged spike number of the central neuron),
which quantifies P-D imbalance. Note that drift per spike hardly changes with CVSpikeNum and CVWithinEvent.
(C) CVrescale as a function of CVSpikeNum and CVevent when p = 2 and τcross = 2ms. Spike trains are generated
using Model Sync-Auto 2 (Section 4.2). (D) The same as C, but for drift per spike. Note that drift per spike
hardly changes with CVpattern, but changes significantly with CVevent especially when CVevent > 1. In A-D, the
size of the converging motif, the parameters for STDP, the parameters for synaptic homeostasis and the simulation
time and trials are the same as in Figure 4 in the main text. Error bars represent s.e.m.
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Figure 12: How CVevents influences P-D imbalance. (A) Drift per spike (Ea,T (∆wa)/N̄0, with N̄0 being the
trial-averaged spike number of the central neuron) as a function of CVevents when τcross = 0.5ms and p = 2 (blue),
or τcross = 0.5ms and p = 5 (red), or τcross = 2.5ms and p = 2 (black), or τcross = 2.5ms and p = 5 (green),
under Ap = 2, Ad = 1, τdelay = 1ms. The spike trains are generated using Model Sync-Auto 2 (Section 4.2). The
dots with error bars represent simulation results, the solid lines connecting the dots are to guide eyes, the dashed
lines are the results calculated from eq.37-eq.41. (B) The same as A, but under Ap = 1, Ad = 2, τdelay = 1ms.
(C) The same as A, but under Ap = 2, Ad = 1, τdelay = 0ms. (D) The same as A, but under Ap = 1, Ad = 2,
τdelay = 0ms. In A-D, the size of the converging motif, as well as the simulation time and trials are the same as in
Figure 4 in the main text. Error bars represent s.e.m.
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Ad exp(− (t̄++τdelay)−t0
τSTDP

). After considering all the non-central spikes in all the synchronous events other than S0,
we have that the trial-averaged change of the ath synapse caused by the interaction of t0 with the spikes of the ath
non-central neuron in all the synchronous events other than S0 is

∑
k=p,d

ET [
∑
j /∈S0

∆wa,k(t0, tj)] ≈ p[Ap exp(
τdelay
τSTDP

)−Ad exp(− τdelay
τSTDP

)]ET [

∞∑
l=1

exp(− τl
τSTDP

)],

with p being the mean spike number per neuron per synchronous event, and τl being the duration of the interval
between S0 and the lth synchronous event before or after it. In Model Sync-Auto 2 (see Section 7), we use
Gamma process of rate r0/p (with r0 being the firing rate of a neuron) and coefficient of variance CVevents to
model the occurrence of synchronous events. Therefore, {τl} (l = 0, 1, · · ·) is a Gamma process with rate r0/p

and coefficient of variance CVevents, starting from τ0 = 0. Although Gamma process does not avoid synchronous-
events overlap, such overlap is rare when CVevents < 1. Therefore, we can still gain understanding on this no-
overlap case by investigating the case when CVevents < 1. From Supplementary Figure 10D, we see that
A = ET [

∑∞
l=1 exp(− τl

τSTDP
)] continuously increases with CVevents. From the equation above, this suggests that∑

k=p,d ET [
∑
j /∈S0

∆wa,k(t0, tj)] increases with CVevents when Ap exp(
τdelay
τSTDP

) > Ad exp(− τdelay
τSTDP

), but decreases
with CVevents when Ap exp(

τdelay
τSTDP

) < Ad exp(− τdelay
τSTDP

).
Because CVevents does not change the STDP interaction between t0 and the non-central spikes in S0, the change

of
∑
k=p,d ET [

∑
j /∈S0

∆wa,k(t0, tj)] with CVevents also reflect the total change of the ath synapse.

5.2.2 The case when different synchronous events are allowed to overlap with each other

We will focus on the case when τdelay > 0 in the following discussions, the case when τdelay < 0 can be similarly
understood.

Consider a central spike at time t0, and suppose that this spike belongs to a synchronous event S0 whose mean
spike time is at t̄0. Because of the axonal delay τdelay, the non-central spikes in S0 typically arrives at the central
neuron at around t̄0 + τdelay. If another synchronous events S−1 happens immediately before S0, then it is possible
that during the time interval between t0 and t̄0 + τdelay, the non-central spikes in S−1 also arrive at the central
neuron. In this case, these non-central spikes in S−1 will depress the synapses through their interactions with t0.

In Model Sync-Auto 2 (see Section 7), we use Gamma process of coefficient of variance CVevents to model the
occurrence of synchronous events. In this model, such synchronous-events overlap often occurs when CVevents is large
(typically CVevents > 1), thereby depressing the synapses. In the following discussions, we will perform analytic
calculations on ET (∆wa) when the neurons in converging motifs fire according to the spike patterns generated
by this model, compare the results with simulations, thereby understanding the effect of the synchronous-events
overlap.

It is easy to show that the contribution to synaptic changes by the interaction between t0 and S0 is:
1) when τcross ≤ τdelay,

ET [
∑
j∈S0

∆wa,p(t0, tj)] = 0,

ET [
∑
j∈S0

∆wa,d(t0, tj)] ≈ −Adp exp(− τdelay
τSTDP

);
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2) when τdelay > τcross,
ET [

∑
j∈S0

∆wa,p(t0, tj)]

≈ pAp
τ2
cross

exp(−τcross − τdelay
4τSTDP

)
1

2
(τcross − τdelay)2, (37)

ET [
∑
j∈S0

∆wa,d(t0, tj)]

≈ − pAd
τcross

exp(−τcross + τdelay
2τSTDP

)τdelay −
pAd
τ2
cross

exp(−τcross + τdelay
4τSTDP

) · 1

2
(τ2
cross − τ2

delay). (38)

Now we consider the synchronous events other than S0. Suppose that the synchronous event immediately before
S0 is S−1, and the synchronous event immediately after S0 is S1, then under the approximation that τcross → 0,

ET [
∑

j∈S−1∪S1

∆wa,d(t0, tj)] ≈ −
∫ τdelay

0

q(x) · pAd exp(−τdelay − x
τSTDP

)dx−
∫ ∞

0

q(x) · pAd exp(−x+ τdelay
τSTDP

)dx, (39)

ET [
∑

j∈S−1∪S1

∆wa,p(t0, tj)] ≈
∫ ∞
τdelay

q(x) · pAp exp(−x− τdelay
τSTDP

)dx, (40)

with q(x) = βα

Γ(α)x
α−1 exp(−βx) being the inter-event interval distribution with α = 1/CV 2

events and β = r0/(CV
2
eventsp).

If we suppose that the synchronous events other than S−1, S0 and S1 are far away from S0, so that the interval
between them and t0 is far larger than τcross and τdelay, then their interaction with t0 can be approximated by

∑
k=p,d

ET [
∑

j /∈S−1∪S0∪S1

∆wa,k(ti, tj)] ≈ p(Ap −Ad)ET [

∞∑
l=2

exp(− τl
τSTDP

)] (41)

with {τl} (l = 0, 1, · · ·) being a Gamma process with rate r0/p and coefficient of variance CVevents, starting from
τ0 = 0. Note that the summation over l in the equation above starts from l = 2, which represents S2 for depression
(k = d) and S−2 for potentiation (k = p).

Eq.37-eq.41 together give the approximation of
∑
k=p,d ET [

∑
j ∆wa,k(t0, tj)], which can be solved numerically.

We compare the results of the calculations above with simulation results. We can see that our analytic calcu-
lation is able to qualitatively capture the change of ET (∆wa) with CVevents (Supplementary Figure 12). From
Supplementary Figure 12, we can see that

1) Under the case τdelay = 1ms, if Ap > Ad (or Ap < Ad),ET (∆wa) may increase (or decrease) with CVevents
when CVevents is not large. But when CVevents is large (typically CVevents > 1), ET (∆wa) always decreases with
CVevents, reflecting the synaptic depression caused by synchronous-events overlaps.

2) Under the case τdelay = 0ms, such synchronous-events overlap cannot happen. In this case, ET (∆wa)

monotonically increases (or decrease) with CVevents if Ap > Ad (or Ap < Ad).
These results suggest that if τdelay > 0, the synapses can be depressed by synchronous-events overlaps when

CVevents is large.
When τdelay < 0, the dendritic delay for the post-synaptic spikes to arrive at the dendritic end is longer than the

delay for the pre-synaptic spikes to arrive at the axonal terminal. In this case, the time when the central spike t0
arrives at the dendritic end is typically later than the time when the non-central spikes in S0 arrives at the axonal
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terminal by |τdelay|. If the synchronous events S0 and S−1 are close to each other, so that a non-central spike tj
in S−1 arrives at the axonal terminal during this interval, then the synapse will be potentiated by the interaction
between t0 and tj . The analysis for τdelay < 0 is similar to the analysis above for τdelay > 0.

6 The Heterogeneity of Diffusion Strengths Caused by Heterogeneity of

Rates and Heterogeneity of Cross-correlations

The main effect of heterogeneity of rates and heterogeneity of cross-correlations is to induce DriftV. They may also
influence the diffusion of synapses, making different synapses have different diffusion strengths. As DriftV ∝ t2 and
DiffV ∝ t, DriftV will dominate in a long run as along as DriftV 6= 0. For completeness, we briefly discuss the
heterogeneity of diffusion strengths under heterogeneity of rates and heterogeneity of cross-correlation, which may
play an important role when DriftV ≈ 0.

Till now, our study is based on eq.1 in the main text:

TotalV = DiffV + DriftV,

with DiffV representing the average diffusion strength of all the synapses in the network. But the topic of this
section goes into more details than DiffV, which investigates the heterogeneity of diffusion strengths caused by the
heterogeneity of spike train statistics of different neurons.

We have already encoutered a similar problem in Section 2, where we studied how the heterogeneity of rates of
the non-central neuron influences DiffV. We did this by supposing that the firing rates of all the non-central neurons
are uniformly rs and the firing rate of the central neuron is kept at r0, and then investigating how the diffusion
strength of a converging motif changes with rs (Supplementary Figure 1B, also see eqs.6-7). This strategy
is general for studying the problem of heterogeneity of diffusion strengths. If the spike trains of the non-central
neurons or the cross-correlations between the non-central neurons and the central neuron can be quantified by
a set of parameters {p1, p2, · · · , pn}, then we can first suppose that the statistics of the spike patterns of all the
non-central neurons are uniform and quantified by a dot Ps in the n-dimensional parameter space, and study how
the diffusion strength changes with Ps, while keeping the statistics of the central neuron unchanged.

We emphasize again that the heterogeneity of diffusion strengths is important for the learning process only when
DrV ≈ 0.

6.1 The Heterogeneity of Diffusion Strengths Caused by Heterogeneity of Rates

As we discussed in Section 3.5 of the main text, heterogeneity of rates induces DriftV by making use of P-D
imbalance. Therefore, its contribution to DriftV is approximately zero when potentiation and depression almost
balance with each other. In this case, its influence onto heterogeneity of diffusion strengths may become important.
A similar situation has already been discussed in Section 2, in which spike trains are stationary processes with
heterogeneity of rates, and by observing Supplementary Figure 1B we come to the conclusion that:

1) The diffusion strength tends to increase with the firing rate of the non-central neurons;
2) When CV � 1 (i.e. the spike trains are regular), the diffusion strength tends to sharply peak when the firing

rate of the non-central neurons rs and the firing rate of the central neuron r0 are equal, and may also peak when
rs = 2r0, 1

2r0 etc.
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We already explain these phenomena in Section 2. The first factor is because that more non-central spikes
induce more freedom to increase the synaptic variability during STDP. The second factor is due to transient cross-
correlation. When synchronous firing is added into the spike pattern, transient cross-correlation may be fragile:
as two pieces of spike trains in different synchronous events are hardly correlated with each other, the synaptic
changes caused by two central spikes tm and tn (i.e.

∑
j ∆wa(tm, tj) and

∑
j ∆wa(tn, tj)) are hard to be correlated

if tm and tn belong to different synchronous events, even if m and n are nearby by index. The first factor, however,
seems to be a general principle: the diffusion strength should be positively correlated with the firing rate of the
non-central neurons.

6.2 The Heterogeneity of Diffusion Strengths Caused by Heterogeneity of Cross-
correlations

From eq.38 in the main text, we know that the DriftV caused by heterogeneity of cross-correlation is proportional
to r2

0Vara[ra
∫∞
−∞ dτH(τ)Ca(−τdelay − τ)], with r0 and ra respectively being the firing rate of the central and ath

non-central neuron, and Ca(τ) being the unit cross-correlation between them (with limτ→∞ Ca(τ) = 1). Therefore,
DriftV = 0 if

∫∞
−∞ dτH(τ)Ca(−τdelay − τ) = 0 for every a, which may happen when Ca(−τdelay − τ) is strictly

asymmetric around the STDP time window H(τ) (Supplementary Figure 13). In this case, Ca(τ) effectively
induces synchronous firing between the central neuron and the ath non-central neuron, thus how diffusion strength
change with Ca(τ) can be understood with the help of our results on synchronous firing after setting τdelay = 0.

Two important concepts of Ca(τ) are its strength (i.e.
∫∞
−∞[Ca(τ)− 1]dτ) and its time scale of width:

1) The strength of Ca(τ) increases with the mean spike number p per neuron per synchronous event (it is easy
to prove that

∫∞
−∞[Ca(τ) − 1]dτ = (p − r0τcross)/r0 when the occurrence of synchronous events is Poisson). As

DiffV increases with p (see Section 3.3 in the main text and Supplementary Figure 2A1, B1, C1), diffusion
strength increases with the strength of cross-correlation.

2) As we focused on the case that τcross � τSTDP when discussing synchronous firing, we did not explore the
influence of τcross onto DiffV in details in this paper. However, it is not hard to understand the influence of the
time scale of Ca(τ) onto diffusion strength when τdelay = 0. Suppose C1(τ) and C2(τ) have the same strength,
but the time window of C1(τ) is narrower than that of C2(τ) (Supplementary Figure 13), then the single-step
change of the 1st synapse will be larger than that of the 2nd synapse during STDP, therefore the 1st synapse tends
to diffuse farther away from its initial value than the 2nd synapse.

Mathematically, raCa(τ) means the probability density to find a spike of the ath non-central neuron at τ , given
an central spike at time 0. If we suppose that the spike train of the ath non-central neuron is Poisson, then d (see
eq.13 in the main text) can be written as

d =
∑
k=p,d

Vara(
∑
j

∆wa,k(ti, tj)) = (A2
p +A2

d)

∫ ∞
0

exp(− 2t

τSTDP
)raCa(t)dt

If we suppose that

Ca(t) =
Ac
τc

exp(−|t|
τc

) + 1

then
d = (A2

p +A2
d)Acra ·

τSTDP
2τc + τSTDP

+ (A2
p +A2

d)ra
τSTDP

2
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Figure 13: Schematic on how heterogeneity of cross-correlations causes heterogeneity of diffusion
strengths. The STDP window is represented by the black curve. Two cross-correlations C1(τ) and C2(τ), indicated
by the blue and red curve respectively, are symmetric around H(τ), but have different widths. Both of them cause
zero drift velocity of synaptic efficacies, but the diffusion strength of the 1st synapse is stronger than that of the
2nd one.

we see that d increases with Ac but deceases with τc.
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