
APPENDIX – Derivation of the heterogeneous sample model 

A. Consider a homogeneous sample of patients and healthy control subjects. The sample (s1) is 
taken from a population of patients with possible disease heterogeneity, but we assume that this 
sample, due to its inclusion criteria, is homogeneous – in its brain features (and probably in 
symptoms too). (Figure 3a, single blue petal). For the sake of simplicity we assume that the 
numbers of patients and controls are equal, N (note that in ML studies balanced group sizes are 
preferred). A ML model (M1) is built from the sample’s feature set {x}1, resulting in a weight 
vector w1, that describes the relative weight and direction (towards healthy (value -1) or ill (value 
+1)) each feature has on the classification of a subject. The predicted class for subject j depends 
on the sign of the following product: yj = wT.xj + b (in the following we will omit the offset b, 
regulating the bias between sensitivity and specificity). The model is tested using (leave-one-out) 
cross-validation (LOOCV), where the model is applied to the training sample itself, but with 
sequentially each subject left out in the training phase, which is then used to test the model: 
M1(s1) -> accuracy (%). From a sample that is not too small and with patients that are 
homogeneous with respect to the underlying brain abnormalities, a classification model can be 
built with high LOOCV prediction accuracies, provided that the feature set includes the relevant, 
i.e., discriminative, features. Measurement noise and imperfect expert labeling will result in an
accuracy lower than 100% though. 

As pointed out in the ML effect size section (see Fig. 2-A), the means and variation of the 
features is transformed, by M1, to a mean y ± standard deviation (σy, Fig. 2-A2), for each of the 
classes. Assuming a normal distribution, the resulting ML effect size, dML = Δy/σy, can be used to 
calculated the fraction of subjects that can be correctly classified if a threshold is placed between 
the two distributions (Fig. 2-A3): acc = Φ(dML/2), with Φ(.) the cumulative normal distribution. 
In a formula: 

M1 on s1: Δy ± σy , dML = Δy/σy (1) 

B. Now, we apply this model M1 to an independent test sample, s2. To keep the notation simple, 
we assume that the numbers of subjects and discriminating features are equal between the two 
samples. The second sample shares part of the discriminating features with sample 1, but each 
sample has included patients with brain abnormalities specific to that sample (see Fig. 3a, yellow 
petal). If we denote the size of the discriminative feature sets by A1=A2=A, and the size of the 
overlapping part (i.e., the shared features) by A12, we can define the fraction of shared features by 
f=f12= A12/A. (This definition can be extended to more complex shared and sample-specific 
feature sets, and related to the dot product of the weight vectors of the models built on the 
separate samples, M1 and M2, see section E.) If M1 is applied to s2, only the shared part of the 
features will contribute to the separation of the two classes in s2: the s1-specific part will have no 
effect on s2 and the discriminative features specific to s2 are not part of M1. In a formula: 

M1 on s2: fΔy ± σy , dML = fΔy/σy (2) 

The separation strength is thus lowered by the factor f, leading to a decrease of the ML effect 
size by the same factor and lower classification accuracy. Application of M2 on s1 gives the same 
result. 



C. Thus far we considered models that were built from homogeneous samples (with mutual 
heterogeneity). We now combine the two samples s1 and s2 into a larger, heterogeneous sample 
s12 and build a model M12 from it. The shared features will be discriminate in both subsamples 
(s1 and s2), but the subsample-specific features are only discriminative in half of the subjects. 
The weights of shared features will thus be as large as in the separate models, but weights of the 
specific features will be half as large. More generally, if a feature has different discriminative 
effect sizes in different subsamples, the feature’s weight is the average of the weights this feature 
would have in the subsample-based models. We tested this by simulations, see section F, below; 
and see (Dluhoš et al, in review) for tests using real MRI data. The separation strength and 
standard deviation of the model’s output will change accordingly, with respect to the single-
subsample models: 

M12 on s1: (½+f/2)Δy ± √(½+f/2)σy , dML = √(½+f/2)Δy/σy (3) 

(Application to s2 gives the same result.) The ML effect size of this two-fold heterogeneous 
sample is thus lowered by a factor √(½+f/2) as compared to a homogeneous sample. 

D. The results of the previous paragraphs on two-fold heterogeneous (sub)samples can be 
extended to H-fold (mutual) heterogeneity, with H=2, 3, .. (Fig. 3b). A model MJ built from a 
combined, or joint, sample consisting of H subsamples s1, .., sH, applied to the subjects of 
subsample sk, (k=1,..,H) gives: 

MJ on sk: ((1+(H-1)f)/H)Δy ± √((1+(H-1)f)/H)σy , dML = √((1+(H-1)f)/H)Δy/σy (4) 

and, when such a model is tested on an independent, heterogeneous, test sample sT, we find: 

MJ on sT:  ((T/H+(H-T/H)f)/H)Δy  ± √((1+(H-1)f)/H)σy ,  dML = ((T/H+(H-T/H)f)/√H)/√(1+(H-
1)f)Δy/σy (5) 

where we assumed a T-fold overlap between the subsample-specific feature sets (see Fig. 3c) 
(T=0, 1, ..) and, as always, a shared core set of features. (For simplicity the heterogeneity of sT 
was assumed to be the same as that of sJ, i.e. HT = H.) 

Equations (1)–(5) can be used as a ‘first order approximation’ to estimate the effects of sample 
heterogeneity on LOOCV train and independent test accuracies. While the derivation was done 
for integer H and T, in practice any real value ≥0 can be substituted for these variables. This can, 
e.g., be of use when estimating the heterogeneity in a large sample of size NJ: if a typical
homogeneous subsample size N0 is assumed, H= NJ/N0. The value of N0 can be estimated from 
the studies in Figure 1: as long as, for growing sample size N, the LOOCV accuracy of the 
studies with highest accuracy stays the same (~90%) we can assume that the samples are 
homogeneous; as soon as the accuracy starts to drop, samples apparently have become 
heterogeneous. In fact, this sets an upper limit for N0, since some “small-N” studies could have 
been able to stretch the homogeneity beyond N0, by putting as much effort as possible to impose 
their strict inclusion criteria (which guarantee homogeneity) on as many as subjects as possible. 
From the figure we find N0≤50. 

Inserting dML0=2.0, f=0, N0=50, and N=N0×H in equation (4), we calculated dML(N) and 
Φ(dML/2), the LOOCV accuracy curve in Figure 1. 



For the studies in Fig. 1 that used independent train and test samples, we converted the train and 
test accuracies to ML effect sizes, dML=2×Φ-1(acc); inserting the ratio of the test/train effect sizes 
in equation (2), we calculated mutual heterogeneity factors f. 

An approximate formula for the changes in accuracy due to (increased) heterogeneity can be 
obtained for accuracies in the range 70–90%. For 0.7 < Φ < 0.9, acc = Φ ≈ 0.841 + 0.229 
ln(dML/2). Multiplication of the effect size by a factor f means a change in acc of 0.229 ln(f), or 
Δacc ≈ 53%×10log f. Using the same approximation, eq. (3) becomes: Δacc ≈ 26%×10log(½+½f). 

E. Derivation of the multiplication factors for Δy and σy, and the relationship between f and the 
weight vectors. 

Assume that discriminative features are uniformly distributed over the shared and specific 
subsets, i.e., the mean weight of features in the shared part equals that of the specific part(s), and 
can, without loss of generality, be set to 1. This means that the mean weights w1 of model M1 are 
1 in both the shared subset with size A12 and in the unique part with size A1-A12. We also assume 
that the total number of features (either discriminative or not) is A0, and that thus A0-A1 weights 
of M1 are zero. The squared norm of the weight vector is ||w1||2 = A1. Application of M1 to s1, i.e. 
calculating the dot product between w1 and x (a feature vector from sample 1), results in a 
separation strength of Δy1 = A1Δx, where Δx is the mean difference of the discriminative feature 
values between patients and controls. Regarding the variation in the output values, σy, assuming 
noise in that is independent between the features, with mean 0 and standard deviation σx, the 
application of M1 to s1 gives rise to σy = √A1σx. The same formulas apply to M2 (w2) and its 
application to s2, but note that the sets of non-zero weights differ between M1 and M2 (see Fig. 
3B). The inner product of the two weight vectors is A12, and the cosine of the angle between 
them is cos(θ) = A12/A1 = A12/A for equally sized discriminative feature sets. Cross-sample 
application of M1 to s2 (and vice versa) gives a separation strength of Δy1->2 = Δy2->1 = A12Δx = 
fAΔx = cos(θ)Δy1. The variation in output values, σy, remains unchanged, as compared to the 
application of the models to their own sample, since it is not relevant whether a feature is 
discriminative or not for the noise in it to be carried over to the output value. Consequently, the 
ML effect size is scaled by a factor f= cos(θ), as compared to the reference: application of a 
model to its own sample (using LOOCV). The angle θ is thus directly related to the 
heterogeneity factor f and we will thus call it the angle of heterogeneity. An angle of 0° reflects 
perfect mutual homogeneity, while an angle of 90° is found if there are no shared features: 
perfect mutual heterogeneity. Practically, this means that if we have two classification models 
acting in the same feature space, the dot product of the weight vectors directly provides us with 
the heterogeneity factor. 

Until now, we described heterogeneity in the form of shared and unshared, i.e., specific, features. 
There is, however, a second form of heterogeneity, viz. features that are in contradiction between 
(sub)samples. This happens when there is a healthy value (or range) for a certain feature (e.g. 
thickness of a certain cortical region), and both smaller and larger values of this feature is 
associated with having the disease (thus, in some patients, included in sample 1, thickness is 
reduced, while in other patients, included in sample 2, thickness is increased). Linear 
classification models will not be able to use this feature to discriminate between patients and 
controls, since no single separation line can be drawn. (Transforming the feature could solve this 
problem, but would require a priori knowledge; invoking nonlinear kernels could also help, but 



at the danger of overfitting and complicating interpretability of the model.) This kind of 
heterogeneity results in weights of opposite signs in the unshared feature sets. Applying model 
M1 to sample s2 (and vice versa) results in a destructive contribution of these features to the 
classification; assuming weights that are of the same magnitude as those in the shared feature set 
(1), we find: Δy1->2 = Δy2->1 = (A12– (A–A12))Δx = (2A12 –A)Δx. The variation in y remains 
unchanged (σy = √Aσx) and the ML effect size is thus lowered by a factor f = (2A12 –A)/A, which 
equals, again, cos(θ) for this case. We thus see that cos(θ) is really a measure of (different forms 
of) heterogeneity related to the ML effect size and thus the prediction accuracy. The angle 
summarizes the total heterogeneity in a single number; the precise ‘shape’ of the heterogeneity 
can be found from an element-wise comparison of the two weight vectors. 

When building a model on the combined sample, the weights in the subsample-specific parts of 
the feature set will be the average of the weights of the single-sample models. For the non-
destructive heterogeneity: w12=(w1+0)/2 = ½. Application of M12 to s1 (and s2) gives: Δy12->1 = 
Δy12->2 = (A12+(A–A12)½)Δx = ½(A+A12)Δx = ½(1+cos(θ))AΔx. The variation in y becomes: 
√(A12+2(A–A12)(½)2)σx = √(½(A+A12))σx = √(½(1+cos(θ))A)σx. The ML effect size is thus 
lowered by a factor √(½(A+A12)/A) = √(½(1+cos(θ)). One can easily verify that for the 
destructive type of heterogeneity the same formula holds. 

Of course, in reality the heterogeneity does not manifests itself in a binary fashion (being or 
being not discriminative, or being exactly contradictionary), but in a continuous manner. This, 
however, can be equally well described by the above formulas using f = cos(θ). 

F. Simulations 

We simulated sets of 200 features for 200 controls and 200 patients. For each simulation run, 
only a small fraction (5-10%) of the features were chosen to be discriminative between the 
groups, the other features had zero mean for both groups. The subjects were divided into 8 
subsamples. For each of the subsamples, effect sizes ds were assigned to the discriminative 
features by sorting the absolute values of random drawings from a normal distribution with 
mean=0 and SD=1. This resulted in 8 heterogeneous subtypes of abnormalities. To further 
enhance the heterogeneity, for each of the subsamples on average 20% of the effect sizes were 
randomly reset to zero. For each of the subsamples, noise widths σs were drawn from a normal 
distribution with mean=0.75 and SD=0.25. For each of the features, noise widths σf were drawn 
form a normal distribution with mean=0.75 and SD=0.05. A total noise width σT was calculated 
for each (subsample,feature) combination: σT

2 = σs
2 + σf

2. For all subjects feature values were 
calculated by drawing random noise from a normal distribution with mean=0 and SD= σT, and 
adding ds for discriminative features in patients. An SVM was trained to separate the patients 
from the controls, resulting in a model with weight vector w. To test whether the weights were 
the average of the weights of the 8 hypothetical subsample models, we also trained SVMs on 
these subsamples and compared the average of the resulting weights with the sample’s w. For 
140 simulations we found correlations of 0.81–0.94 between the weights. 

G. Simple scripts to calculate machine learning effect sizes and some other 

measures Please see below for a Matlab script MLeffectsize.m that calculates: 

sensitivity = TP/(TP+FN) 



specificity = TN/(TN+FP) 

balanced accuracy accbal = (sensitivity+specificity)/2 

total accuracy acctot = (TP+TN)/(TP+FN+TN+FP) = (N+1×sensitivity+N-1×specificity)/(N+1+N-1) 

mean output value for the ‘+1’ and ‘-1’ classes: y+1 and y-1 and their difference: Δy= y+1 – y-1 and 
their standard deviations: s+1 and s-1 and the pooled standard deviation sy = √(½s2

+1+½s2
-1) 

Area under the curve (AUC) = ‘A’ ≈ ‘CL’, where ‘A’ is the effect size defined in Ruscio (2008), 
which can be approximated by ‘CL’, the 'Common language effect size', defined by McGraw and 
Wong (1992). 

Four estimates of the machine learning effect size, dML: 

dML1 = Δy/sy 

dML2bal = 2Φ-1(accbal) 

dML2tot = 2Φ-1(acctot) 

dMLAUC = √2Φ-1(AUC) 

dML1 and dMLAUC are calculated using the distribution of the y-values, whereas dML2bal and dML2tot 
use information from only one point on the ROC curve. dMLAUC is more robust against outliers 
(Ruscio (2008)). Note that accuracy should be entered in the formulas as a fraction, not as a 
percentage. 

AUC can also be converted to d, and vice versa, with the following Excel script ‘Converting 
effect sizes’ at http://www.stat-help.com/spreadsheets.html
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% 
% MLeffectsize.m - script to calculate several effect sizes from 
%                  individual prediction model [machine learning (ML)] output 
% 
% Reads a two-column text (ascii) input file: 
% 1st column is a subject's label (-1,+1), 2nd column is the subject's predicted value 
% 
% The script calculates the following ML effect sizes: 
% 
% dML1    = dML from means and variances of y (ML output value) 
% dML2bal = dML from balanced prediction accuracy 
% dML2tot = dML from total prediction accuracy 
% dMLAUC  = dML from area under the curve (AUC) 
% 
% and produces an ROC plot 
% 
% Hugo Schnack, Neuroimaging, Dept. Psychiatry, UMC Utrecht, 2016 
% 
% Uses either perfcurve() from Statistics_Toolbox - also plots ROC curve 
% or fastAUC() from  http://nl.mathworks.com/matlabcentral/fileexchange/41258-faster-roc-
auc/content/install.m 
% NB. In Matlab R2013a, "abs(X1-X2)" had to be replaced by "max(X1-X2,X2-X1)" in fastAUC.cpp 
% other implementations of AUC() exist 
% 

USEfastAUC=0;   % 0 for perfcurve, or 1 for fastAUC 

if( USEfastAUC == 1) 
  mex fastAUC.cpp; %Compile 
end 

labely=load('labely.dat','-ascii'); 

label=labely(:,1); 
y=labely(:,2); 

ypos=y(label>0); 
yneg=y(label<0); 
Npos=size(ypos,1); 
Nneg=size(yneg,1); 
Nposok=size(ypos(ypos>0),1); 
Nnegok=size(yneg(yneg<0),1); 

sens=Nposok/Npos 
spec=Nnegok/Nneg 
accbal=(sens+spec)/2 
acctot=(Npos*sens+Nneg*spec)/(Npos+Nneg) 

mpos=mean(ypos); 
mneg=mean(yneg); 
spos=std(ypos); 
sneg=std(yneg); 
spooled=sqrt(((Npos-1)*spos*spos+(Nneg-1)*sneg*sneg)/(Npos+Nneg-2)); 
dy=mpos-mneg; 

if( USEfastAUC == 1 ) 
  AUC = fastAUC(label', y', 1) % using cpp file 
else 
 [rocx, rocy, roct, AUC] = perfcurve(label,y,1); 
 AUC 
 plot(rocx,rocy); 

end 

dML1=dy/spooled; 

dML2bal=2*norminv(accbal,0.,1.); 

dML2tot=2*norminv(acctot,0.,1.); 

dMLAUC=sqrt(2.)*norminv(AUC,0.,1.); 

dML1__dML2balanced__dML2total__dMLAUC = [dML1 dML2bal dML2tot dMLAUC]




