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Supplementary Data: Functional characterization of candidates for schizophrenia related to 

language evolution 

A. Candidates genes for schizophrenia that belong (or interact) to the set of genes involved in 

language evolution (according to Benítez-Burraco and Boeckx) 

As noted in the main text, the set of genes put forth by Benítez-Burraco and Boeckx (Boeckx and 

Benítez-Burraco 2014a,b, Benítez-Burraco and Boeckx 2015) is clustered around three related putative 

interactomes (Figure S1).  

 

Figure S1. Three putative gene networks that may account for the emergence of language-readiness in 

our species. As noted in the main text, all of them include candidate genes for schizophrenia (based on 

Boeckx and Benítez-Burraco, 2014a,b and Benítez-Burraco and Boeckx, 2015a). 

 



  Supplementary Material 

 2 

Regarding the genes clustered around RUNX2, we wish to note that RUNX2 is listed among the genes 

associated with GAD1-dependent GABAergic dysfunction in schizophrenia (Benes et al. 2007). GAD1 

regulatory network is important for the normal development of GABAergic neurons within the 

hippocampus (Pleasure et al. 2000, Ruzicka et al. 2015) and GAD1 itself is a strong candidate for 

schizophrenia (Mitchell et al. 2015). Interestingly, some polymorphisms of GAD1 affect to white 

matter organization and long-interval cortical inhibition in the dorsolateral prefrontal cortex of 

schizophrenia patients, and ultimately, to attentional processing and working memory (Lett et al. 2016). 

Other genes important for globularity and the emergence of our language-ready brain besides RUNX2 

interact with GAD1, including FOXP2, DLX1, and DLX2. Importantly, the promoter region of RUNX2 

shows strong signals of a selective sweep in AMHs (Green et al. 2010). Moreover, the interaction 

between RUNX2 and VDR (the 1α,25-dihydroxyvitamin D3 receptor) regulates the expression of both 

SPAG5 and SRGAP3 (Stephens and Morrison 2014). SPAG5 has been selected in AMHs (Green et al. 

2010) and encodes an interactor of the isoform B of USH2A (Kersten et al. 2012), the main candidate 

for Usher syndrome, a condition involving combined deaf-blindness and occasional schizophrenia-like 

symptoms (Domanico et al. 2012; see Leivada and Boeckx 2014 for detailed discussion). In turn, 

SRGAP3 is related to both schizophrenia (Wilson et al. 2011; Waltereit et al. 2012) and severe mental 

retardation and absence of speech (Endris et al. 2002). Interestingly, one interactor of SRGAP3 during 

neuronal differentiation and neurite outgrowth, namely SRGAP2 (Ma et al. 2013), has been duplicated 

three times in humans (Sudmant et al. 2010). Both SRGAP2 and SRGAP3 interact with ROBO1 and 

affect the SLIT/ROBO pathway (Wong et al. 2001), important for the externalization of language, as 

noted above (see Boeckx and Benítez-Burraco 2014b for details). RUNX2 also interacts with APOE 

(Kuhlwilm et al. 2013), a gene related to encephalization and cognitive development in our clade 

(Bufill and Carbonell 2006) and part of the Reelin signalling cascade related to cognitive dysfunction 

in schizophrenia, including verbal memory deficits (Verbrugghe et al. 2012; Li et al. 2015). 

Interestingly, the allele ɛ4 of APOE (related to a higher risk for developing late onset Alzheimer’s 

disease) has been shown to differentially affect high and low frequency bands in several areas of the 

brain, plausibly impacting negatively on the cognitive abilities of the carriers (Canuet et al. 2012, 

Cuesta et al. 2015a, Cuesta et al. 2015b, Prieto del Val et al. 2015). NCAM1, which encodes a protein 

involved in axonal and dendritic growth, synaptic plasticity, and cognition, is a potential target of 

RUNX2 too (Kuhlwilm et al. 2013), but also of FOXP2 (Konopka et al. 2009). NCAM1 has been 

related to schizophrenia (Vawter et al. 2001; Atz et al. 2007) and working memory performance (Bisaz 

et al. 2013). Interestingly, it interacts with VCAM1, a protein that shows a fixed change (D414G) in 

AMHs compared to Neanderthals/Denisovans (Pääbo, 2014, Table S1). VCAM1 is involved in cell 

adhesion in the subventricular zone (Kokovay et al. 2012). In turn, VCAM1 is upregulated by CLOCK 

(Gao et al. 2014), a circadian gene associated to schizophrenia (Zhang et al. 2011; Jung et al. 2014), 

and an interactor of RUNX2 (Reale et al. 2013). VCAN is also functionally linked to EGFR, another 

of RUNX2’s targets (Kuhlwilm et al. 2013) and a candidate for schizophrenia too (Benzel et al. 2007), 

a link which reinforces the view that ERBB and NRG families are causative factors of the disease, as 

noted before. Among the genes belonging to the RUNX2 network we wish also highlight one finds 

DLX1, DLX5, and DLX6. Decreased expression of DLX1 in the thalamus has been observed in 

schizophrenics (Kromkamp et al. 2003). Abnormal configuration of thalamic circuits is a hallmark of 

the disease, whereas changes in the thalamus are expected to have contributed to our mode of cognition 

(see Boeckx and Benítez-Burraco 2014a for details). DLX5 and DLX6 regulate GABAergic 

interneuron development (Cobos et al. 2006). Importantly, Dlx5/6(+/-) mice show and abnormal 

pattern of γ rhythms resulting from abnormalities in GABAergic interneurons, particularly fast-spiking 

interneurons, which impact on their cognitive flexibility (Cho et al. 2015). On the whole, the genes 

highlighted above are primarily related to the specification, migration and interconnection of 
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GABAergic neurons within the forebrain, to skull morphogenesis and to thalamic development, all of 

them aspects known to be impaired in schizophrenia. This circumstance reinforces the view that 

globularization was brought about by changes in genes that are involved in schizophrenia when 

mutated.  

Regarding the network centered around FOXP2 and the ROBO/SLIT factors, we wish to mention that 

FOXP2 has been recurrently associated to schizophrenia (Li et al. 2013) and to some of the changes 

observed in the brain of schizophrenics, including a reduction of grey matter in areas involved in 

language processing that may contributed to the verbal hallucinations that are a hallmark of the disease 

(Španiel et al. 2011). As noted above several targets of FOXP2 are related to schizophrenia (CNTNAP2, 

DISC1, MEF2C). Also some of its effectors are related to the disease. For example, sequence and copy 

number variations affecting POU3F2 have been found in subjects with schizophrenia (Huang et al. 

2005; Potkin et al. 2009). Importantly, the AMH POU3F2 is less efficient than the Neanderthal version 

in activating transcription of FOXP2 (Maricic et al. 2013). POU3F2 regulates dopamine and serotonin 

synthesis (Nasu et al. 2014) and neuronal migration and identity in the neocortex (McEvilly et al. 2002; 

Sugitani et al. 2002). Likewise, FOXP2 regulates MET (Mukamel et al. 2011), a gene that influences 

schizophrenia risk and neurocognition (Burdick et al. 2010). Interestingly, FOXP2 and some other 

candidates for schizophrenia reviewed above, like CNTNAP2 and DLX1, are enriched ELAVL2 target 

genes (Konopka et al. 2012). ELAVL2 encodes a splicing factor involved in cortical neurogenesis 

whose expression pattern has changed in humans (Konopka et al. 2012), and it is a candidate for 

schizophrenia too (Yamada et al. 2011). Likewise both ROBO1 and ROBO2, core components of our 

network, have been proposed as schizophrenia-candidate genes (Benes et al. 2009, Potkin et al. 2009, 

2010). Both genes are involved in thalamocortical axon development, which represent the major input 

to the neocortex, and modulate cognitive functions, consciousness and alertness (López-Bendito et al. 

2007; Marcos-Mondéjar et al. 2012). Both genes are differentially expressed in areas important for 

singing in adult male zebra finches (Wang 2011). In humans, ROBO1 has been associated with dyslexia 

and speech sound disorder (Hannula-Jouppi et al. 2005; Mascheretti et al. 2014), whereas ROBO2 has 

been associated with expressive vocabulary growth in the normal population (St Pourcain et al. 2014), 

and linked to dyslexia (Fisher et al. 2002) and speech-sound disorder and reading (Stein et al. 2004).  

Other ROBO/SLIT-related genes that belong to our network and that are also candidates for 

schizophrenia are ABL1, AKT1, CTNNB1, DCC, EGR1, MAPK14, and PCM1. ABL1 is involved in cell 

differentiation, division, and adhesion important for the regulation and/or the activation of auditory 

networks within the thalamus (Habib et al. 2013) and is differentially expressed in the hippocampus of 

schizophrenics (Benes et al. 2009). AKT1 is involved in neuronal survival and bone formation (Dudek 

et al. 1997; Peng et al. 2003). In humans mutations in AKT1 have been associated to schizophrenia 

(Emamian et al. 2004) and Proteus syndrome (Cohen 2014). Interestingly, reduced Akt1 expression in 

mutant Akt1(+/-) and Akt1(-/-) results in increased reduction in gamma synchrony and theta suppression 

following ketamine administration (Featherstone et al. 2013). CTNNB1¸ related to schizophrenia (like 

other components of the Wnt/β-catenin pathway) (Levchenko et al. 2015), interacts with PCDH11X/Y, 

the gene pair that has undergone accelerated evolution in our lineage (Williams et al. 2006) and that 

has been linked to language acquisition delay (Speevak and Farrell 2011) and to schizophrenia and 

language evolution, as noted above (see Crow 2013 for discussion). DCC is involved in thalamocortical 

axon projections and the organization of dopaminergic circuits within the cortex (Braisted et al. 2000; 

Grant et al. 2007). DCC contributes to the genetic basis behind individual differences in susceptibility 

to schizophrenia (Grant et al. 2007; Grant et al. 2012). Importantly, an hCONDEL (shared with 

Neanderthals) exist in a region upstream of DCC (McLean et al. 2011). EGR1 is found differentially 

expressed in the prefrontal cortex of schizophrenics (Pérez-Santiago et al. 2012). This gene encodes a 
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transcription factor involved in neuronal plasticity and memory consolidation (Veyrac et al. 2014). 

EGR1 downregulates PLAUR (Matsunoshita et al. 2011), a target of FOXP2 (Roll et al. 2010) which 

encodes an effector of SRPX2, another of FOXP2 targets (Royer-Zemmour et al. 2008) and a candidate 

for rolandic epilepsy and speech dyspraxia (Roll et al. 2006). MAPK14 encodes an interactor of both 

ABL1 and AKT1 involved in cellular proliferation and differentiation, and it is also a candidate for 

brain changes in schizophrenia (Onwuameze et al. 2013). Mapk14 signaling pathway has been related 

to kainite-induced epilepsy in mice (Namiki et al. 2007). Finally, PCM1, which encodes a centrosome 

protein that interacts with SLIT1 and that is necessary for neuronal migration, shows a differential 

expression in mammalian vocal learners (Wang 2011). PCM1 also interacts with DISC1 in the 

centrosome, mimicking its effects on neural migration and cortical development (Kamiya et al. 2008). 

On the whole, these genes are prominent signatures of vocal learning, important for the externalization 

component of the language-ready brain, which is also impaired in schizophrenia, as described in 

sections 2 and 3. 

Regarding the genes clustered around AUTS2, we wish to highlight that AUTS2 itself, though a strong 

candidate for autism, has been recently associated with the disease (Zhang et al. 2014). The first half 

of AUTS2 displays the strongest signal of positive selection in AMHs compared to Neanderthals and 

contains several human accelerated regions which include enhancers that seem to be active in the brain 

(Green et al. 2010; Oksenberg et al. 2013). AUTS2 interacts with many proteins involved in brain 

development and function that are encoded by candidate genes for several neurodevelopmental 

disorders affecting cognition and language (reviewed by Oksenberg and Ahituv 2013), including 

RELN and TBR1. TBR1 is a partner of DYRK1A, encoded by a gene that contains a region showing 

signals of strong selection in AMHs (Green et al. 2010) and whose mutations affect speech abilities 

(Van Bon et al. 2011; Courcet et al. 2012). DYRK1A regulates GAD1 (Souchet et al. 2014) and it is 

important for the control of balance between excitation and inhibition in the brain and for 

synaptogenesis and synaptic plasticity (and, ultimately, for learning and memory) (Hämmerle et al. 

2003; Souchet et al. 2014). Moreover, DYRK1A directly phosphorylates SIRT1 and also promotes 

deacetylation of TP53. Both SIRT1 and TP53 are candidates for schizophrenia (Ni et al. 2005; Kishi et 

al. 2011; Wang et al. 2015). Interestingly, SIRT1 is an effector of several genes under selection in 

modern populations that show non-fixed changes in their coding regions compared to Neanderthals 

and Denisovans, like BAZ2A and NR1H2 (Prüfer et al. 2014). Interestingly too, it has been recently 

shown that the down-regulation of SIRT1 (via miR-199a-5p) induces seizures and seizure damage in 

rats (Wang et al. 2016). SIRT1 is functionally related to MEF2A too (Gracia-Sancho et al., 2010), an 

important gene implicated in differences between human and chimpanzee prefrontal cortex 

development (Liu et al. 2012) and that shows signals of recent positive selection (Somel et al. 2013). 

According to Liu and colleagues (2012), these differences may account for the presumed faster cortical 

synaptic development in Neanderthals. Notably, a binding site for MEF2A has been linked to formal 

thought disorder (Thygesen et al. 2015). Likewise, TP53 exhibits a non-fixed change (P72R) compared 

to Neanderthals/Denisovans (Paskulin et al. 2012) and the expression pattern of the human gene differs 

from the patterns observed in other primates (Konopka et al. 2012). Risk alleles for TP53 seem to 

contribute to the reduced metabolic activity and the reduced white matter volumes observed in the 

frontal lobe of schizophrenics (Molina et al. 2011). On the whole, these changes seemingly contributed 

to the refinement of the changes that brought about modern cognition and enhanced speech abilities in 

humans. 

Some other genes relevant for brain function that show changes that occurred after the split between 

AMHs and Neanderthals/Denisovans, and that reinforce the links between the three sets of genes 
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highlighted above, are candidates for schizophrenia. We will focus only on those belonging to the 

CDC42 signaling pathway and the SHH-GLI signaling pathway. Firstly, CDC42 is required for proper 

cortical interneuron migration (Katayama et al. 2013). Some risk polymorphisms for schizophrenia 

reduce the expression of CDC42 (Gilks et al. 2012). Specifically, the downregulation of the gene in 

the dorsolateral prefrontal cortex appears to contribute to the reduction of dendritic spines on pyramidal 

cells and, ultimately, to the cognitive dysfunction characteristic of the disease (Datta et al. 2015). For 

our purposes, it is useful to note that altered expression of the gene in the hippocampus may be caused 

by the downregulation of some micro-RNAS, particularly of miR-185, found in the critical region 

deleted in 22q11.2 deletion syndrome (Forstner et al. 2013). Another target of miR-185 is RHOA, also 

altered in schizophrenia and involved in cortical interneuron migration, and is one of the genes showing 

strong signals of positive selection in AMHs compared to Neanderthals (Green et al. 2010). Two 

members of the CDC42 signaling pathway are also altered in schizophrenia: CDC42EP4 (Datta et al. 

2015), which is hypermethylated in AMHs compared to Denisovans (Gokhman et al. 2014), and 

CDC42BPB (Narayan et al. 2008), which is a target of FOXP2 (Spiteri et al. 2007). ARHGAP32 is 

another partner of CDC42 related to schizophrenia and schizotypal personality traits (Ohi et al. 2012). 

It encodes a receptor of NMDA that modulates Rho-GTPase activity and it bears a fixed change 

(E1489D) in AMHs compared to Denisovans (Meyer et al. 2012). These data suggest that synergistic 

alterations in CDC42 signaling pathway may contribute to spine deficits in cells in schizophrenia and 

that this pathway has changed in our species. Concerning the SHH-GLI pathway, we expect it to have 

played a key role in the anatomical and physiological events leading to globularization (see Boeckx et 

al. submitted), but it also contributes to the pathobiology of schizophrenia (Boyd et al. 2015). SHH 

upregulates DISC1 (Boyd et al. 2015). DISP1, one component of the SHH signalling network, shows 

a fixed change in AMHs (Green et al. 2010). SOX factors provide positional information in SHH-

directed neural patterning together with GLI factors and some of them are related to schizophrenia. 

Hence, SOX10 is found to be hypermethylated in the brain of schizophrenics (Iwamoto et al. 2005, 

Wockner et al. 2014). Together with DISC1 it acts as negative regulator of oligodendrocyte 

differentiation (Drerup et al. 2009, Hattori et al. 2014). SOX2 is also involved in the enhancer effect 

of human endogenous retroviruses (HERVs) on brain genes related to schizophrenia, specifically on 

PRODH (Suntsova et al. 2013). Schizophrenia has been claimed to result in part from epigenetic 

changes that deregulate HERV-activity (Frank et al. 2005; Diem et al. 2012). HERVs are non-coding 

DNA remnants of retroviral infections occurred during primate evolution and seem to have fueled 

genomic rearrangements associated with or subsequent to speciation events (Böhne et al. 2008), so we 

expect them to have contributed as well to language evolution (see Benítez-Burraco and Uriagereka 

2016 for discussion). Interestingly, a recent study by Castro-Nallar (2015) also found intriguing 

evidence of diversity in the schizophrenic oropharyngeal microbiome, with Ascomycota being more 

dominant and lactic acid being more abundant in schizophrenics than controls. The differences in 

bacteria between the two groups was clear, although its functional significance remains obscure. The 

microbiome has been shown to influence human cognition and behaviour through imbalances in the 

microbiota-gut-central nervous system axis (Foster and McVey Neufeld 2013, Hsiao et al. 2013). Other 

causal relations between schizophrenia and the ‘phageome’ have been posited (Yolken et al. 2015), 

and a number of studies connecting immune disorders and schizophrenia have also been forthcoming 

(reviewed by Severance et al. 2013). The behavioural and cognitive alterations seen in the microbiome 

can be changed via probiotic and antibiotic interventions (Jakobsson et al. 2010), and so an 

understanding of the relationship between cognition and viral, bacterial and fungal profiles could lead 

to successful remedial action. Together with Benítez-Burraco and Uriagereka’s (2016) claim that 

brain/immune system crosstalk led to alterations in brain connectivity giving rise to language, the 

microbiome appears to be a potentially fruitful area of research into the neurocognitive origins of 

schizophrenia.  
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B. Candidates genes for schizophrenia selected in modern humans (according to Srinivasan et al. 

2015) that are involved in language evolution (according to Benítez-Burraco and Boeckx)  

As noted in the main text, many candidates for schizophrenia that show signals of positive selection in 

modern humans compared to Neanderthals are also candidates for language impairment and/or are 

functionally related to the set of genes involved in the evolution of language-readiness. We have 

highlighted several of them as new candidates for language dysfunction in schizophrenia, including 

FOXP1, GATAD2B, MEF2C, NRG3, and NRXN1. 

- FOXP1 encodes an interactor of FOXP2 (Li et al. 2004). FOXP1 is expressed in areas relevant 

to cortico-laryngeal connections (Inoue et al. 2008) and its mutations cause language 

impairment, intellectual disability, and autism (Hamdan et al. 2010; Sollis et al. 2016). FOXP1 

is mentioned among the top five percent regions showing signals of positive selection in AMHs 

(Green et al. 2010).  

- GATAD2B encodes a zinc protein involved in chromatin modification and regulation of gene 

expression; mutations in GATAD2B impact synaptic growth and function (Willemsen et al. 

2013) and have been related to mental retardation, intellectual disability, and learning problems 

(De Ligt et al. 2012; Hamdan et al. 2014; Roberts et al. 2014), and specifically, to limited speech 

(Willemsen et al. 2013).  

- MEF2C encodes a trans-activating and DNA binding protein involved in early neurogenesis, 

neuronal migration, and differentiation. Mutations in MEF2C cause absent speech, severe 

mental retardation, and epilepsy (Bienvenu et al. 2013). MEF2C is a target of FOXP2 in the 

basal ganglia (Spiteri et al. 2007).  

- NRG3 is a promising candidate for atypical neurodevelopmental outcomes (including cognitive 

anomalies and abnormal infant behaviour) that may affect preterm infants in absence of rare 

genetic diseases (Blair et al. 2016). Deletions and duplications involving NRG3 give rise to 

speech delay (van Bon et al. 2011). In conjunction with NRG1 and their receptor ERBB4 

(reviewed below), NRG3 regulates the migration of GABAergic interneurons from ganglionic 

eminences to their cortical targets (Li et al. 2012).  

- NRXN1 encodes one of the largest known neurexins, a presynaptic cell adhesion molecule 

important for synaptic activity, neuritogenesis, and neuronal network assembly related to 

neocortical development (Südhof, 2008; Gjørlund et al. 2012; Jenkins et al. 2015). Mutations 

in NRXN1 impact speech severely, although give rise to mild motor delay only (Zweier 2012). 
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C. Functional interactions predicted by String 10 among candidates for the evolution of language, 

candidate genes for schizophrenia, and genes important for brain rhythmicity. 

Figure 2. Functional links predicted by String 10 among candidates for the evolution of language, 

candidate genes for schizophrenia, and genes important for brain rhythmicity.  
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This figure shows the functional links among candidates for the evolution of language, candidate genes 

for schizophrenia, and genes important for brain rhythmicity, as predicted by String 10 (http://string-

db.org/). Candidates have been colored according to the following criteria: 

- Candidate genes for the evolution of language (as posited by Boeckx and Benítez-Burraco 

2014a,b, and Benítez-Burraco and Boeckx 2015) that are also candidates for schizophrenia are 

colored in light green. All these genes are displayed in table 2 and have been described in 

section A above, with the exception of EGR1, FGFR1, FMR1, MECP2, and TGF (these genes, 

particularly FMR1 and MECP2, have been associated to well-known cognitive diseases and to 

anomalies in the normal pattern of brain activity).  

- Genes related to brain rhythms are colored in red, but they appear stripped in red and light green 

if they belong to any of the interactomes important for language evolution.  

- Candidate genes for schizophrenia showing signals of positive selection in AMHs according to 

Srinivasan et al. (2015) are colored in dark green, but they appear stripped in dark and light 

green if they also belong to the list of candidates for language evolution.  

- Three genes, namely, MEF2C, NRXN1, and ZNF804A, are stripped in red and dark green, 

meaning that they are both related to brain oscillations and have been selected in AMHs, 

although we have not considered it yet as part of the putative interactome for the language-

ready brain.  

- Candidate genes for the evolution of language that are not candidates for schizophrenia, nor are 

involved in brain oscillations are shadowed in gray.  

Stronger associations between proteins are represented by thicker lines. The medium confidence 

value was .0400. This means that one should expect a 40% probability that a predicted link exists 

between two enzymes in the same metabolic map in the KEGG database 

(http://www.genome.jp/kegg/pathway.html). This lower value enables to find a greater number of 

potential interactions among proteins, although it is then compensated for by checking whether the 

predicted interactions can be confirmed in the literature or in databases provided by functional 

assays. 

We wish note that String 10 predicts associations between proteins that derive from a limited set 

of databases: genomic context, high-throughput experiments, conserved coexpression, and the 

knowledge previously gained from text mining (Szklarczyk et al. 2015). This is why the figure does 

not represent a fully connected graph (evidence for additional links are provided in the 

supplementary materials). Importantly, the diagram only represents the potential connectivity 

between the involved proteins, which has to be mapped onto particular biochemical networks, 

signaling pathways, cellular properties, aspects of neuronal function, or cell-types of interest that 

can be confidently related to aspects of language development and function. Nonetheless, we wish 

note that the 6-top GO biological processes in which core candidates genes for language evolution 

are predicted to be involved (according to Panther [http://pantherdb.org]) are: multicellular 

organismal process (GO:0032501), response to stimulus (GO:0050896), immune system process 

(GO:0002376), apoptotic process (GO:0006915), cellular component organization or biogenesis 

(GO:0071840), and biological adhesion (GO:0022610). Likewise, the 6 most significant GO 

pathways in which core candidates for language evolution are predicted to be involved (according 

to Panther) are: gonadotropin releasing hormone receptor pathway (P06664), TGF-beta signaling 

pathway (P00052), angiogenesis (P00005), Wnt signaling pathway (P00057), EGF receptor 

http://pantherdb.org/
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signaling pathway (P00018), and axon guidance mediated by Slit/Robo (P00008) (see section A 

above for some additional concerns regarding schizophrenia). 
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