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1 PERISTIMULUS TIME HISTOGRAM – PSTH

For constructing a smoothed PSTH yt the spikes of all simultaneously recorded cells were pooled into a
combined spike train. We did not pool over stimulus presentations but calculated a PSTH for every trial.
For every time point t, yt depends exclusively on the previous population activity. Let C be the number of
cells and {x1, . . . , xK} (in ms) the spike times of all cells in one trial. We used two different smoothing
methods, rectangular and ‘half Gaussian’ smoothing. A rectangular smoothed PSTH (spikes/sec) with a
bandwidth ∆ (in ms) is defined as

yt =
103

C

∑
t−∆<xi<t

1

∆
. (S1)

A ‘half Gaussian’ smoothed PSTH (spikes/sec) with a bandwidth ∆ is defined as

yt =
103

C

∑
xi<t

√
2√
π∆

exp

(
−(t− xi)2

2∆2

)
, (S2)

Since both methods yielded similar results, only the results of the rectangular smoothed PSTH were
shown in this article.

2 MATHEMATICAL DETAILS OF THE CUSUM METHODS

2.1 Poisson Process

In neuroscience, a spike train is often assumed to be a Poisson process, where the occurrence of a single
spike depends solely on time and is independent of other spikes (see, e.g., ?). The probability density
function of a Poisson distribution is given by:

f(x, µ) =
µxe−µ

x!
, x ∈ N, µ > 0. (S3)
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The expected value µ equals the variance. If a spike train is regarded as a Poisson process, this implies
three mathematical assumptions.

1. There is at most one spike at one time point (a neuron cannot generate two spikes at the same time)
2. The spike counts in disjoint intervals are independent of each other.
3. The spike count yt in an interval [t, t+ a] is Poisson distributed with the density function

f(yt, µa) =
(µa)yte−µa

yt!
, (S4)

with µ being the average spike rate.

The probability that k spikes occur in an interval [ti, ti + a] of length a is the same for all ti. We assume a
Poisson process for the given spike train. Spike times are converted to an unsmoothed PSTH yt with a bin
size b. The value yt is the number of spikes in [t− b/2, t+ b/2[.

2.1.1 Additive shift of the expected value

Under the assumption of additive shifts, the general hypothesis of Eq. (1) (see Methods Section 2.2.1) is
transformed into the following hypothesis.

H0 : µt = µ0 (∀t) v.s. H1 : µt =

{
µ0, t < c

δ + µ0, t ≥ c
, −µ0 < δ <∞, (S5)

where µt is the spike rate at time point t and µ0 the previous spike rate, which is calculated with the
maximum likelihood estimator:

µ0 =
1

R

t−1∑
i=t−R

yi. (S6)

R is the length of the reference window. The logarithmic residuals st from Eq. (2) (Methods Section 2.2.1
and Tables 1,3) are

ln(fµ0+δ(yt)) = ln

(
(δ + µ0)yte−(δ+µ0)

yt!

)
= yt ln(δ + µ0)− (δ + µ0)− ln(yt!), (S7)

ln(fµ0(yt)) = ln

(
µyt0 e

−µ0

yt!

)
= yt ln(µ0)− µ0 − ln(yt!), (S8)

st = ln(fµ0+δ(yt))− ln(fµ0(yt)) = yt ln

(
δ + µ0

µ0

)
− δ. (S9)

This leads to the recursive sum St.

S0 = 0 and St = max

{
0, St−1 + yt ln

(
δ + µ0

µ0

)
− δ
}
. (S10)
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2.1.2 Multiplicative shift of the expected value

Under the assumption of multiplicative shifts, the general hypothesis of Eq. (1) (see Methods Section
2.2.1) is transformed into the following hypothesis.

H0 : µt = µ0 (∀t) v.s. H1 : µt =

{
µ0, t < c

δµ0, t ≥ c
, δ > 0, δ 6= 1. (S11)

µ0 is calculated in the same way as before (Eq. (S6)). The log-likelihood in the time point t is calculated as:

ln(fµ0δ(yt)) = ln

(
(δµ0)yte−δµ0

yt!

)
= yt ln(δµ0)− δµ0 − ln(yt!), (S12)

ln(fµ0(yt)) = ln

(
µyt0 e

−µ0

yt!

)
= yt ln(µ0)− µ0 − ln(yt!). (S13)

The recursive form of the CUSUM procedure (Eq. (2), Methods Section 2.2.1) can now be determined.

st = yt ln(δ) + (1− δ)µ0, (S14)

S0 = 0 and St = max {0, St−1 + yt ln(δ) + (1− δ)µ0} . (S15)

2.2 Normal Distribution

With the assumption of normally distributed spike rates, the values of a PSTH at each time point
y1, y2, . . . , yn is assumed to obey the independent Gaussian distribution with variance σ

fµ(yt) =
1√

2πσ2
exp

(
−(yt − µ)2

2σ2

)
. (S16)

The maximum likelihood estimators for µ and σ are the empirical mean and the empirical variance

µ0 =
1

R

t−1∑
i=t−R

yi, σ2 =
1

R− 1

t−1∑
i=t−R

(yi − µ0)2. (S17)

2.2.1 Additive shift of the expected value

Under the assumption of additive shifts, the general hypothesis of Eq. (1) (see Methods Section 2.2.1) is
transformed into the following hypothesis.

H0 : µt = µ0 (∀t) v.s. H1 : µt =

{
µ0, t < c

µ0 + δ, t ≥ c
, −µ0 < δ <∞. (S18)
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The logarithmic residuals are

ln(fµ0+δ(yt)) = −1

2
ln
(
2πσ2

)
− (yt − (µ0 + δ))2

2σ2
, (S19)

ln(fµ0(yt)) = −1

2
ln
(
2πσ2

)
− (yt − µ0)2

2σ2
, (S20)

st = −(yt − (µ0 + δ))2

2σ2
+

(yt − µ0)2

2σ2
, (S21)

=
δ(2yt − 2µ0 − δ)

2σ2
=

δ

σ2

(
yt − µ0 −

δ

2

)
. (S22)

This leads to the recursive sum St

S0 = 0 and St = max

{
0, St−1 +

δ

σ2

(
yt − µ0 −

δ

2

)}
. (S23)

2.2.2 Multiplicative shift of the expected value

Under the assumption of multiplicative shifts, the general hypothesis of Eq. (1) (see Methods Section
2.2) is transformed into the following hypothesis.

H0 : µt = µ0 (∀t) v.s. H1 : µt =

{
µ0, t < c

µ0δ, t ≥ c
, δ > 0. (S24)

The logarithmic residuals st are:

ln(fµ0δ(yt)) = −1

2
ln
(
2πσ2

)
− (yt − (µ0δ))

2

2σ2
, (S25)

ln(fµ0(yt)) = −1

2
ln
(
2πσ2

)
− (yt − µ0)2

2σ2
, (S26)

st = −(yt − (µ0δ))
2

2σ2
+

(yt − µ0)2

2σ2
(S27)

=
(1− δ)µ0

σ2

(
yt −

µ0(1 + δ)

2

)
. (S28)

The cumulative sum St was calculated by:

S0 = 0 and St = max

{
0, St−1 +

(δ − 1)µ0

σ2

(
yt −

µ0(δ + 1)

2

)}
. (S29)
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2.3 Gamma Distribution

Under the assumption of the Gamma distribution, measured data points y1, y2, . . . , yn are independently
Gamma distributed with shape parameter k

fµ(yt) =

(
k
µ

)k
Γ(k)

yk−1
t exp

(
−k
µ
yt

)
. (S30)

The maximum likelihood estimator for µ is the empirical mean. Since a close form for the maximum
likelihood estimator for k does not exist, an approximation form was used (?).

k∗ = ln

(
1

R

R∑
i=1

yi

)
− 1

R

R∑
i=1

ln (yi), k ≈
3− k∗ +

√
(s− k∗)2 + 24k∗

12s
. (S31)

2.3.1 Additive shift of the expected value

Under the assumption of additive shifts, the general hypothesis of Eq. (1) (see Methods Section 2.2.1) is
transformed into the following hypothesis.

H0 : µt = µ0 (∀t) v.s. H1 : µt =

{
µ0, t < c

µ0 + δ, t ≥ c
, −µ0 < δ <∞. (S32)

The logarithmic residuals st are:

ln(fµ0+δ(yt)) = k(ln(k)− ln(µ0 + δ))− ln(Γ(k)) + (k − 1) ln(x)− k

µ0 + δ
yt, (S33)

ln(fµ0(yt)) = k (ln(k)− ln(µ0))− ln(Γ(k)) + (k − 1) ln(x)− k

µ0
yt, (S34)

st = k

(
ln(µ0)− ln(µ0 + δ) + yt

(
1

µ0
− 1

µ0 + δ

))
. (S35)

The cumulative sum St was calculated by:

S0 = 0 and St = max

{
0, St−1 + k

(
ln

(
µ0

µ0 + δ

)
+ yt

(
1

µ0
− 1

µ0 + δ

))}
. (S36)

2.3.2 Multiplicative shift of the expected value

Under the assumption of multiplicative shifts, the general hypothesis of Eq. (1) (see Methods Section
2.2.1) is transformed into the following hypothesis.

H0 : µt = µ0 (∀t) v.s. H1 : µt =

{
µ0, t < c

µ0δ, t ≥ c
, δ > 0. (S37)
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The logarithmic residuals st are:

ln(fµ0δ(yt)) = k(ln(k)− ln(δ)− ln(µ0))− ln(Γ(k)) + (k − 1) ln(x)− k

δµ0
yt, (S38)

ln(fµ0(yt)) = k (ln(k)− ln(µ0))− ln(Γ(k)) + (k − 1) ln(x)− k

µ0
yt, (S39)

st = k

(
− ln(δ) + yt

(
1

µ0
− 1

δµ0

))
. (S40)

The cumulative sum St was calculated by:

S0 = 0 and St = max

{
0, St−1 + k

(
− ln(δ) +

yt
µ0

(
1− 1

δ

))}
. (S41)

3 PARAMETER OPTIMIZATION

3.1 Optimization of the thresholds α

For each tested parameter combination, the thresholds αin and αde were computed to maximize the value
of P (see Eq. (6) in Methods Section 2.4). Initial values were set for αin and αde, and then the values were
shifted upwards and downwards first with a big step size (e.g., a step size of 10) until the best performance
was reached. This procedure was performed repeatedly with shrinking step sizes until the best performance
was reached by a step size of 0.25. The optimization was done for each of the 10 iteration of the stimulus
protocol independently.

3.2 Optimization of the parameter combinations

The basic idea of optimizing the parameter combinations was to go from coarse to fine. First a coarse grid
of the parameter combinations was tested. Then every parameter of the best combinations was varied repea-
tedly with a finer grid until the best performance was achieved. For the single case four parameters have to
be optimize (bandwidth ∆, relative shifts δin, δde and length of reference window R). For example, the ini-
tial set of tested bandwidths was {1, 5, 10, 30, 50, 70} and the reference window R {50, 100, 150, 200}ms.
If, e.g., the bandwidth of 30 ms and the length of 150 achieved a good result, for the next set of tested
bandwidths was {20, 25, 30, 35, 40} combined with reference windows {100, 125, 150, 175, 200}. Often,
several parameter combinations achieved good results. Therefore, all parameter combinations, which had a
performance P > 1.3 or were within the 20, were further investigated.
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