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1 HILL AND ESHELBY TENSORS
1.1 GENERAL CASE

Following the work of Laws (1977, 1985), the components of the fourth-order Hill tensor relating to an
ellipsoidal inclusion in an anisotropic matrix read, in the notation Hellmich et al. (2004), as

1 1 .. . R .
Pijr = Tomal2 / 7 [Gawjwi, + givwjwy + gjwiwg + gjrwiw;] dS(w) . (1
)

In Eq. (1), o = det oy, relating to the equation of an ellipsoid, «;;x;x; = 1, considers the shape of the
ellipsoidal inclusion; dS(w) is a surface element on the unit sphere, the total surface area being 2; wy,
w2, and w3 are the components of the unit length vector w oriented from the origin of the unit sphere to

the surface element d.S(w); t is defined through ¢t = /(w;w;)/ca;;; and g;, are the components of the
inverse of the second-order tensor (C’% L Wjwi), with C’% 11 s the components of the stiffness tensor of

the anisotropic matrix. Furthermore, the unit vector w can be expressed in spherical (Euler) coordinates
Y € [0, 7] and ¢ € [0, 27], namely w1 = sin ) cos p, wy = sin ¥ sin p, w3 = cos ¥, implying dS(w) =
sin 9 dy dd.

1.2 CYLINDRICAL INCLUSIONS IN AN ISOTROPIC MATRIX

The non-zero components of the fourth-order tensor S‘CSY‘} relating to a cylindrical inclusion in an isotropic
matrix read as Eshelby (1957)

iso _ qiso _ 9M @)
eyL I ™ =yl 2222 7 4 koo + Aptiso

iso _ qiso _ EM 3)
eyl 1122 7 =yl 2217 g 3o + Apiso

iso _ qiso _ EM )
cyl, 1133 = eyl 331 T 9 3k o+ Aptiso

iso _ @iso _ EM ®)
eyLI212 7 Peyl 2121 T Y 3k 4 Ao

| | , . 1

o11313 = Sey1,3131 = Seyl 2323 = Seyl 3232 = 4’ ©

is0

with kiso and s, as bulk and shear modulus of the isotropic matrix. The corresponding Hill tensor, [Pcyl,

follows from

Pyt = Syt * (Ciso) (7)
where Cig, is the isotropic stiffness tensor of the matrix. Note that [P‘CSy‘i can be derived through evaluation
of Eq.(1). Egs.(2)—(7) are employed for evaluating the Hill tensor for cylindrical inclusions in a

microporous hydroxyapatite polycrystal, [Pg;)lly HA(19, ), occurring in Eq. (1) of the main paper.
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1.3 SPHERICAL INCLUSIONS IN AN ISOTROPIC MATRIX

The Eshelby tensor relating to spherical inclusions in an isotropic matrix, S0, is defined through

sph’
(Eshelby, 1957; Zaoui, 2002) . . .
Slsi)% — alSO[K +6150\ﬂ’ (8)
with
iso _ 3kiso and 6150 _ 6(k’iso + 2,uiso) . ©)
3kiso + 4tiso 5(?"kiso + 4Miso)
The corresponding Hill tensor, [Pisi)%, follows, analogously to Eq. (7), from
iSsp(;l = isi)% : (CiSO)_1~ (10)

Evaluation of Eq. (1), specialized for the present inclusion geometry and matrix stiffness, allows to derive
the same result. Here, Egs. (8)—(10) serve for evaluating the Hill tensor for spherical inclusions in the

microporous hydroxyapatite polycrystal, [PES}IIYHA, see Egs. (1) and (3) of the main paper, and the Eshelby

tensor of spherical inclusions within the scaffold-bone conglomerate, Sg;ﬁgl, see Egs. (40) and (56) of the
main paper.

2 DERIVATION OF THE MACROSCOPIC BULK MODULUS OF THE
SCAFFOLD-BONE CONGLOMERATE

2.1 MATERIAL CONSTANTS
Material constants M;, N;, O;, P;, introduced in Egs. (27) —(29) of the main paper, are defined as

1

Mi = Ci,rrﬂ“( - 5 + nz) + 201'#’”” ) (11
1

M = Ci,rrrr B 5 T 20“‘“”’ (12)
1

O; = Cirrog| — 2 +ni | + Cipvgo + Civopy (13)
1

Pi = Cirron| — 5 M + Ciwgoo + Ciogy » 14

with n; according to Eq. (22) of the main paper.

2.2 COEFFICIENTS FOR DEFINITION OF THE STRAIN FIELD FOR VOLUMETRIC LOADING

Displacement, strain, and stress fields found in Eqs. (24) —(29) of the main paper require determination

of the six parameters Ffi j» (1 = gran, bone, congl; j = 1,2). F’g‘“‘rm2 follows from evaluation of Eq. (23)

of the main paper at » = 0, while considering the isotropy of the granule material (thus ngan = 3/2),

I“’g“ram2 = 0. Flgongu, on the other hand, follows from evaluation of Eq. (23) of the main paper at r = oo,

while considering the isotropy of the scaffold-bone conglomerate (thus n¢ongt = 3 /2), as well as Egs. (18)

and (19) of the main paper, Ffongl 1 = FE\ol0/3. In order to determine the four remaining parameters,
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continuity conditions at the interfaces between the granule and the bone domain, as well as between the
bone-domain and the surrounding matrix are employed,

Earan,r (1) = Spone,r(71) 5 (15)
Ebone,r (172) = conglr(12) (16)
Ogran,rr (1) = Obone,rr(71) (17)
Tbone,rr(T2) = Tcongl,rr(T2) - (18)

Substituting the displacement and stress fields as defined through Egs. (24) —(29) of the main paper into
Egs. (15)—(18) yields a system of four linear equations, giving access to

Fgranl EVOI,O%/ Dy, (19)
Fbone,l = Evol,omrf/ 2 bone /Dy, (20)
Tfone.2 = Evol()rbone JrEEmone 1)
Thongt2 = BvoloTong1 o7/ D - (22)

Egs. (19)—(22) consider the following definitions:

Thone

F]gran 1 — F2+ (3kcongl 4/~Lcongl) (Mbone Nbone) ’ (23)
3kgran — N
Tk _ Tk gran one ’ 24
bone,1 — * gran,1 Mbone Nbone ( )
bone
F{fone 2 = -7:2+ (Mbone - gran) (3kcongl - 4,ucongl) ) (25)
2Mhone
Flgongl 9 — =FI|F (3 congl — Mbone)( gran Nbone) (Mbone - 3kgran)( congl — Nbone)] )
(26)
k = 3F bone (Mbone + 4/~Lcongl) (3kgran - v/\/iaone) + 3(-/\/lbone - 3kgran) (4,ucongl + v/\/iaone) ) (27)
with parameter F based on the composition of the underlying RVE,
F — 1 + fbone ) (28)
f gran

2.3 VOLUME AVERAGES OF STRAIN AND STRESS FIELDS IN GRANULE AND BONE
PHASES FOR VOLUMETRIC LOADING

Application of Eq. (49) of the main paper for the granule phase and the bone phase, while considering the
involved material constants as given by Egs. (23) —(28), yields

3rk

1
<€V01 (X>>gran - ,Zg)rzn Evol,() ; (29)
3E 1,0 1, ™bone i bone
<€V01(X)>bone - Dk(l"(’_ ].“) {Flgone 1 (1 — FtTy ) + Fbone 2 (1 - ‘F ) ] : (30)
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Analogously, application of Eq. (50) of the main paper for the granule phase and the bone phase yields

k
3 kgr anl’ gran,1

<Um(X)>gran = TEVOI,Oa (€29)
. 2EV01 O.F_ g _ bone
e (7)o i

Dhowe2 | (VF

) (3 + 2nbone) (Nbone + 2Pb0ne):| } .
(32)

3 DERIVATION OF THE MACROSCOPIC SHEAR MODULUS OF THE
SCAFFOLD-BONE CONGLOMERATE

3.1 DERIVATION OF GOVERNING DIFFERENTIAL EQUATIONS

Substitution of the displacement field given by Eq. (35) of the main paper into the strain field, expressed
in terms of spherical coordinates, and insertion of the strain field into the constitutive relations, Egs. (12),
Egs. (13), and Egs. (14) of the main paper, gives access, via the equilibrium condition, Eq. (5) of the main
paper, to two ordinary differential equations,

d%, L 248 & 2ACirrv = 3Cirvro = Civogp = Civown)

arz2 T rdr 2 Cirrrr (33)
1 dfﬂ 3( irr99 T Ci 7’197"19) o 3( 1,009909 — Cz rro9 T Cz ror9 + Cj 1919<p<p) .
+ = =0

T dr Cz,rrrr r Cz,rrrr

1 dgr ( 1,79 + Cz rﬂrﬁ) 57’ ( i,r9rY + Cz 00 + Cz 19191919)

) +
r d’f’ Cz,m?m? T CZ rird (34)
+ d2£19 + g@ . 5_19 202 roro + Cj W0pp +5C; 19191919) -0
dr2  rdr 1?2 Cirorv '

The general solutions of Egs. (33) and (34) are specified in the main paper; see Egs. (33) —(35) of the main
paper for anisotropic materials, and Egs. (37) —(39) of the main paper for isotropic materials.

3.2 MATERIAL CONSTANTS

The general solution for the displacement field of an RVE subjected to simple shear, established via
Eqgs. (33)—(35) of the main paper, includes material functions F; 11 and P; 12, see Eq. (36) of the main
paper. The mathematical basis for how these functions are derived is described at length elsewhere
(Bertrand and Hellmich, 2009); they are defined as follows:

1
Pii(ai ) = (Oé?,j - Z) Cirrrr — 6C rgro — 2 (Ci9900 — Civrow + Cigogs) (35)

3 1
Pi12(aij) =3 Ka + ai,j) Ciroro — (5 - ai,j) Cirro9 + Ci g9 + Cigope| (36)
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where functions «; ; are defined as

—Lio> — ¢ \/Lig —4L;0L; 4
2Li4 (37)

-1 ifj=12 1 ifj=14
with “’J—{1 itj=34 9 CJ—{ 1 ifj=23.

Furthermore, coefficients L; o, L; 2, and L; 4 are solely governed by the components of the stiffness tensor
of constituent 7, expressed in spherical coordinates:

1
E [Ci,rrrr(ci,rﬁrﬂ + 402',19199090 + 200i,19191919)+

+ 4C; 9999(16C; 9999 + 66C; r9r9) + 8C; rr99(9C; r9r9 + 8Ci 99pp— (38)

— 8C; 9999 — 3C;rr99) — 8C; 9900 (15C; pyrg + 801',@19@@)} ,

Qij = W

Lio=

1
Li,2 =2 |:Ci,rm919(3ci,rm919 + 7Ci,r197'19> - Ci,rﬁrﬂ(Ci,ﬂﬂww + Ci,ﬂﬁﬁﬁ)] - QCi,rrer (39)
X (5C; r9r9 + 2C; 990, + 10C; 9999)
LiA = Ci,rrrrci,rﬁrﬁ- (40)

3.3 STRAIN AND STRESS FIELDS FOR DEVIATORIC LOADING, AND THE GOVERNING
COEFFICIENTS

The strain field corresponding to the displacement fields for simple shear, the latter being defined by
Egs. (33) - (35) of the main paper, follows through insertion of these equations into the kinematic relation,
Eq. (10) of the main paper, specified for spherical coordinates, yielding

4

1
sir == 51+ Da;)Dh ™3 Yicos 2p5in? 0, 41)
j=1
4 1 3
Eigy = Z QFZJ.T_T_O”JCOS 2¢ [14 (28(cvij) — 1) cos 29|, 42)
j=1
1 3
Cip =Y Tl 2 %icos 20 [B(aij (cos® I — 2) + sin® ] | (43)
j=1
4 1 3
Eiry = — Z gffj (34 2a;,5) B(av ;) — 4] r 27 %icos 2psin 29, (44)
j=1
4 3
Sidp = — D UltyBlaig)r= 2 icos 0sin2p, (45)
j=1
4 1 3
Eirg =) TTE 13+ 2005) Blai) —4]r ™2 sin2psin . (46)
j=1
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Insertion of the strain tensor components, given by Eqgs.(41)—(46), into the constitutive relations,
Egs. (12), Egs. (13), and Eqgs. (14) of the main paper, gives access to the corresponding stress field:

4
1 3
Oirr = Z §Fi,j i rrrr 1 + 2q; _]) 402 rrd9 T+ 66(0[17]) i rm%?} r 27 %icos 290 sin 79 “47)
J=1

3
T 99 = Z FH ro2 a”{ 14 (1— 25(&2'7]')) cos 24| Ci,19191919_
—2(2B(cij) — c08” V) Cigppp — (Cigron + 200 jC;prp9 — 2C; 99,) sin° 19} ; (48)

4
1 3 q,
Tipp = Z §PZjT 3T {25(@,-7]-) (Cos2 ¥ —2) Cjg999 + [1+ (26(cvij) — 1) cos 2] x
j=1

X Ciovpp — (14 20,5) Ci rpp9 — 2C; 9999)sin” 19} cos 2¢, (49)
3 g .

Oird = Z 1—‘”6 Q. j (C; D0pp — “9191919)7” 2~ %.icos ) sin 2¢p (50)

3 . .
Tivg =Zréfj [(3+ 20 3)B(aij) — 4] Cypgrgr™ 2 cos p sin sin 1, (51)

=1
4

1, I PV .

Tirp = — Z Zri’j (34 2a; ) Bl j) — 4] Cs pgrgr™ 2~ 5 cos 2 sin 200 . (52)

j=1

For determination of the twelve parameters F’“‘ (¢« = glob, bone, scaff; j = 1,2, 3,4), one may start with

— H
gran,3 — 0 and Fgran 4 —

the requirement of finite displacements at » — oo implies Fcongl 1 = 7 and r: congl,2 = = 0. The remaining

eight parameters are again obtained based on continuity equations formulated at the interfaces between
the different domains of which the RVE is composed,

evaluation of Eq. (37) [or Eq. (38)] of the main paper forr = 0: T = 0. Furthermore,

Egran,r (1) = Ebone,r (1), (53)
Eeran9(71) = Ebone,v (1), (54)
Ebone,r(T2) = Econgl,r (12), (55)
Ebone,(72) = Econgl,v(2), (56)
Ogran,rr(T1) = Obone,rr(71), (57)
Ogran,r0(T1) = Tbone,rd(71), (58)
Tbone,rr(T2) = Tcongl,rr(T2), (59)
Tbone,r9(T2) = Tcongl,r9(12) - (60)

Based on insertion of the respective displacement and stress components into Egs. (5§3) —(60) eventually
yields a system of eight linear equations. Solution of this system of equations, here performed as suggested
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by Hervé and Zaoui (1993), gives access to

Fgran 1 fyrgran 1> (61)

-2
I‘gran 2 ’yrgran 21 (62)

YT +ab0ne, j

F‘gtone,] - fyrbone,] ’ ) (63)

5
F(F:Longl 3 fyrgongl,?)rl ’ (64)

3
Fétongl 4 7F50ngl,4rl ) (65)
with Eq. (63) being valid for j = 1,2, 3,4. The overlined quantities in Egs. (61)—(65), that is Fgran 1>
e , e (G =1,2,3,4), " ,and T* , are governed by phase volume fractions and phase

gran,2” = bone,j congl,3 congl,4 g yp

stiffness tensors via lengthy expressions. For this reason, we refrain from explicitly presenting these
expressions here.

3.4 VOLUME AVERAGES OF STRAIN AND STRESS FIELDS IN GRANULE AND BONE
PHASES FOR DEVIATORIC LOADING

Application of Eq. (54) of the main paper to the granule and the bone phases yields

I

21 Dgrano
<€d<x)>gran = <Fgran,1 - E%) Ed,O ? (66)

— 2, gran

1 [ 1_‘F2 bone]

<Ed(x)>bone - g Z 1—F FIIL)Lone] [2 + 3ﬁ(05bone,j)]
j=1

Eqo- (67)

Furthermore, application of Eq. (55) of the main paper to the granule and the bone phase yields

-2 N 21 Tgrun E (68)
<0'd(X)>gran - ,"Lgran gran71 - gTVgran d,O 9
4 1 %bone,j
1—F2~ =38 —/—r
(04(X))pope = Z —F | R (one,j) | Edp, (69)

j=1
with £ (bone, j) as additional material parameter, defined as follows:

2
5(—3 + 2abone,j

/{(abonf‘/’j) - ) {Cbone,rrrr + 2apone, j Coone,rrrr—

- [5 + 2Ofbone,j - 65(ab0ne,j)] Cfbone,rm%?+ (70)
+ 36(abone,j> [(3 + 2abone,j)Cbone,m9m9 =+ Cbone,ﬂﬁgpgp - 3Cbone,19191919} +

+ 2(Cb0ne,1919<p<p + Cbone,19191919 - 6Cbone,m9m9)} .
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