
DRACO-STEM : an automatic tool to generate
high-quality 3D meshes of meristem tissue at
cell resolution
Guillaume Cerutti 1,∗, Olivier Ali 1,2, Christophe Godin 1

*Correspondence:
Guillaume Cerutti
guillaume.cerutti@inria.fr

1 TECHNICAL DETAILS

In this section, we explain more thoroughly some of the mathematical and algorithmic tools used in
the DRACO-STEM pipeline. Most of them concern the optimization of a cellular complex, either for
the representation of the adjacency (simplicial complex) or for the representation of the tissue geometry
(triangular mesh). Consequently we will first introduce notations describing such objects, and in a second
time detail the specific methods used in the algorithm. More complete details can be found in previous
publications (Cerutti and Godin, 2015; Cerutti et al., 2015)

1.1 Notations

As explained in Section 2.2, a cellular complex is represented in our framework by the data structure of
incidence graph where the n-cells of the complex are nodes of the graph, and the edges correspond to a
boundary relationship between n-cells and n − 1-cells. For a cellular complex of dimension 3, we will
consider four distinct sets of elements:

• C0 corresponding to the vertices or 0-cells of the complex
• C1 corresponding to the edges or 1-cells of the complex
• C2 corresponding to the faces or 2-cells of the complex
• C3 corresponding to the polyhedral cells or 3-cells of the complex

The edges of the graph define relationships that associate an element of dimension nwith its boundaries of
dimension n− 1. We define explicitly this boundary relationship by a function that defines the boundary
of an element of Cn as a set of elements of Cn−1, which can also be split into 3 sets:

• B1 assigning a set of vertices of C0 that form the boundary of an edge of C1
• B2 assigning a set of edges of C1 that form the boundary of a face of C2
• B3 assigning a set of faces of C2 that form the boundary of a cell of C3

For instance, any triangular face t ∈ C2 will have its boundary defined as B2(t) = {e1, e2, e3} with
e1, e2, e3 ∈ C1. This boundary relationship Bn defines also a converse region relationshipRn−1 listing,
for an element of dimension n− 1, all the elements of dimension n for which it constitutes a boundary:

∀c ∈ Cn, Rn(c) = {c′ ∈ Cn+1 | c ∈ Bn+1(c
′)}

1

Cerutti et al. DRACO-STEM

The notion of boundaries (and regions) can be extended to more than one dimension by mere transitivity,
and noted Bkn with B1n = Bn:

∀c ∈ Cn,Bkn(c) =
⋃

b∈Bn(c)
Bk−1n−1(b)

This also defines two different neighborhood relationships between elements of the same dimension
n. Either we consider the elements of dimension n that share a same boundary of dimension n − 1 or
the elements of dimension n that share a same region of dimension n + 1. Those two relationships are
respectively written as N−n and N+

n .

N−n (c) = {c′ ∈ Cn | Bn(c) ∩ Bn(c′) 6= ∅} N+
n (c) = {c′ ∈ Cn | Rn(c) ∩Rn(c′) 6= ∅}

All these relationships, that allow to navigate through the structure and define local measures, are illustrated
in Figure 1.

Figure 1. Representation of the topological relationships between elements of a cellular complex
implemented as an incidence graph: boundary relationship, region relationship, ascending and descending
neighborhood relationships.

Taken alone, the elements of the incidence graph and the boundary relationships only define the
topological organization of the structure. The geometrical information that completes its definition is
specified by a 3D spatial position assigned to each vertex of C0. The geometry of all higher dimension
elements is then determined by the positions of the underlying vertices:

P = {P(v), v ∈ C0}

1.2 Energy definition for adjacency complex optimization

In the DRACO process, the essential step consists in optimizing a simplicial complex of cell adjacency
by an iterative process of energy minimization. The energy that is minimized by the algorithm is defined
over a simplicial complex T with respect to a segmented image S that the complex aims to represent. The
formula of the energy given in Section 2.3.1 but recalled here for convenience:

E(T ,S) = ωimageEimage(T ,S) + ωpriorEprior(T) + ωregularityEregularity(T) (1)

2

Cerutti et al. DRACO-STEM

As evoked in Section 2.1, a set of adjacency simplices can be extracted from the segmented image S . For
instance tetrahedra of adjacency can be detected by looking for cubes � formed by 8 voxels that contain at
least 4 different labels. Considering all these possible cubes, we obtain a set of adjacency simplices written:

TS =
{
{c1, c2, c3, c4} | ∃� ∈ S, c1, c2, c3, c4 ∈ �

}
We use TS as a set of reference tetrahedra to which the tetrahedra of T should fit as well as possible.

Consequently, the data attachment energy term we use simply measures the overlap between TS and the
tetrahedra of the current simplicial complex that can be expressed as:

TT =
{
B33(t), t ∈ C3

}
The overlap is computed as a Jaccard index, with a negative sign since we want to maximize it:

Eimage(T ,S) = −|TT ∩ TS |
|TT ∪ TS|

(2)

The prior energy term aims to make the number of neighbors of the cells in the adjacency complex
consistent with biological observations. Based on expertized tissue images, we remarked that the number
of neighbors of an epidermis cell was 9.0 ± 2.1 and 13.0 ± 2.7 for an inner cell. Consequently, we set
optimal values Nepi = 9 and Ninn = 13 and define the prior energy using the distance of the number of
neighbors of each vertex to its ideal value (depending whether it touches the exterior or not):

Eprior(T) =
1

|C0|
∑

v∈C0\vext

(
|N+

0 (v)| −N(v)
)2 (3)

∀v ∈ C0 \ vext, N(v) =

{
Nepi + 1 if vext ∈ N+

0 (v)

Ninn otherwise

Finally, the last term considers the geometrical regularity of the elements of the complex. It tries to
improve the quality of the tetrahedra in a way that fits the goal of recreating a plausible cell adjacency.
Therefore, we defined it on the tetrahedra of T , trying to avoid that links appear between tissue cells that
lie too far from each other by measuring the maximal edge length of each tetrahedron:

Eregularity(T) =
1

|C3|
∑
t∈C3

max
e∈B23(t)

‖P(v1)− P(v2)‖

{v1,v2}=B1(e)

(4)

The energies having different, sometimes antagonist effects, it is important to balance well their influence
to get the best result. To obtain a satisfactory result, we ran our optimization method using a (handset) range
of energy weights and evaluated the results using our quality estimators. We retained the ones providing
the best average and highest minimal values of the estimators, and found out the values ωimage = 8.0,
ωprior = 0.05 and ωregularity = 0.5 to offer the best compromise for the optimization of the adjacency
complex.

Frontiers 3

Cerutti et al. DRACO-STEM

1.3 Dual vertex positioning

In the dualization process, the geometry is defined by the positioning of the vertices associated with each
thetrahedron of the simplicial complex of adjacency. However, since the Delaunay constraint no longer
holds after several passes of topological optimization, we have to set these positions carefully to avoid
geometrical artifacts such as folding or face intersections. In a Voronoi diagram, the dual vertices are
located at the centers of the circumscribed sphere of their respective primal tetrahedra. We started with this
idea, computing these positions as a weighted barycenter of the positions of the tetrahedra vertices.

In the case one of the computed weights is negative, it means that the center will lie outside the tetrahedron,
a situation that might generate the evoked geometrical problems. To avoid them we chose to constrain the
vertex to remain inside its tetrahedron. Consequently, in such cases, we take out the vertex associated with
the most negative weight, and compute the position as the center of the circumscribed circle of the triangle
formed by the three remaining vertices, once again computed as a weighted barycenter. And if a weight
is still negative (meaning the triangle has one obtuse angle) the corresponding vertex is ignored and the
position set as the middle point of the two remaining vertices.

Figure 2. Computing the position of a dual vertex from a primal tetrahedron : the position is set to the
circumscribed sphere center; if it lies outside of the tetrahedron, it is re-estimated as the circumscribed
circle center of the nearest triangle; if it lies outside the triangle it is re-estimated as the middle point of the
closest edge.

This process, illustrated in Figure 2 ensures that the position of the dual vertices will remain inside (or at
worst on the border of) their primal tetrahedra and that no impossible geometric configurations will issue
from the dualization process.

1.4 Dealing with the exterior in the dual reconstruction

The dualization of a simplicial complex poses a major problem relative to the boundaries of the considered
object. We will illustrate this problem and the solution we proposed to solve it on a 2D example but it is
general and extends very well in 3D. In our case, a simplical complex is constructed based on the adjacency
relationships found in an image containing a limited number of finite cell regions as in Figure 3 (a). In
a 2D case (D = 2), this allows us to define triangles linking vertices representing cell centers, triangles
delimited by edges in such way that they form a cellular complex implemented as described in 1.1.

But among those edges (resp. triangles if D = 3), some play an important role: the ones that are linked to
only one simplex of dimension D and that can be called exterior simplices:

4

Cerutti et al. DRACO-STEM

(a) (b) (c)

(d) (e) (f)

(g)

Figure 3. Representing the exterior for the dualization of a 2D simplicial complex: adjacency information
extracted from a segmented image (a) and the resulting simplicial complex with exterior edges marked in
green (b): in the dual, exterior edges correspond to infinite edges giving rise to infinite cells (c). Adding an
artificial exterior vertex to the simplicial complex (d) allows to perform a dualization without infinite cells
(e) but using the image is necessary to place new vertices accurately (f). With such topologically correct
reconstruction, it is easier to reconstruct the object boundaries by subdivision and vertex relocation than if
we had to compute intersection of a surface with infinite cells (g).

Frontiers 5

Cerutti et al. DRACO-STEM

C extD−1 = {c ∈ CD−1 | |RD−1(c)| = 1}

The exterior edges form the boundary of the simplicial complex (Figure 3 (b)) and are theoretically
dualized into an infinite edge issuing from the dual vertex corresponding to their unique triangle. These
infinite dual edges define infinite cells in the dual cellular complex representing the tissue geometry as
shown in Figure 3 (c). This raises important issues, the first one being how to represent infinity it the
cellular complexes as we implement them? Should infinite edges be linked to only one vertex, or should
a (unique) infinite vertex be introduced? And if we settle for ”very distant vertices” to limit the edges,
positioned according to a fixed rule (following the edge bisector as in a Voronoi diagram for instance) the
resulting cells would still be open, as no topological structure would be here to delimit them. It would then
be necessary to compute this cell boundary element as the intersection of the open cell with the object’s
surface, a geometrical operation that is not trivial at all.

For all these reasons, we introduced an alternative approach to handle the case of exterior simplices to
solve the problem in a more generic and elegant way. It relies on the addition in the adjacency simplicial
complex of a virtual vertex vext representing the whole exterior region. Unlike the rest of the vertices
that correspond to cell centers, P(vext) is not defined, meaning the vertex has no fixed position in space.
However it needs to comply with all the topological constraints regarding simplicial complexes. Its
topological relationship to the rest of the complex are defined quite simply:

• ∀c ∈ C extD−1, a D-dimensional simplex c′ is added so that BDD(c′) = BD−1D−1(c)
⋃
{vext}

• All the missing simplices of dimension < D forming the boundary of c′ are also added to the complex

An example of this extension is given if the Figure 3 (d). First vext is added with no fixed spatial position.
For each exterior edge e of the original simplicial complex, we add a new ”exterior” triangle linking the two
vertices of the edge v1, v2 = B11(e) and vext. In addition, the two edges linking respectively v1 to vext and
v2 to vext are also added to the complex. This way, the triangles corresponding to adjacent exterior edges
e, e′ | e′ ∈ N−1 (e) will share a new edge in common: the one linking vext to v = B11(e)

⋂
B11(e′). This

is of course difficult to visualize since vext has no position but as suggests Figure 3 (e), the new exterior
simplices actually form a closed connected ”ring” of D-dimensional simplices around the initial complex.

The magic of this trick resides in the fact that now, all D − 1-simplices are linked to exactly 2 D-
simplices, therefore no infinite edge will appear in the dualization. Plus, the cell outer boundaries that had
no topological existence in the previous case now correspond to the dual of the new edges linking cells to
the exterior. The only problem is now a geometrical one: where to place the dual vertices of the new exterior
D-simplices? In the general case, vertices of the geometry cellular complex are placed using the positions
of the D + 1 points forming their dual D-simplex in the adjacency complex, following a Voronoi-like rule:
the center of circumscribed circle for a triangle, or sphere for a tetrahedron. But in the case of adjacency
simplices containing vext, only D positions are known. Our solution was to do the same as if we were
in a lower dimension: the middle point of the non-vext segment for an exterior triangle, the center of the
circumscribed circle of the non-vext triangle for an exterior tetrahedron. This dual reconstruction process is
the one used in Figure 3 (e).

However, these new vertices have a physical existence in the segmented image we start from: they are
the points where the regions of the two cells (resp. three in the 3D case) forming part of the exterior edge
meet with the exterior region. Their spatial position can generally be extracted from the image, and the
new vertices can consequently be relocated to their actual position easily, without any other geometrical

6

Cerutti et al. DRACO-STEM

computation. The result, illustrated in Figure 3 (f), is a more realistic cell geometry, even though cell shapes
are limited by the fact that their exterior boundary consists of one single edge. To solve this accuracy
problem, it is necessary to subdivide the cell boundaries, creating new vertices which positions can be
optimized to fit better the shape of the object (for instance by projecting them onto the cell surface as in
Figure 3 (g)).

1.5 Energy definition for tissue mesh optimization

The STEM component provides tools to optimize a 3D triangular mesh representing the cell tissue along
several competing criteria. The mesh is represented as a cellular complex S composed of vertices, edges,
triangular faces, and cells with an arbitrary number of faces. The optimization is here again performed as an
iterative energy minimization process taking into account the consistency of the mesh with the segmented
image S, the shape of the individual cells, and the regularity of the mesh elements. Similarly to the one
used for the adjacency complex optimization, the energy minimized here is composed of three terms:

E(M,S) = Eimage(M,S) + Eprior(M) + Eregularity(M) (5)

The first data attachment term has the objective of tying the vertices of the mesh (which represents cell
boundaries as a complex of triangles) to actual cell interfaces in the image. Cell interfaces correspond
to transitions between differently labeled regions in the image, something that is typically captured by
a gradient operator in image analysis. But since the values in S are label identifying cells, and not
signal values, we compute the magnitude of a pseudo-gradient capturing only the information of label
differentiation without taking into account their numerical values. At each voxel position x, it considers
the number of different labels found in a neighborhood of radius σ; the obtained image is then filtered by a
Gaussian operator to non-zero values in regions surrounding actual boundaries.

‖∇S(x)‖ =

{
2
∣∣S(Nσ(x)

)∣∣ if 1 ∈ S
(
Nσ(x)

)∣∣S(Nσ(x)
)∣∣ otherwise

∗N(·, σ) (6)

The high values of ‖∇S‖ therefore correspond to places where cells meet, which is where we want the
mesh vertices to end up. The image attachment energy term should therefore maximize the pseudo-gradient
magnitude of the mesh vertices:

Eimage(M,S) = ωgradientEgradient(M,S) = ωgradient
∑
v∈C0

−‖∇S (P(v)) ‖ (7)

The prior energy term is here to ensure that the shape of the cells will correspond to what we consider a
desirable outcome: convex volumes with convex polygonal faces. The energy combines those two aspects
under the form of two weighted energy terms:

Eprior(M) = ωplanarityEplanarity(M) + ωcontourEcontour(M) (8)

The first one aims at making the cell interfaces flat, so that no concavities form between two cells. It is
minimal when the overall distance of the vertices belonging to the interface between cells c and c′ to its

Frontiers 7

Cerutti et al. DRACO-STEM

mean plane (represented by the interface barycenter Pc,c′ and average normal vector ~nc,c′) is minimal:

Eplanarity(M) =
∑
v∈C0

(∑
c∈R3

0(v)

∑
c′∈R3

0(v)

c′ 6=c

∣∣∣ (P(v)− Pc,c′
)
· ~nc,c′

∣∣∣) (9)

The second one tries to make the cell edges straight to end up with simple polygonal cell interfaces. It is
based on the laplacian operator that is used to reduce the noise on the linear cell boundaries:

Econtour(M) =
∑
v∈C0

(∑
c∈R3

0(v)

∑
c′∈R3

0(v)

c′ 6=c

∥∥∆Cc,c′
(
P(v)

)∥∥) (10)

And finally, the regularity term ensures that the quality of the triangles remains satisfactory enough in
spite of the effects of the two other energies that apply without taking the shape of the mesh elements into
account. Here we consider mesh quality as the regularity of the mesh triangles both in size and in shape,
which leads again to a decomposition of the energy into two terms:

Eregularity(M) = ωareaEarea(M) + ωeccentricityEeccentricity(M) (11)

The first one ensures the global similarity in size of all the triangles of the mesh. It should be minimal
when all the triangles have the same area, and therefore is based on the squared deviation of triangle areas
to the average triangle area over the mesh noted Ā:

Earea(M) =
∑
v∈C0

1

3

∑
t∈R2

0(v)

(
A
(
P
(
B2
2(t)

))
− Ā

)2
(12)

The second one pushes triangle to be as regular as possible, meaning it should be minimal when all
triangles are equilateral. Measures of ”how equilateral” a triangle is are generally called eccentricity of a
triangle, with an equilateral triangle having an eccentricity of 0; consequently we want to minimize the
global eccentricity of the mesh triangles. A convenient measure of triangle eccentricity (easy to compute
from triangle edge lengths, and with good differentiability properties) involves the sum of the sinuses of a
triangle’s angles:

Eeccentricity(M) =
∑
v∈C0

1

3

∑
t∈R2

0(v)

1− 2

3
√

3

∑
v∈B22(t)

sin
(
P̂(v)

)
(13)

The optimization takes the form of an energy gradient descent of the positions P of the mesh vertices,
and at each iteration the direction in which to move each vertex is computed as the weighted sum of the
local gradient of each energy involved at the current position of the point. Similarly to what was done
for the adjacency complex optimization energy weights, we found that the best empirical values for these
weights were ωgradient = 0.17, ωplanarity = 0.47, ωcontour = 1.3, ωeccentricity = 2.0 and ωarea = 0.005.

8

Cerutti et al. DRACO-STEM

2 IMPLEMENTATION DETAILS

As a part of the open-source plant modelling library OpenAlea (Pradal et al., 2008), the DRACO-STEM
package is a pure Python package designed to work on common data structures, usable by the other
packages of the library. The dependencies are limited to the core components of the OpenAlea framework
(https://github.com/openalea/openalea-components), the specific data structures and
algorithms designed to manipulate cellular complexes (https://github.com/VirtualPlants/
cellcomplex) as well as widespread scientific programming Python libraries NumPy (Walt et al., 2011)
and SciPy (Jones et al., 2001–).

2.1 Data Structures

OpenAlea provides a data structure to represent 3D image stacks such as those obtained from a confocal
microscope. This structure called SpatialImage basically contains the image matrix as a three dimensional
NumPy array as well as some required metadata such as the image resolution (or physical size of the voxels,
along the three axes of the image). Readers are provided for various file formats (.tif,.lsm,.inr) making
it easy to import images obtained from whatever source. Images of segmented cell tissue are supposed to
be 8-bit or 16-bit integer images, in which the cell regions have a unique label and the background region a
label set to 1.

Concerning cellular complexes, the implementation as an incidence graph detailed in Section 2.2 is
realized by a structured called PropertyTopomesh which gives the possibility to contain (in addition to
the topological relationships between elements of dimension 0, 1, 2 and 3) properties defined on each of
those elements. Examples of such properties are numerous, they could be the position of a vertex given by
its 3D coordinates, the length of an edge, the curvature tensor estimated on a triangular face, of the volume
of a cell. Any user defined property can be added to the structure as a simple Python dictionary. Such
structures, along with their properties (or at least a subset of them) can be exported to the common mesh
file format .ply following a standard allowing to reconstruct the topological structure (Krupinski et al.,
2015), for the same motive of compatibility with other mesh viewing software or modeling environments.

2.2 Code Examples

In the DRACO-STEM package, all functionalities are provided by a high-level object of the class
DracoMesh encompassing the input image as a SpatialImage, the adjacency relationships extracted
from it, the constructed adjacency complex as a PropertyTopomesh and the dual reconstructed also as a
PropertyTopomesh. The methods allowing to perform the different steps of the pipeline have to be called
in the right order, but have several editable parameters on which the user can play.

As shown in Table 1, the DracoMesh is initialized using a SpatialImage that can be loaded using the
provided reader imread. It could also be passed as a filename, and it is also possible to specify a path to
previously extracted adjacency simplices to speed up the initialization step (if the file is not existing, the
computed information will be saved anyways for further use).

The first method to call is then the one initializing the adjacency complex by the Delaunay tetrahedrization
of the cell barycenters. This method called delaunay adjacency complex also performs the surface
triangle removal step, necessary to obtain a concave Delaunay tetrahedrization. To do so, it takes as
argument the criteria used to determine which external triangles should be removed, as a list containing
string among the following ones:

• ’surface’: remove triangles intersecting the external surface of the tissue object .

Frontiers 9

https://github.com/openalea/openalea-components
https://github.com/VirtualPlants/cellcomplex
https://github.com/VirtualPlants/cellcomplex

Cerutti et al. DRACO-STEM

Table 1. Example of the use of DRACO-STEM within the OpenAlea framework: opening an image,
launching the two-step adjacency complex optimization with custom parameters, and generating (and
saving) the dual geometry mesh.

import openalea.draco stem
from openalea.draco stem.draco.draco import DracoMesh

from openalea.image import SpatialImage
from openalea.image.serial.all import imread

from openalea.mesh import PropertyTopomesh
from openalea.mesh.property topomesh io import save ply property topomesh

from openalea.deploy.shared data import shared data
dirname = shared data(openalea.draco stem)
filename = "example seg"
inputfile = dirname+"/segmented images/"+filename+".inr.gz"
img = imread(inputfile)

draco = DracoMesh(image=img)

draco.delaunay adjacency complex(
surface cleaning criteria=[’surface’, ’sliver’, ’distance’])

draco.adjacency complex optimization(
omega energies=dict(image=8.0, adjacency=0.05, geometry=0.5),
n iterations=5)

triangular= [’star’, ’remeshed’, ’projected’, ’exact’, ’flat’]
dual topomesh = draco.dual reconstruction(

reconstruction triangulation=triangular ,
adjacency complex degree=3)

topomesh filename = dirname+"/output meshes/"+filename+" topomesh.ply"
save ply property topomesh(dual topomesh , topomesh filename)

• ’distance’: remove triangles linking cells that are too distant from each other.
• ’sliver’: remove triangles forming flat tetrahedra with non-degenrated faces (known as slivers).

Then the core of the DRACO method is the optimization of this adjacency complex, which is carried
out by the method adjacency complex optimization. Here again, it is possible to tune the number of
iterations in the simulated annealing optimization process, as well as the weights of the different energies
for the optimization defined in Equation 1. Those weights are specified in a Python dictionary for which the
keys are ’image’ for ωimage, ’neighborhood’ for ωprior and ’geometry’ for ωregularity. Running this
method updates the PropertyTopomesh attribute of the DracoMesh object that represents the adjacency
simplicial complex.

Finally, once the adjacency complex has been optimized, the last method aims at reconstructing the
triangular mesh representing the geometry of the tissue. dual reconstruction does exactly just that,
dualizing the adjacency into a new PropertyTopomesh. But the user can control some features of the
returned mesh, notably on the way the cell interfaces are triangulated, and on how the energies of the
STEM component should be balanced. Again this has to be set at high level by passing a list of instructions
among the following ones:

10

Cerutti et al. DRACO-STEM

• ’star’ or ’delaunay’: initial triangulation of polygonal interfaces.
• ’split’ or ’remeshed’: subdivision of triangles (global, or by local topological operations).
• ’projected’: projection of the surface triangles on the surface of the tissue object.
• ’regular’ or ’realistic’ or ’exact’: degree of mesh smoothing / cell shape exactness (STEM).
• ’flat’ or ’straight’: constraints on the shape of interfaces or interface edges (STEM).

Once obtained the dual mesh through this method, it can then be exported to a convenient format using
save ply property topomesh, and be used for visualization in OpenAleaLab Coste et al. (2014) or
other compatible software, or for any geometry-based simulation in an other modeling environment.

REFERENCES

Cerutti, G. and Godin, C. (2015). Meshing meristems - an iterative mesh optimization method for modeling
plant tissue at cell resolution. In BIOIMAGING

Cerutti, G., Ribes, S., Galvan-Ampudia, C., Vernoux, T., and Godin, C. (2015). 3D tessellation of plant
tissue - A dual optimization approach to cell-level meristem reconstruction from microscopy images. In
International Conference on 3D Vision. 443–451

Coste, J., Baty, G., Boudon, F., , Godin, C., and Pradal, C. (2014). OpenAleaLab: An integrated
multi-paradigm modelling environment. In EuroScipy 2014

Jones, E., Oliphant, T., Peterson, P., et al. (2001–). SciPy: Open source scientific tools for Python.
http://www.scipy.org/

Krupinski, P., Jönsson, H., Tauriello, G., Smith, R. S., and Barbier de Reuille, P. (2015). Exchange format
for geometries. In Sainsbury Computational Biology Workshop

Pradal, C., Dufour-Kowalski, S., Boudon, F., Fournier, C., and Godin, C. (2008). OpenAlea: a visual
programming and component-based software platform for plant modelling. Functional Plant Biology
35, 751–760. https://github.com/openalea

Walt, S. v. d., Colbert, S. C., and Varoquaux, G. (2011). The numpy array: A structure for efficient numerical
computation. Computing in Science and Engineering 13, 22–30. http://www.numpy.org

Frontiers 11

http://www.scipy.org/
https://github.com/openalea
http://www.numpy.org

	Technical Details
	Notations
	Energy definition for adjacency complex optimization
	Dual vertex positioning
	Dealing with the exterior in the dual reconstruction
	Energy definition for tissue mesh optimization

	Implementation details
	Data Structures
	Code Examples

