Supplementary Material

Cytosolic triosephosphate isomerase from *Arabidopsis thaliana* is reversibly modified by glutathione on Cysteines 127 and 218

Sébastien Dumont, Natalia V. Bykova, Guillaume Pelletier, Sonia Dorion and Jean Rivoal*

*Correspondence : Jean Rivoal jean.rivoal@umontreal.ca

Supplemental Figure S1. Instability of stored cTPI upon dilution. Purified recombinant cTPI stored in 50% (v/v) glycerol was diluted to 0.2 μ g/ml in 100 mM Tris-Cl pH 7.8, 0.005% (w/v) BSA with or without addition of 1 mM GSH. The enzyme was incubated at room temperature. This graph represents relative activity of cTPI control samples for the time points used in Figure 2A and 2B.

Supplemental Figure S2. Inhibition of cTPI activity by different concentrations of GSSG in function of the time. Recombinant cTPI was incubated with different GSSG concentrations. TPI activity is plotted as a function of incubation time (with the same data presented in Figure 3). Activity is expressed as percentage of the control (untreated) sample remaining activity in order to take into account the loss of cTPI activity upon dilution without reductant.

Supplemental Figure S3. cTPI activity staining after native PAGE. Native PAGE of 50 ng cTPI followed by activity staining (left panel) and immunoblot using an isoform specific cTPI antibody (right panel). cTPI was incubated for 180 min without GSSG (lane 1) or with 2.5 mM GSSG (lane 2) prior to electrophoretic separation.

Supplemental Figure S4. Purification of His-tagged recombinant GRXC1 and GRXC2. SDS-PAGE analysis of purification of recombinant GRXs. Lane 1, molecular weight standards; lane 2, *E. coli* protein extract without induction; lane 3, *E. coli* protein extract after isopropyl β-D-thiogalactoside induction; lane 4, affinity-purified recombinant (A) GRXC1 and (B) GRXC2.

Supplemental Figure S5. LC-MS/MS analysis of cTPI tryptic peptides with and without prior incubation with GSSG. (A) The base peak chromatogram of MS survey scans during LC-MS/MS analysis of tryptic digest obtained from 36 pmol of cTPI. Arrows indicate retention times and m/z values of precursor ions corresponding to peptides with Cys oxidative modifications selected for data-dependent CID MS/MS analysis. The expanded regions of MS survey scans for retention time windows (dashed areas) with precursor ion peaks corresponding to unmodified (reduced thiol group Cys-SH) and S-glutathionylated peptides with the sequence ²⁰⁷IIYGGSVNGGNCK²¹⁹ (B) and sequence ¹²⁴VIACVGETLEER¹³⁵ (C). The delta mass differences of 305 Da between doubly charged and triply charged precursor ions resulting in the same MS/MS-derived peptide sequence ¹²⁴VIACVGETLEER¹³⁵ was also found in two other oxidized forms with Cys-SO₂H sulfinic acid (at m/z of 676.23²⁺) and Cys-SO₃H sulfonic (at m/z of 683.99²⁺).

A.thaliana	markffvggnwk <mark>c</mark> ngtaeevkkivntlneaqvpsqdvvevvvsppyvflplvkstlrs	58
S.tuberosum	mgrtffvggnwk <mark>c</mark> ngtseeikkivatlnagqvpsqdvvevvvsppfvflplvknelrs	58
Z.mays	mgrkffvggnwk <mark>c</mark> ngttdqvekivktlnegqvppsdvvevvvsppyvflpvvksqlrq	58
G.max	mgrkffvggnwk <mark>c</mark> ngtteevkkivttlneakvpgedvvevvvsppfvflpfvksllrp	58
P.vittata	markffvggnwk <mark>c</mark> ngtvaevnkivkllneadvpsedvvevvisppfvflpqvkavlrs	58
0.sativa	-maarkffvggnwk <mark>c</mark> ngtgedvkkivtvlneaevpsedvvevvvsppfvflpqvkgllrp	59
C.variabilis	markffvggnwk <mark>c</mark> ngtvksneelvkvlnaaevpgtdvvevvvapaaghfpqvlsslrk	58
E.gracilis	mprkffvggnwk <mark>c</mark> ngtresiskiieefnkgpsvadadvevvigcpfvyadytreklrg	58
P.patens	magtgrffvggnwk <mark>c</mark> ngtveslkklvdelnsakleedvdivvsppylyisqvlgsltk	58

A.thaliana	dffvaaqn <mark>g</mark> wvkkggaftgevsaemlvnldipwvilghserrailnessefvgdkvay	116
S.tuberosum	dfhvaaqn <mark>c</mark> wvkkggaftgevsadmlvnlgipwvilghserrailgesnefvgdkvay	116
Z.mays	efhvaaqn <mark>c</mark> wvkkggaftgevsaemlvnlgvpwvilghserrallgesnefvgdkvay	116
G.max	dfhvsaqn <mark>c</mark> wvrkggaytgevsaemlvnlgipwviighserrqllnelnefvgdkvay	116
P.vittata	dfavaaqnawvrkggaytgeisaemlinleipwvilghserrallkesnefvadkvay	116
0.sativa	dfsvaaqn <mark>c</mark> wvrkggaftgeisaemlvnlqvpwvilghserralmgessdfvadkiay	117
C.variabilis	dfsvaaqn <mark>c</mark> wvkkggaftgelsaemlkdlglpwvvlghserrhiigesdefiadkvay	116
E.gracilis	dwalsvqn <mark>c</mark> wigkggaftgeisaemikdagipwvilghserrhlpelkesdetvaikvay	118
P.patens	rievaaqn <mark>c</mark> wtgkggaftgeisadqlvdggvkwviqghserrhvigetdamigqksay ::.**.* ********** : : : **: ****** : : * . :. * **	116
		1 17 4
A.tnallana	alaggikvia <mark>c</mark> vgetleereagstmdvvaaqtkaladrvtnwsnvvlayepvwalgtg	174
Z maya		174
Z.IIIays C. mar	alsquikvia <mark>c</mark> vgetleqreagstmuvvaqtkaiaekikuwsnvvvayepvwaigtg	174
G.IIIdx D.wittata	alqqqikvia <mark>c</mark> igetleqreagttlavvaeqtkalaakiShwunvvlayepvwalgtg	174
P.VILLALA	alsquikvia <mark>c</mark> igetleqreagetinvvseqtkaiaekikdwgnvviayepvwaigtg	175
C. wariabilia	alsqgikvia <mark>c</mark> igetieqreagttmevvaaqtkalaekisdwthvviayepvwaigtg	17/
C.Vallabilis	algqgigviy <mark>c</mark> igekieereagitmavnarqmqalaakisdwskvvvayepvwaigtg	170
E.graciiis	alangikvilla <mark>c</mark> igeileereggqtqavilerqikalaakikeedwknivvlayepvwaigtg	17/
r.pacens	** : : *: *:** **:**. * * * :* * : :* ::*:********	1/1
A.thaliana	kvaspaqaqevhdelrkwlaknvsadvaattriiyggsvnggn <mark>c</mark> kelggqadvdgflvgg	234
S.tuberosum	kvaspaqaqevhaelrkwlqanvsaevaastriiyggsvsgan <mark>c</mark> kelagqpdvdgflvgg	234
Z.mays	kvatpaqaqevhaslrdwlktnaspevaestriiyggsvtaan <mark>c</mark> kelaaqpdvdgflvgg	234
G.max	kvatpaqaqevhadlrkwvhdnvsaevaasvriiyggsvnggn <mark>c</mark> kelaaqpdvdgflvgg	234
P.vittata	kvatpvqaqevhadlrswlatnvssdvaesvriiyggsvnagn <mark>c</mark> velagqpdvdgflvgg	234
0.sativa	kvatpaqaqevhdglrkwlvtnvspavaestriiyrgsvngan <mark>c</mark> kelaakpdvdgflvgg	235
C.variabilis	kvaspaqaqevhdelrkwlsanvspevaeatriiyggsvtaan <mark>c</mark> gelagcpdidgflvgg	234
E.gracilis	kvatpeqaqevheqvrawvasnvspsvaaevrilyggsvtaknsaelagkpdvdgflvgg	238
P.patens	kvaspqqaqevhaairqwlkekispevssktriiyggsvngansaelatqedidgflvgg ***:* ****** :* *: : * *: .**:* *** *. **. *	234
A.thaliana	aslko-efidiikaaevkksa 254	
S.tuberosum	aslkp-efidiikaaevkksa 254	
Z.mavs	aslkp-efidiinaatvksa 253	
G.max	aslka-efvdiinaatvkkn 253	
P.vittata	aslka-efvdiirsalvsks 253	
0.sativa	aslkp-efvdiiksatvkssa 255	
C.variabilis	aslkp-efvdiikaaeksk 252	
E.gracilis	aslkp-efldivaaykhk 255	
P.patens	aalkglefaticnavtakkavaa 257	
	*:** ** * :	

Supplemental Figure S6. Alignment of cTPI sequences from different photosynthetic organisms. cTPI sequences have been obtained from NCBI resource centre. The sequences were aligned with Clustal W. Cys residues are highlighted. Sequence accession numbers are: *Arabidopsis thaliana*, NP_191104.1; *Solanum tuberosum*, NP_001305511.1; *Zea mays*, NP_001140424.1; *Glycine max*,

NP_001237472.1; Pteris vittata ADP21078.1, Oryza sativa, ADM86861.1; Chlorella variabilis, XP_005845877.1; Euglena gracilis, AAR04016.1; Physcomitrella patens, XP_001768780.1.

Supplemental Figure S7. SDS-PAGE analysis of the purification of His-tagged recombinant cTPI mutants. Purification steps of (A) C218S, (B) C127S, (C) C127/218S cTPI mutants on SDS-PAGE. Lane 1, molecular weight standards; lane 2, *E. coli* protein extract without induction; lane 3, *E. coli* protein extract after isopropyl β-D-thiogalactoside induction; lane 4, affinity-purified recombinant cTPI.