Transcriptional control of dual transporters involved in α -ketoglutarate utilization

reveals their distinct roles in uropathogenic Escherichia coli

Wentong Cai^a, Xuwang Cai^b, Yongwu Yang^a, Shigan Yan^{c*}, Haibin Zhang^{a, d*}

		g	
Bacterial strains and plasmids	Genotype or relevant characteristics	Source or Reference	
Bacterial strains			
E. coli DH5a	Plasmid propagation strain	Invitrogen	
	Blood isolate from a patient with acute	70	
UPEC CFT073	pvelonephritis	<u>10</u>	
LMP10	UPEC CFT073 derivative, $\Delta lacZYA$	<u>22</u>	
∆ <i>c5038</i>	UPEC CFT073 c5038 deletion mutant	This study	
	$\Delta c5038$ mutant carrying a complementation	This study	
$\Delta c5038 (\mathbf{p}c5038)$	plasmid for c5038		
∆kgt P	UPEC CFT073 <i>kgtP</i> deletion mutant	This study	
	$\Delta kgtP$ mutant carrying a complementation	This study	
$\Delta kgtP(\mathbf{p}kgtP)$	plasmid for <i>kgtP</i>		
AL (DA 5020	UPEC CFT073 <i>kgtP/c5038</i> double deletion		
$\Delta kgtP\Delta c5038$	mutant	This study	
$\Delta rpoN$	LMP10 <i>rpoN</i> deletion mutant	This study	
Δcrp	LMP10 crp deletion mutant	This study	
∆rpoS	LMP10 rpoS deletion mutant	This study	
Plasmids			
pKD3	template for λ -Red Chl ^r cassette	<u>71</u>	
pKD4	template for λ -Red Kan ^r cassette	<u>71</u>	
	encodes FLP recombinase for removal of	71	
pCP20	resistance cassette	<u></u>	
pKD46	λ-Red recombinase expression	<u>71</u>	
-MAL MCS	<i>malE</i> in PMAL-c2x was replaced by multiple	22	
pwiAL-wiCS	cloning sites from pEGFP plasmid		
NAL MDD/25040	pMAL-c2x carrying MBP-C5040-6×His-tag under	22	
pwiAL-wibP/c5040	the control of Ptac		
pBAD	p15A replication origin plasmid	<u>63</u>	
nVIK112	suicide plasmid for chromosomal <i>lacZ</i>	<u>62</u>	
	transcriptional fusion, R6K origin		
pCJ112	R6K origin replaced by p15A origin from pBAD	This study	
pGEN-MCS	low copy plasmid for complementation	<u>72</u>	
nrna N	complementation plasmid carrying <i>rpoN</i> coding	This study	
	region and its predicted promoter region		
nc5038	pGEN-MCS carrying <i>c5038</i> coding region led by	This study	
pesses	its native promoter	ins seary	
pkgtP	pGEN-MCS carrying <i>kgtP</i> coding region led by	This study	
ro	its native promoter	Sverey	
pET28	T7 promoter driven protein overexpression in E.	Novagen	
r ·==-	coli	· · · · · · · · · · · · · · · · · · ·	

Table S1. Bacterial strains and plasmids used in this study.

Primers	Sequence (5'-3')			
pGEN-c5038-F	AGCTGAATTCTGATGCGCTGCGTTTATTCG			
pGEN-c5038-R	ACTGGTCGACTCGGCATCACAGCCATTAAG			
pGEN-kgtP-F	agtc <u>GAATTC</u> CAGAAGTGAAACGCCGTAGC			
pGEN-kgtP-R	agtc <u>GTCGAC</u> TGGGATATCGCCGGTGCAAG			
pCJ112seqF	AGCGAGTCAGTGAGCGAGGAAG			
p15A-F-EcoRI	ATGCGAATTCGCATGCTGGTACCGGGCGCGGGCCGCGGGCCCCACATGGAAGCCA			
	TCACAGAC			
p15A-R-BamHI	GCATGGATCCTCCTCTACGCCGGACGCATC			
C5038-RT-Primer	CGGCAGGATGAAGCCAAAAC			
C5038-GSP2	CAATGCGTTTATCCAGCCCG			
C5038-GSP5	ATCCATCGCTTCGCTGATCC			
PkgtP-F	CTACGAATTCATTTGCCTGGCGGCCTTAGC			
PkgtP-R	GTACTCTAGACTCCTGCCGTAATCCAATGC			
Pc5038-F	AGTC <u>GAATTC</u> TGGTGGTAATGCGGAAGAAC			
Pc5038-R	ATCG <u>TCTAGA</u> TATCGCCCAGTGGCAGAAGG			
del fan E	GATCAATAAATCAGAAAAATTTAATGATATGACAGAAGGATAGTGAGTTATGCG			
del-Inr-F	GAAGAAgtgtaggctggagctgcttcga			
dol fan D	ATCTAATATCGGAATTCTCTGCTGTTAAGGTTTGCTTAGACTTACTT			
del-Inr-R	AAAAGcatatgaatatcctccttag			
dol ono A. E	AAAAGCGCCGTTTTTATTGACGGTGGTAAAGCCGATTAATCTTCCAGATCgtgtagg			
del-arca-r	ctggagctgcttcga			
dol aro A D	GGACTTTTGTACTTCCTGTTTCGATTTAGTTGGCAATTTAGGTAGCAAACcatatgaat			
uci-alcA-K	atcetcettag			
ern del F	AGCGGCGTTATCTGGCTCTGGAGAAAGCTTATAACAGAGGATAACCGCGCgtgtag			
cip-del-l'	gctggagctgcttcga			
ern del P	CGGGGGAAACAAAATGGCGCGCTACCAGGTAACGCGCCACTCTGACGGGAcatatg			
cip-uci-ix	aatateeteettag			
rpoS_del_F	TTACTCGCGGAACAGCGCTTCGATATTCAGCCCCTGCGTTTGCAGGATTTCGCGC			
1005-001-1	gtgtaggctggagctgcttcga			
rpoS-del-R	ATGAGTCAGAATACGCTGAAAGTTCATGATTTAAATGAAGATGCGGAATTTGAT			
Thop-del-IV	Gcatatgaatatceteettag			
	TATCCCATGGCGCACCACAAAAGCGTCGAATTATCCCTAATCCCGGCCTGgtgtagg			
Del-c5038-F	ctggagctgcttcga			
	GTAAACTGGCGTGGCGTGAAGGTATCCGTACCCATACACACCATATTTTGcatatga			
Del-c5038-R	atatectettag			
Del-kgtP-F	CCAAAAAATAAACAAAAGCGACCGACAAAAGCATTGGATTACGGCAGGAGACA			
	TAATGGCgtgtaggctggagctgcttcga			
	TTTTGCCTGGGATATCGCCGGTGCAAGCACCGGCTATACCGTCTGGCAACTGAC			
Del-kgtP-R	CCGTCAcatatgaatatcctccttag			
rpoN-del-F	CTTCAGACTCTGATAGGGTAGAAGTTTGCGACGTTTTAGCAGGAGAGAGTACGATT			
	CTGAACgtgtaggctggagctgcttcga			
rpoN-del-R	GTGATCTCGACGTTATTTCCGGTAATGTTGAGCTGCATAGTGTCTTCCTTATCGG			
	TTGGGcatatgaatatcctccttag			
pGEN-rpoN-F EcoRI	ATGC <u>GAATTC</u> CTGCTCGACGAACCGTTTGC			

Table S2. Oligonucleotides used in this study.

pGEN-rpoN-R NdeI	AGTC <u>CATATG</u> TGAGCTGCATAGTGTCTTCC
pET21-rpoN-F	GCCATATGAAGCAAGGTTTGCAACTC
pET21-rpoN-R	ATCGGAATTCTCAGTGGTGGTGGTGGTGGTGGTGGAACGAGCTGTTTACGCTGGT
c5038-EMSA-F	ATCTGTGTGGTAAGAGAATC
c5038-EMSA-R	AACCACAGGCCGGGATTAGG
EMSA-kgtP-F	GGCGCGTCTTATACTCCCAC
EMSA-kgtP-R	CTCCTGCCGTAATCCAATGC
glnA-EMSA-F	ATGTTAAGCATGATAACGCC
glnA-EMSA-R	CAACAAACTTCACTTCGTGC
xylA-EMSA-F	TGCGCAATTGTACTTATTGC
xylA-EMSA-R	AGGCTTGCATATTGAACTCC
Pbla-EcoRI-F	GTACGAATTCGCGAGATTCGTTACAGAGAC
c5038-Pbla-R	GCCATGGGATATTGATGACATAATAAGGGCGACACGGAAAT
Pbla-5038-F	ATTTCCGTGTCGCCCTTATTATGTCATCAATATCCCATGGC
Pbla-5038-R	GGACAAGCTTTCACATTAGACCTAAAATTTTC
kgtP-Pbla-R	GTTACAGTACTTTCAGCCATAATAAGGGCGACACGGAAAT
Pbla-kgtP-F	ATTTCCGTGTCGCCCTTATTATGGCTGAAAGTACTGTAAC
Pbla-kgtP-R	GCATAAGCTTCTAAAGCCGCATCCCTTTTC

Note: For deletion primers, uppercase letters indicate homologous regions and lowercase letters indicate sequence annealed to template plasmids pKD3 and pKD4.

FIG S1. Construction of the pCJ112 plasmid vector.

А		Helical hairpin (in)		Helical hairpin (out)
INDY (Vc)	144	LLSMWI-SNTATAA-MMLPL	369	VVFLTEFASNTASAALLIPV
SdcS (Sa)	158	FLSMFV-SNTAAVM-IMIPI	413	VLFLTEVTSNTATATMILPI
DccT (Cg)	171	FLSMWV-SNTATAV-VMLPI	421	VLFLTEFTSNTATAATFLPI
C5038 (Ec)	157	VLSLVVPSATARTACV-VPI	397	IIIHLGFASATALTAALLPI
Ybhl (Ec)	137	VLAPATPSNTARAGGIVLPI	375	IIVRYFFASGSAYIVAMLPV
CitT (Ec)	151	LLAPFTPSNTARTGGTVFPV	389	YFAHYLFASLSAHTATMLPV
TatT (Ec)	150	ILAPVTPSNSARGAGIIYPI	388	YLLRYFFASATAYTSALAPM

FIG S2. (A) A partial sequence alignment of C5038 and other characterized members in DASS family. ClustalW was used to create the graph. Helical hairpins (in) and (out) are transmembrane domains inserted into the membrane from the cytosolic and periplasmic side, respectively. SNT motifs involved in carboxylate-binding are highlighted. Bracketed letters indicate the organisms: Vc, *Vibrio cholerae*; Sa, *Staphylococcus aureus*; Cg, *Corynebacterium glutamicum*; Ec, *Escherichia coli*. (B) Sequence comparison of *kgtP* promoter regions (321 bp upstream of start codon) from K12 and CFT073. Dots, identical letters; dash, gaps; highlighted, differences.

FIG S3. Non-radioactive EMSA studying the binding of ArcA to c5038 promoter regions. Gel-extracted PCR products of c5038 promoter region were used as probes. Purified His₆-ArcA fusion protein was added in different concentration in each reaction mixture as indicated. DNA fragments were stained with SYBR green. AP, acetyl phosphate.

FIG S4. Non-radioactive EMSA studying the binding of RpoN to promoter regions of *xylA*. PCR products were used as probes. Purified His₆-RpoN fusion protein was added in different concentration in each reaction mixture as indicated. DNA fragments were stained with SYBR green.

0.50

30

95

98L

FIG S5. **Phylogenetic trees of C5038 (A) and KgtP (B)**. Phylogenetic trees were created based on the ClustalW alignments using Maximum Likelihood method (bootstrap n = 100) in MEGA7 program. *Escherichia* spp. strains were excluded.

gil696375288|ref|WP 032949828.1| MFS transporter Citrobacter freundii gi|835336885|ref|WP 047461905.1| MFS transporter Citrobacter koseri

gi|502670875|ref|WP 012906709.1| MFS transporter Citrobacter rodentium

gij981257222|ref|WP 059476264.1| MFS transporter Enterobacter aerogenes gij503996418|ref|WP 014230412.1| MULTISPECIES: MFS transporter Klebsiella

gi|1043354244|ref|WP 065370318.1| alpha-ketoglutarate transporter Kosakonia sacchari

gil495126978/reflWP 007851789.1| MFS transporter Cronobacter sakazakii 100 gil494972268/reflWP 007698294.1| MFS transporter Cronobacter universalis gil657683502/reflWP 029485167.1| MFS transporter Enterobacter mori 100 gil695733027/reflWP 032659516.1| MFS transporter Enterobacter sp. DC1

FIG S6. *kgtP* expression in relation to bacteria growth phase. Bacteria were grown aerobically in M9 medium containing glycerol as sole carbon source. Samples were taken at various time points for measuring optical density at

600nm and β -galactosidase activities.