

Supplementary Material

Heritability of the structures and ¹³C fractionation in tomato leaf wax alkanes: a genetic model system to inform paleoenvironmental reconstructions

Amanda L.D. Bender^{1*}, Daniel H. Chitwood², Alexander S. Bradley¹

¹Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO, USA

²Current address: Independent Researcher, Santa Clara, CA, USA

* **Correspondence:** Amanda L.D. Bender, <u>bender@levee.wustl.edu</u>, Department of Earth and Planetary Sciences, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO, 63130, USA

1 Supplementary Data

Supplemental Code. R code files are available at: http://github.com/aldbender/13C-heritability.

Supplemental Dataset 1. Alkane n-C₂₉ and n-C₃₁ δ^{13} C values in Figure 1 compiled from literature sources among C₃ and C₄ plant groups from around the world (Bi et al., 2005; Chikaraishi et al., 2004; Chikaraishi and Naraoka, 2003, 2006; Collister et al., 1994; Diefendorf et al., 2011; Krull et al., 2006; Lockheart et al., 1997; Pedentchouk et al., 2008; Rieley et al., 1991; Rommerskirchen et al., 2006; Vogts et al., 2009).

Supplemental Dataset 2. Seed stock list with each IL accession name converted to the in-house lineage number, with DC numbers 1-76 corresponding to the ILs and DC 77 corresponding to cv M82.

Supplemental Dataset 3. Daily-averaged measurements of ambient CO₂ in the greenhouse during growth of the ILs, including pCO₂ and δ^{13} C_{CO2}; data summarized in Supplemental Figure 2.

Supplemental Dataset 4. Leaf wax trait values measured from all ILs, used to perform linear modeling.

Supplemental Dataset 5. Summary values of leaf wax traits and transformations used to model each trait.

Supplemental Dataset 6. Genetic (IL) and environmental (Plot, Residual) variances used to calculate H^2 values for each trait.

Supplemental Dataset 7. Pair-wise Pearson correlation coefficient (ρ) values and significance values, including *p*-values and BH-adjusted *p*-values, of leaf wax traits correlated with each other.

Supplemental Dataset 8. Pair-wise Pearson correlation coefficient (ρ) values and significance values, including *p*-values and BH-adjusted *p*-values, of leaf wax traits from this study and traits from previous studies correlated with each other.

2 Supplementary Figures and Tables

2.1 Supplementary Figures

Supplemental Figure 1. Randomized block design of IL plants and cv M82 grown in the greenhouse. Each color corresponds to a different "block" of IL plants. Values in the square correspond to each plant lineage, with "77" equating "DC77," which is the cv M82 plant. DC numbers 1-76 correspond to the ILs, as coded in Supplemental Dataset 2.

Supplemental Figure 2. Environmental CO₂ monitored during growth of the ILs. (A) Dailyaveraged δ^{13} C and *p*CO₂ values of ambient CO₂ plotted against time of the experiment; (B) pCO₂ of ambient CO₂ against corresponding δ^{13} C_{CO2} values during the experiment. Note that instrument error halted data collection from January 1-14; data available in Supplemental Dataset 3.

Supplemental Figure 3. Close-up of hierarchical clustering for meta-analysis of traits analyzed from this and previous studies. Note that the clustering in this figure is flipped vertically when compared to Figure 6.

Chromosome location

Supplemental Figure 4. Methylation indices for IL plants compared against methylation indices of *S. pennellii* (blue) and cv M82 (red). Methylation indices are plotted based on chromosome location of IL introgression. Purple asterisks indicate methylation indices for ILs that are significant towards *S. pennellii* (p < 0.05); green asterisks indicate methylation indices that are transgressive beyond vc M82 (p < 0.05).

Carbon Preference Index of IL alkanes

Supplemental Figure 5. Box plot of carbon preference index values measured from ILs for *n*-, *iso*-, and *anteiso*-alkanes.

Average Chain Length of IL alkanes

Supplemental Figure 6. Box plot of average chain length values measured from ILs for *n*-, *iso*-, and *anteiso*-alkanes.

2.2 Supplementary Tables

Supplemental Table 1. QTL detected with *p*-value < 0.05 for leaf wax traits in ILs. QTL that are transgressive beyond cv M82 and *S. pennellii* are designated with "M82" or "Sp," respectively.

3 Supplementary References

- Bi, X., Sheng, G., Liu, X., Li, C., and Fu, J. (2005). Molecular and carbon and hydrogen isotopic composition of n-alkanes in plant leaf waxes. *Org. Geochem.* 36, 1405–1417. doi:10.1016/j.orggeochem.2005.06.001.
- Chikaraishi, Y., and Naraoka, H. (2003). Compound-specific dD-d13C analyses of n-alkanes extracted from terrestrial and aquatic plants. *Phytochemistry* 63, 361–371. doi:10.1016/S0031-9422(02)00749-5.

- Chikaraishi, Y., and Naraoka, H. (2006). Carbon and hydrogen isotope variation of plant biomarkers in a plant-soil system. *Chem. Geol.* 231, 190–202. doi:10.1016/j.chemgeo.2006.01.026.
- Chikaraishi, Y., Naraoka, H., and Poulson, S. R. (2004). Hydrogen and carbon isotopic fractionations of lipid biosynthesis among terrestrial (C3, C4 and CAM) and aquatic plants. *Phytochemistry* 65, 1369–1381. doi:10.1016/j.phytochem.2004.03.036.
- Collister, J. W., Rieley, G., Stern, B., Eglinton, G., and Fry, B. (1994). Compound-specific d13C analyses of lead lipids from plants with differing carbon dioxide metabolisms. *Org. Geochem.* 21, 619–627.
- Diefendorf, A. F., Freeman, K. H., Wing, S. L., and Graham, H. V. (2011). Production of n-alkyl lipids in living plants and implications for the geologic past. *Geochim. Cosmochim. Acta* 75, 7472–7485. doi:10.1016/j.gca.2011.09.028.
- Krull, E., Sachse, D., Mügler, I., Thiele, A., and Gleixner, G. (2006). Compound-specific d13C and d2H analyses of plant and soil organic matter: A preliminary assessment of the effects of vegetation change on ecosystem hydrology. *Soil Biol. Biochem.* 38, 3211–3221. doi:10.1016/j.soilbio.2006.04.008.
- Lockheart, M. J., Van Bergen, P. F., and Evershed, R. P. (1997). Variations in the stable carbon isotope compositions of individual lipids from the leaves of modern angiosperms: Implications for the study of higher land plant-derived sedimentary organic matter. *Org. Geochem.* 26, 137–153. doi:10.1016/S0146-6380(96)00135-0.
- Pedentchouk, N., Sumner, W., Tipple, B., and Pagani, M. (2008). d13C and dD compositions of nalkanes from modern angiosperms and conifers: An experimental set up in central Washington State, USA. *Org. Geochem.* 39, 1066–1071. doi:10.1016/j.orggeochem.2008.02.005.
- Rieley, G., Collier, R. J., Jones, D. M., Eglinton, G., Eakin, P. A., and Fallick, A. E. (1991). Sources of sedimentary lipids deduced from stable carbon-isotope analyses of individual compounds. *Nature* 352, 425–427. doi:10.1038/352425a0.
- Rommerskirchen, F., Plader, A., Eglinton, G., Chikaraishi, Y., and Rullk??tter, J. (2006). Chemotaxonomic significance of distribution and stable carbon isotopic composition of longchain alkanes and alkan-1-ols in C4 grass waxes. *Org. Geochem.* 37, 1303–1332. doi:10.1016/j.orggeochem.2005.12.013.
- Vogts, A., Moossen, H., Rommerskirchen, F., and Rullkötter, J. (2009). Distribution patterns and stable carbon isotopic composition of alkanes and alkan-1-ols from plant waxes of African rain forest and savanna C3 species. *Org. Geochem.* 40, 1037–1054. doi:10.1016/j.orggeochem.2009.07.011.