Supplementary Information File

Benzene and naphthalene degrading bacterial

communities in an oil sands tailings pond

Fauziah F Rochman¹, Andriy Sheremet¹, Ivica Tamas^{1,2}, Alireza Saidi-Mehrabad^{1,3},

Joong-Jae Kim¹, Xiaoli Dong^{4,5}, Christoph W Sensen^{4,6}, Lisa M Gieg¹, Peter F Dunfield^{1*}

¹Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada, T2N 1N4

²Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia.

³Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada

⁴Department of Biochemistry & Molecular Biology in the Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 1N4, Canada

⁵Department of Geoscience, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada, T2N 1N4

⁶Institute of Computational Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria

Correspondence: PF Dunfield Tel: 403-220-2469 Fax: 403-289-9311 E-mail:

pfdunfie@ucalgary.ca

Supplementary Figure S1 Density gradients of DNA extracts from SIP experiments using WIP-OSPW sampled in August, 2011, with and without the addition of ¹³C-labeled model hydrocarbons: benzene after 9 d (A) and naphthalene after 7 d (B). Twelve density fractions are shown as filled circles (amended with substrates) and empty circles (DNA from OSPW tailings water or control). Fractions indicated by arrows were subject to microbial community analyses. Black arrows indicate the control fraction 5 (OSPW-heavy) used in this study.

Supplementary Figure S2 – A Potential benzene oxidation of OSPW sampled in August 2011, with the results of linear regressions for benzene oxidation. n = 3, bars = standard error of the mean, bars smaller than the symbols are not visible. The results of linear regression are shown at the bottom of the graph. The regression converts to a total benzene oxidation rate of 4.3 µmol L⁻¹ OSPW d⁻¹, using Henry's law to calculate the amount of benzene in the liquid (20 ml) and gas (90 ml) phases (See Methods).

Supplementary Figure S2 – B CO₂ production time courses of triplicate samples from OSPW amended with benzene, sampled in August 2011. n = 3, bars = standard error of the mean, bars smaller than the symbols are not visible. The regression converts to a total CO₂ production rate of 5.6 µmol L⁻¹ OSPW d⁻¹, using Ostwald Coefficient to calculate the amount of CO₂ in the liquid (20 ml) and gas (90 ml) phases.

Supplementary Figure S3 A Naphthalene oxidation of OSPW sampled in August, 2011, with the results of linear regressions. The y-axis represents the total amount of naphthalene localized in the 2, 2, 4, 4, 6, 8, 8-heptamethylnonane carrier. n = 3, bars = standard error of the mean, bars smaller than the symbols are not visible. The regression converts to a total naphthalene oxidation rate of 21.4 µmol L⁻¹ OSPW d⁻¹ in the 40-mL OSPW samples.

Supplementary Figure S3 B CO₂ production time courses of triplicate samples from OSPW amended with naphthalene, sampled in August 2011. n = 3, bars = standard error of the mean, bars smaller than the symbols are not visible. The regression converts to a total CO₂ production rate of 144.1 µmol L⁻¹ OSPW d⁻¹, using Ostwald Coefficient to calculate the amount of CO₂ in the liquid (20 ml) and gas (90 ml) phases.

Supplementary Figure S4 Predominant classee detected in DNA of control OSPW samples, and in heavy DNA fractions extracted after incubation with ¹³C benzene or ¹³C naphthalene. Data are relative abundances of taxa within sequenced 16S rRNA gene amplicons (only classes >1% of the total reads are shown). Benzene: heavy-DNA fraction of benzene-amended OSPW incubated for 9 d; Naphthalene: heavy-DNA fraction of naphthalene- amended OSPW incubated for 7 d; OSPW-heavy: heavy fraction of OSPW incubated for the same amount of time as the amended samples; and OSPW-control: complete, unfractionated DNA from OSPW. The bubbles show 6 abundance classes (1-1.75%; 1.76-4.5%; 4.6-9%; 9.1-18.5%; 18.6-37.5%; >37.6%).

1 Supplementary Figure S5 A – P Taxonomic assignments to the level of family, based on best BLAST hits of the metagenomic reads mapped

- 2 to selected genes encoding enzymes for aerobic benzene/naphthalene degradation. Read recruitment was performed using BLASTN; the
- 3 MEGAN software was used for taxonomy assignment. Numbers indicate the number of reads assigned to a taxon at a given level, and
- 4 correspond to the node sizes displayed on the trees. Nodes are not cumulative, e.g. the *Proteobacteria* node only includes reads not identified
- 5 at a higher taxonomic resolution.
- 6

7 Supplementary Figure S5 A *dmpB* (catechol 2,3-dioxygenase).

Supplementary Figure S5 B *dmpC* (aminomuconate-semialdehyde/2-hydroxymuconate-6-semialdehyde dehydrogenase).

Family

19 Supplementary Figure S5 D *dmpH* (2-oxo-3-hexenedioate decarboxylase).

Supplementary Figure S5 E *dmpK* (phenol hydroxylase).

Supplementary Figure S5 F *mhpD* (2-keto-4-pentenoate hydratase).

Supplementary Figure S5 G *mhpE* (4-hydroxy 2-oxovalerate aldolase).

Supplementary Figure S5 J *nahC* (dihydroxynaphthalene dioxygenase).

Supplementary Figure S5 L *nahE* (trans-o-hydroxybenzylidenepyruvate hydratase-aldolase).

Supplementary Figure S5 M *nahF* (salicylaldehyde dehydrogenase).

69 Supplementary Figure S5 N praC (oxalocrotonate tautomerase).

74 Supplementary Figure S5 O sal-hyd (salicylate hydroxylase).

Supplementary Figure S5 P *todC1* (benzene/toluene dioxygenase).

Supplementary Figure S6 Benzene degradation by pure cultures of *Xanthobacter*sp. OSPW1 and *Zavarzinia* sp. OSPW2 isolated from OSPW. Experiments were
done in triplicates. Data are means ± standard errors of the mean.

Supplementary Figure S7 Comparison between read counts for the 14 marker genes obtained for Illumina and 454 sequencing platforms. Each point on the graph corresponds to a gene.

- 1 Supplementary Table S1 A G Top 25 OTUs detected in each sample based on % of total reads in 16S rRNA gene sequencing analysis, and the
- 2 best BLAST hit to a cultured reference strain (% identity in final column).
- **Supplementary Table S1 A** Best BLAST hits to the top OTUs detected in an analysis of 16S rRNA amplicons from OSPW sampled in August 2011.

Rank	% Reads	Phylum	Class	Order Family		Genus	% Identity
1	4.66	Proteobacteria	Betaproteobacteria	Burkholderiales Comamonadaceae Hydroge		Hydrogenophaga	99
2	3.88	Bacteroidetes	Flavobacteria	Flavobacteriales	Flavobacteriaceae	Lutibacter	98
3	3.38	Proteobacteria	Gammaproteobacteria	Pseudomonadales	Moraxellaceae	Enhydrobacter	99
4	2.99	Proteobacteria	Betaproteobacteria	Burkholderiales	Burkholderiaceae	Limnobacter	99
5	2.99	Proteobacteria	Gammaproteobacteria	Methylococcales	Methylococcaceae	Methylogaea	94
6	2.89	Bacteroidetes	Saprospiraceae	Sphingobacteriales	Sphingobacteriia	Haliscomenobacter	93
7	2.59	Bacteroidetes	Bacteroidia	Bacteroidales	Porphyromonadaceae	Barnesiella	90
8	2.59	Bacteroidetes	Flavobacteriia	Flavobacteriales	Cryomorphaceae	Fluviicola	96
9	2.39	Bacteroidetes	Flavobacteria	Flavobacteriales	Flavobacteriaceae	Flavobacterium	98
10	2.29	Proteobacteria	Alphaproteobacteria	Rhizobiales	Xanthobacteraceae	Xanthobacter	99
11	2.19	Proteobacteria	Betaproteobacteria	Burkholderiales	Burkholderiaceae	Sphaerotilus	99
12	1.89	Bacteroidetes	Sphingobacteriia	Sphingobacteriales	Chitinophagaceae	Balneola	89
13	1.79	Proteobacteria	Betaproteobacteria	Rhodocyclales	Rhodocyclaceae	Rhodocyclus	96
14	1.59	Planctomycetes	Planctomycetia	Planctomycetales	Planctomycetaceae	Roseimaritima	93
15	1.39	Proteobacteria	Betaproteobacteria	Burkholderiales	Comamonadaceae	Variovorax	99
16	1.39	Proteobacteria	Alphaproteobacteria	Rhizobiales	Bradyrhizobiaceae	Variibacter	94
17	1.29	Planctomycetes	Planctomycetia	Planctomycetales	Isosphaeraceae	Aquisphaera	90
18	1.19	Proteobacteria	Betaproteobacteria	Burkholderiales	Alcaligenaceae	Achromobacter	96
19	1.19	Bacteroidetes	Flavobacteria	Flavobacteriales	Flavobacteriaceae	Flavobacterium	98
20	1.09	Tenericutes	Mollicutes	Acholeplasmatales	Acholeplasmataceae	Acholeplasma	95

1 Supplementary Table S1 B Best BLAST hits to the top OTUs detected in an analysis of 16S rRNA amplicons from heavy SIP fraction (fraction 5) of

2 OSPW sampled in August, 2011.

Rank	% Reads	Phylum	Class	Order	Order Family		% Identity
1	23.31	Proteobacteria	Alphaproteobacteria	Rhizobiales	Hyphomicrobiaceae	Devosia	96
2	12.64	Proteobacteria	Gammaproteobacteria	Methylococcales	Methylococcaceae	Methylomonas	96
3	9.03	Proteobacteria	Betaproteobacteria	Rhodocyclales	Rhodocyclaceae	Thauera	99
4	8.53	Proteobacteria	Alphaproteobacteria	Caulobacterales	Caulobacteraceae	Brevundimonas	100
5	8.29	Proteobacteria	Gammaproteobacteria	Methylococcales	Methylococcaceae	Methylogaea	94
6	6.79	Planctomycetes	Planctomycetia	Planctomycetales	Planctomycetaceae	Thermogutta	87
7	4.95	Proteobacteria	Gammaproteobacteria	Methylococcales	Methylococcaceae	Methylomicrobium	99
8	4.52	Proteobacteria	Alphaproteobacteria	Magnetococcales	Magnetococcaceae	Magnetococcus	90
9	4.25	Proteobacteria	Alphaproteobacteria	Rhodospirillales	Acetobacteraceae	Acidiphilium	99
10	4.21	Proteobacteria	Betaproteobacteria	Rhodocyclales	Rhodocyclaceae	Methyloversatilis	100
11	3.28	Euryarchaeota	Methanomicrobia	Methanomicrobiales	Methanoregulaceae	Methanoregula	99
12	2.98	Planctomycetes	Planctomycetia	Planctomycetales	Planctomycetaceae	Thermogutta	86
13	2.88	Proteobacteria	Betaproteobacteria	Burkholderiales	Comamonadaceae	Hydrogenophaga	99
14	2.47	Proteobacteria	Gammaproteobacteria	Xanthomonadales	Algiphilaceae	Algiphilus	94
15	2.34	Proteobacteria	Alphaproteobacteria	Sphingomonadales	Erythrobacteraceae	Altererythrobacter	99
16	2.21	Euryarchaeota	Methanomicrobia	Magnetococcales			99
17	2.17	Euryarchaeota	Methanomicrobia	Methanosarcinales	Methanosaetaceae	Methanosaeta	100
18	1.97	Proteobacteria	Alphaproteobacteria	Sphingomonadales	Erythrobacteraceae	Porphyrobacter	100
19	1.81	Proteobacteria	Gammaproteobacteria	Chromatiales	Chromatiaceae	Thiococcus	95
20	1.81	Proteobacteria	Alphaproteobacteria	Rhodocyclales	Rhodocyclaceae	Azospirillum	93

1 Supplementary Table S1 C Best BLAST hits to the top OTUs detected in an analysis of 16S rRNA amplicons from heavy SIP Fractions (fractions 4

2	and 5) of OSPW	sampled in Augu	st, 2011	, amended with	labeled benzene	e for 9 days.
	,		,	,		

Rank	% Reads	Phylum	Class	Order Family		Genus	% Identity
1	86.87	Proteobacteria	Betaproteobacteria	Rhodocyclales Rhodocyclaceae I		Methyloversatilis	100
2	5.18	Proteobacteria	Alphaproteobacteria	Rhodospirillales	Acetobacteraceae	Zavarzinia	99
3	1.39	Proteobacteria	Gammaproteobacteria	Xanthomonadales	Algiphilaceae	Algiphilus	94
4	0.62	Proteobacteria	Deltaproteobacteria	Syntrophobacterales	Syntrophobacteraceae	Desulforhabdus	90
5	0.51	Proteobacteria	Deltaproteobacteria	Desulfuromonadales	Geobacteraceae	Geobacter	91
6	0.42	Proteobacteria	Betaproteobacteria	Rhodocyclales	Rhodocyclaceae	Rhodocyclus	96
7	0.24	Proteobacteria	Betaproteobacteria	Rhodocyclales	Rhodocyclaceae	Dechloromonas	94
8	0.23	Proteobacteria	Alphaproteobacteria	Rhizobiales	Bradyrhizobiaceae	Bradyrhizobium	95
9	0.19	Chloroflexi	Anaerolineae	Anaerolineales	Anaerolineaceae	Bellilinea	92
10	0.17	Proteobacteria	Gammaproteobacteria	Chromatiales	Chromatiaceae	Thiococcus	95
11	0.17	Planctomycetes	Planctomycetia	Planctomycetales	Planctomycetaceae	Gemmata	91
12	0.16	Planctomycetes	Planctomycetia	Planctomycetales	Planctomycetaceae	Thermogutta	86
13	0.13	Proteobacteria	Alphaproteobacteria	Rhodospirillales	Rhodospirillaceae	Inquilinus	94
14	0.11	Tenericutes	Mollicutes	Entomoplasmatales	Spiroplasmataceae	Spiroplasma	75
15	0.09	Proteobacteria	Betaproteobacteria	Rhodocyclales	Rhodocyclaceae	Sulfuritalea	99
16	0.08	Proteobacteria	Deltaproteobacteria	Desulfuromonadales	Desulfuromonadaceae	Desulfuromusa	90
17	0.07	Acidobacteria	Solibacteres	Solibacterales	Solibacterales	Bryobacter	93
18	0.07	Proteobacteria	Betaproteobacteria	Burkholderiales	Comamonadaceae	Caenimonas	98
19	0.07	Proteobacteria	Alphaproteobacteria	Sphingomonadales	Erythrobacteraceae	Altererythrobacter	99
20	0.06	Proteobacteria	Deltaproteobacteria	Desulfobacterales	Desulfobacteraceae	Desulfotignum	85

2	and 6) of OSPW	sampled in August	, 2011, amended with	labeled na	phthalene for 7	days.
	,		, ,			

Rank % Reads Phylum		Phylum	Class	Order	Family	Genus	% Identity
1	45.56	Proteobacteria	Gammaproteobacteria	Chromatiales	Chromatiaceae	Thiococcus	95
2	20.50	Proteobacteria	Betaproteobacteria	Rhodocyclales	Rhodocyclaceae	Thauera	99
3	8.19	Proteobacteria	Gammaproteobacteria	Pseudomonadales	Pseudomonadaceae	Pseudomonas	100
4	2.69	Proteobacteria	Gammaproteobacteria	Pseudomonadales	Pseudomonadaceae	Pseudomonas	96
5	5.73	Proteobacteria	Gammaproteobacteria	Pseudomonadales	Pseudomonadaceae	Pseudomonas	98
6	1.61	Proteobacteria	Betaproteobacteria	Burkholderiales	Comamonadaceae	Acidovorax	99
7	1.24	Proteobacteria	Gammaproteobacteria	Pseudomonadales	Pseudomonadaceae	Pseudomonas	97
8	1.23	Proteobacteria	Alphaproteobacteria	Rhodobacterales	Rhodobacteraceae	Gemmobacter	99
9	0.73	Proteobacteria	Gammaproteobacteria	Pseudomonadales	Pseudomonadaceae	Pseudomonas	98
10	0.57	Chloroflexi	Caldilineae	Caldilineales	Caldilineaceae	Caldilinea	83
11	0.39	Proteobacteria	Betaproteobacteria	Rhodocyclales	Rhodobacteraceae	Azoarcus	99
12	0.39	Proteobacteria	Gammaproteobacteria	Pseudomonadales	Pseudomonadaceae	Azotobacter	100
13	0.39	Proteobacteria	Gammaproteobacteria	Pseudomonadales	Pseudomonadaceae	Pseudomonas	98
14	0.35	Proteobacteria	Alphaproteobacteria	Sphingomonadales	Sphingomonadaceae	Novosphingobium	98
15	0.34	Proteobacteria	Gammaproteobacteria	Pseudomonadales	Pseudomonadaceae	Pseudomonas	98
16	0.30	Proteobacteria	Alphaproteobacteria	Sphingomonadales	Erythrobacteraceae	Porphyrobacter	100
17	0.28	Proteobacteria	Gammaproteobacteria	Legionellales	Coxiellaceae	Aquicella	95
18	0.24	Proteobacteria	Gammaproteobacteria	Pseudomonadales	Pseudomonadaceae	Pseudomonas	99
19	0.23	Proteobacteria	Alphaproteobacteria	Caulobacterales	Caulobacteraceae	Phenylobacterium	97
20	0.19	Proteobacteria	Gammaproteobacteria	Pseudomonadales	Pseudomonadaceae	Pseudomonas	98

Supplementary Table S2 Best BLAST hits to the top OTUs detected in an analysis of 16S rRNA amplicons from heavy SIP Fractions of OSPW

3 sampled in August 2011, amended with labeled benzene for 14 day	′S.
---	-----

Rank	% Reads	Phylum	Class	Order	Family	Genus
1	43.85	Proteobacteria	Betaproteobacteria	Rhodocyclales	Rhodocyclaceae	Methyloversatilis
2	19.58	Proteobacteria	Alphaproteobacteria	Caulobacterales	Caulobacteraceae	Brevundimonas
3	8.04	Proteobacteria	Betaproteobacteria	Burkholderiales	Comamonadaceae	Diaphorobacter
4	6.04	Planctomycetes	Planctomycea	Planctomycetales	Planctomycetaceae	Planctomyces
5	2.91	Proteobacteria	Alphaproteobacteria	Sphingomonadales	Erythrobacteraceae	Erythromicrobium
6	2.73	Proteobacteria	Betaproteobacteria	Burkholderiales	Comamonadaceae	
7	1.19	Proteobacteria	Betaproteobacteria	Rhodocyclales	Rhodocyclaceae	Thauera
8	0.79	Proteobacteria	Alphaproteobacteria	Rhodobacterales	Hyphomonadaceae	
9	0.63	Proteobacteria	Alphaproteobacteria	Rhizobiales	Hyphomicrobiaceae	Rhodoplanes
10	0.61	Proteobacteria	Betaproteobacteria	Rhodocyclales	Rhodocyclaceae	Methyloversatilis
11	0.57	Proteobacteria	Alphaproteobacteria	Caulobacterales	Caulobacteraceae	Brevundimonas
12	0.57	Proteobacteria	Betaproteobacteria	Rhodocyclales	Rhodocyclaceae	Methyloversatilis
13	0.55	Planctomycetes	Phycisphaerae	Phycisphaerae	Phycisphaerales	
14	0.55	Proteobacteria	Alphaproteobacteria	Caulobacterales	Caulobacteraceae	Caulobacte
15	0.53	Proteobacteria	Alphaproteobacteria	Rhodospirillales	Rhodospirillacea	
16	0.51	Proteobacteria	Betaproteobacteria	Rhodocyclales	Rhodocyclaceae	Methyloversatilis
17	0.48	Proteobacteria	Gammaproteobacteria	Xanthomonadales	Xanthomonadacea	Dokdonella
18	0.46	Proteobacteria	Alphaproteobacteria	Rhizobiales	Phyllobacteriaceae	Mesorhizobium
19	0.40	Proteobacteria	Alphaproteobacteria	Rhodobacterales	Hyphomonadaceae	Hyphomonas
20	0.38	Proteobacteria	Alphaproteobacteria	Rhodospirillales	Rhodospirillaceae	

Supplementary Table S3 Metagenome features of surface WIP-OSPW sampled in August

2 2011 of the combined Illumina and 454 assembly obtained from the IMG pipeline.

	Assembled				
	Number	% of Assembled			
Number of sequences	1,520,282	100.00%			
Number of bases	728,742,540	100.00%			
GC count Genes	426,300,665	58.50%			
RNA genes	11,467	0.63%			
rRNA genes	2,282	0.13%			
5S rRNA	396	0.02%			
16S rRNA	632	0.03%			
18S rRNA	38	0.00%			
23S rRNA	1,170	0.06%			
28S rRNA	46	0.00%			
tRNA genes	9,185	0.50%			
Protein coding genes	1,811,780	99.37%			
with Product Name	852,731	46.77%			
with COG	1,088,850	59.72%			
with Pfam	961,630	52.74%			
with KO	873,050	47.88%			
with Enzyme	511,566	28.06%			
with MetaCyc	360,503	19.77%			
with KEGG	520,901	28.57%			
COG Clusters	4,559	98.45%			
Pfam Clusters	6,650	40.81%			
Biosynthetic Clusters	554				
Genes in Biosynthetic Clusters	2,711				

1 Supplementary Table S4 List of bacterial isolates obtained from various OSPW enrichments. The identifications are based on BLAST analysis of

2 nearly complete 16S rRNA gene sequences.

Class	Order	Family	Genus	GenBank taxonomy	Source/Med ium of isolation	Sample(s) where OTUs were found	Query length (bp)	% Identity	Strain name	Growth on benzene	Growth of naphtha- lene
Alphaproteobacteria	Rhizobiales	Xanthobacteraceae	Xanthobacter	Xanthobacter tagetidis	20R2A-T	С, М	1205	97	OSP W1	+	-
Alphaproteobacteria	Rhodospirillales	Acetobacteraceae	Zavarzinia	Zavarzinia compransoris	20R2A-T	В	1355	99	OSP W2	+	-
Gammaproteobacteria	Pseudomonadales	Pseudomonadaceae	Pseudomonas	Pseudomonas stutzeri	M10-T with naphthalene vapour	N, OSPW	1374	99	OSP W3	-	+
Betaproteobacteria	Rhodocyclales	Rhodocyclaceae	Thauera	Thauera phenylacetica	20R2A-T with naphthalene vapour	N, C, OSPW	1387	99	OSP W4	-	?

3 B=benzene SIP heavy fraction, N=naphthalene SIP heavy fraction, M= methanol SIP heavy fraction, C= control (unamended OSPW) SIP heavy fraction,

4 OSPW=fresh OSPW sample