

# Supplementary Material:

# Navigating the Functional Landscape of Transcription Factors via Non-Negative Tensor Factorization Analysis of MEDLINE Abstracts

## 1 SUPPLEMENTARY TABLES AND FIGURES

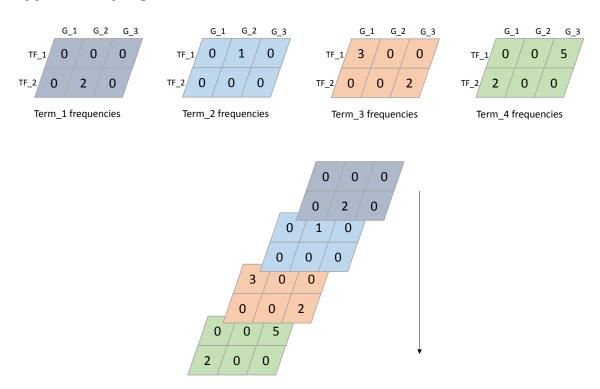
### 1.1 Supplementary Tables

**Table S1.** 10 KEGG pathways that were enriched most in ATMs across k.

| KEGG | Description                                            | Frequency |
|------|--------------------------------------------------------|-----------|
| ID   |                                                        |           |
| 5200 | Pathways in cancer - Mus musculus (mouse)              | 1309      |
| 5166 | HTLV-I infection - Mus musculus (mouse)                | 830       |
| 5215 | Prostate cancer - Mus musculus (mouse)                 | 707       |
| 5169 | Epstein-Barr virus infection - Mus musculus (mouse)    | 682       |
| 4010 | MAPK signaling pathway - Mus musculus (mouse)          | 651       |
| 5152 | Tuberculosis - Mus musculus (mouse)                    | 651       |
| 4060 | Cytokine-cytokine receptor interaction - Mus musculus  | 637       |
|      | (mouse)                                                |           |
| 5220 | Chronic myeloid leukemia - Mus musculus (mouse)        | 623       |
| 5202 | Transcriptional misregulation in cancer - Mus musculus | 602       |
|      | (mouse)                                                |           |
| 5218 | Melanoma - Mus musculus (mouse)                        | 600       |

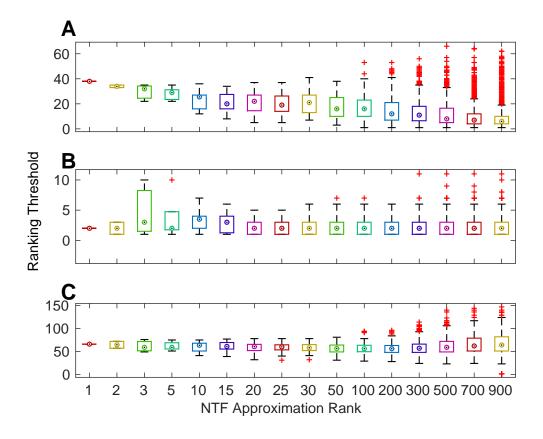
**Table S2.** 10 GO categories that were enriched most in ATMs across k.

| GO    | Description                                          | Frequency |
|-------|------------------------------------------------------|-----------|
| ID    |                                                      |           |
| 10628 | positive regulation of gene expression               | 870       |
| 42127 | regulation of cell proliferation                     | 699       |
| 7507  | heart development                                    | 691       |
| 9887  | organ morphogenesis                                  | 691       |
| 51091 | positive regulation of sequence-specific DNA binding | 633       |
|       | transcription factor activity                        |           |
| 8083  | growth factor activity                               | 611       |
| 30324 | lung development                                     | 586       |
| 8283  | cell proliferation                                   | 569       |
| 1934  | positive regulation of protein phosphorylation       | 568       |
| 10468 | regulation of gene expression                        | 546       |

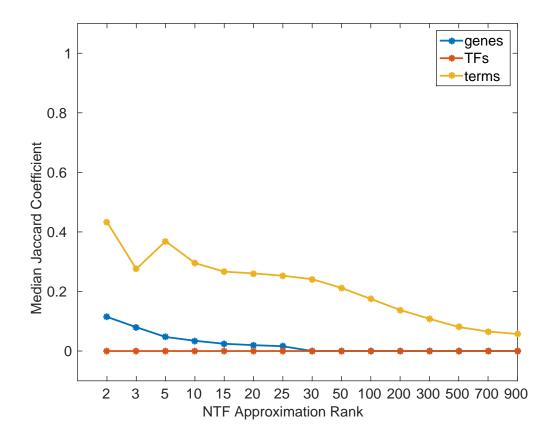

 Table S3.
 Comparison of precision values between NTF and RegNetwork human curated database using ChIP-Seq datasets as gold standards.

| TF (GSE Acc #)    | NTF     | RegNetwork |
|-------------------|---------|------------|
| Cebpa (GSM427088) | 0.49473 | 0.245421   |
| Cebpa (GSM427093) | 0.33641 | 0.130647   |
| E2f4 (GSM427091)  | 0.8174  | 0.837838   |
| E2f4 (GSM427094)  | 0.90689 | 0.918919   |
| Foxa1 (GSM427090) | 0.11119 | 0          |
| Foxa2 (GSM427089) | 0.21049 | 0.157895   |

**Table S4.** Comparison of precision values between NTF and RegNetwork human curated database using TF knockout microarray datasets as gold standards.

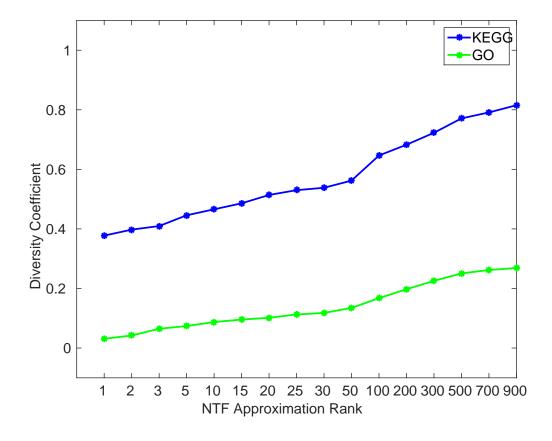

| TF (GSE Acc #)  | NTF     | RegNetwork |
|-----------------|---------|------------|
| Atoh1           | 0.33073 | 0.428571   |
| Pax6            | 0.37957 | 0.084848   |
| Otx2 (GSE21900) | 0.36028 | 0.111111   |
| Otx2 (GSE27630) | 0.41637 | 0          |

#### 1.2 Supplementary Figures

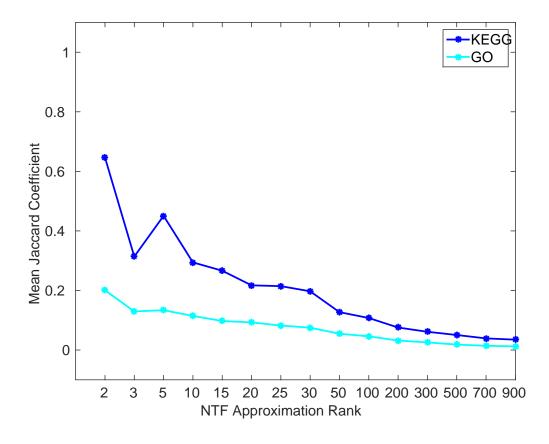



**Figure S1.** A toy example showing tensor construction for 4 terms (Term\_1, Term\_2, ..., Term\_4), 3 genes (G\_1, G\_2, G\_3), and 2 TFs (TF\_1, TF\_2). For each term, the frequency of its occurrence in abstracts shared by each gene-TF pair is determined. These frequencies are stored in a matrix of size  $\#Genes \times \#TFs$ . Once a matrix is created for each term, all matrices can be layered vertically together to form a tensor of size  $\#Terms \times \#Genes \times \#TFs$ .

Frontiers 3




**Figure S2.** Distribution of numbers of genes (A), TFs (B) and terms (C) in the ATMs in various k-factorizations.




**Figure S3.** Redundancy between the terms, genes and TFs in the ATMs across various k-factorizations.

Frontiers 5



**Figure S4.** Diversity coefficients of the ATMs in terms of enrichment in KEGG pathways and GO categories in the various k-factorizations.



**Figure S5.** Redundancy between the ATMs in terms of enrichment in KEGG pathways and GO categories in the various k-factorizations.

Frontiers 7