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Supplementary Results
Variability of channel-averaged N2 and N3 spectra

As  reported qualitatively in the main  paper (available at
https://dx.doi.org/10.3389/fnhum.2017.00433), we observed large differences
between N2 and N3 spectral profiles within individuals (Fig. 1A). To quantify this
effect, we computed the degree of cross-stage similarity as the Pearson correlation
between each individual's N2 and N3 channel-averaged spectral profiles. We did this
separately for the two nights. Across subjects, this yielded moderate correlation
values (night 1: 0.45 + 0.27; one-sample t-test vs. zero: t(27)=8.9, P<10®; night 2:
0.50 + 0.21; one-sample t-test: t(27)=12.5, P<10™"). Additionally, we adjusted
individual subjects' correlation P values for multiple comparisons using the False
Discovery Rate (Benjamini and Hochberg, 1995), and found that 26/28 individuals
had corrected P values <0.05 for night 1, and 24/28 for night 2.

However, these correlation values do not indicate whether spectra are more
similar within than between individuals. To address this issue, we trained k-nearest
neighbor classifiers on N2 power spectra and tested them on N3 spectra from the
same night, and vice versa. Given chance level performance of 3.6% (1/28), resulting
subject identification rates for classifiers trained on N2 and tested on N3 were
modest at 18% (5/28, night 1) and 21% (6/28, night 2) (both P<10™). Performance for
classifiers trained on N3 and tested on N2 was even lower: 7% (2/28, P=0.08, night 1)
and 11% (3/28, P=0.017, night 2). This indicates that, with a few exceptions, spectral
profile shapes during N2 and N3 were generally as different within as between
individuals.

Stability of channel-averaged spectra across nights

We observed that spectral profiles are exceptionally similar across nights,
including stable N2-N3 differences (Fig. 1C; Supplementary Fig. 1). To quantify this
effect, we computed the cross-night similarity between night 1 and night 2 spectral
profiles. We did this separately for N2 and N3. Across subjects, this yielded very high
correlation coefficients of 0.97 £ 0.02 for N2 and 0.95 £ 0.05 for N3. These
distributions were significantly different from zero (one-sample t-test: N2: t(27)=215,
P<10™; 28/28 with P.n<0.05; N3: t(27)=215, P<10™), and spectra were more
similar across nights for N2 than N3 (paired t-test: t(27)=2.8, P=0.009; 28/28 with
Pcorr<0.05).
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Supplementary Figure 1. Stability of channel-averaged N2 and N3 power spectra for all
individuals across nights. All 28 subjects' (normalized and rescaled) N2 (orange) and N3
(blue) spectra are shown for night 1 (solid) and night 2 (dashed), demonstrating that
individual differences in spectral shape are remarkably stable and constitute robust traits.

While these findings demonstrate high within-subject similarity of spectral
profiles, we also observed quite high correlations between spectra from different
individuals (N2: 0.71 + 0.16; N3: 0.57 + 0.21), indicating NREM spectra show lower
but substantial baseline levels of similarity between subjects. To emphasize the fact
that there is individual spectral stability beyond between-subject levels, we asked if
we could identify individuals based on the similarity of their power spectra across
nights. To this end, we trained classifiers on power spectra from one night and
tested them on spectra from the other night, separately for N2 and N3. We obtained
very high subject identification rates of 96% (27/28) for N2 (both directions: night 1-
>night 2 and night 2->night 1), and 82% (23/28) (night 1->night 2) and 89% (25/28)
(night 2->night 1) for N3 (all P<10™*®, binomial test). This robust stability of NREM
sleep spectra underscores the trait-like nature of individual differences in oscillatory
expression.
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Single-channel and component-based sigma frequencies

We directly compared sigma peak frequencies as determined from the single-
channel and component approaches. Using frequency estimates averaged across the
two nights, we obtained very high correlations with slopes close to 1 for fast sigma,
during both N2 (R=0.93, P<10™"?, slope=0.92) and N3 (R=0.98, P<10", slope=1.03).
While we did see significantly higher peak frequencies for components relative to
channels (paired t-tests, N2: t(27)=-2.2, P=0.03; N3: t(27)=-4,1, P=0.0003), the
difference was only 0.1 Hz in both cases (component vs. channel, N2: 13.5 + 0.6 vs.
13.4 £ 0.6 Hz; N3: 13.4 £ 0.6 vs. 13.3 £ 0.6 Hz ). Thus, these findings indicate that the
component analysis identified fast sigma peaks highly similar to those obtained from
channels. As channel-based peaks could already be isolated from all 28 subjects,
these findings also indicate that accurate fast sigma frequencies can be obtained
without resorting to component decomposition. Nonetheless, these results offer an
important degree of face validity to our approach.

In contrast, slow sigma showed much poorer correlations between channel- and
component-defined spectral peaks during N2 (R=0.51, P=0.01) and N3 (R=0.57,
P=0.002), with slopes substantially deviating from 1 (N2 slope: 0.42, N3 slope: 0.46).
Peak frequencies of slow sigma activity did not differ significantly depending on
detection method (paired t-tests, component vs. channel, N2: 10.9 + 0.8 vs. 11.2
1.0 Hz, t(22)=1.5, P=0.15; N3: 10.7 £ 0.6 vs. 10.7 £ 0.8, t(25)=-0.4, P=0.70), indicating
that the component approach does not result in an overall shift of peak location.

Supplementary Discussion

All our analyses were performed on data transformed with the Laplacian operator
(Perrin et al., 1989), which renders data reference-free and minimizes the effects of
volume conduction, thereby making topographies more focal. Empirical and
simulation studies suggest the Laplacian approach to result in enhanced sensitivity
to subtle neurophysiological signals and to more accurately recover true underlying
neural interactions (Cohen, 2014; Tenke and Kayser, 2015). This approach likely
enhanced topographical variability in our data (e.g., between subjects, spindle
classes, sleep stages), thereby achieving a major objective of this study (namely, to
highlight such differences). Still, our group-level topographical analyses were highly
consistent with conventional studies using spatially unfiltered data. We also assessed
whether identified component peak frequencies depend on the Laplacian
transformation. In several subjects, we performed the entire GED and peak
detection procedure on data that was not Laplacian-filtered. However, detected
peak frequencies were highly similar: slow and fast peaks detected in three subjects
for both N2 and N3 showed identical frequencies for Laplacian and raw data for
11/12 comparisons, and the last one showed a 0.1 Hz difference. Altogether, these
findings suggest the Laplacian approach offers an increase in effective spatial
resolution without apparent drawbacks.

Of note, our GED implementation operates on covariance matrices obtained from
band-pass filtered data in two pre-specified spectral ranges (9—-12 Hz and 12—-16 Hz).
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We selected these frequency ranges based on visual inspection of channel-based
spectra (Fig. 1 in main manuscript). However, we determined in several subjects that
small shifts of 0.5 Hz of this initial slow/fast demarcation frequency did not affect the
frequency of subsequently identified component peaks by more than 0.2 Hgz,
provided the subject's peak sigma frequencies fell in the selected ranges. Although
the 9-12 Hz and 12-16 Hz spectral bands worked well in our sample of young
healthy subjects, slow and fast spectral peak distributions in other samples might
overlap more (Ujma et al., 2015), or might be clustered in different spectral bands in
different age ranges (Shinomiya et al., 1999). In case no adequate group-wide
division into spectral ranges can be found, we suggest a subject-specific approach
may be used for identifying initial band-pass filtering ranges. Alternatively, an
iterative approach could be employed where data is filtered repeatedly with slightly
different slow/fast demarcation frequencies, which may then be used for
subsequent GED and peak detection.

How many channels are needed to isolate slow and fast sigma components?
Although high-density sleep recordings are becoming more common, smaller
montages are still the norm. While a minimum of two channels is required
numerically for GED computations, in practice one needs sufficient channels to
capture the differential spatial expression of slow and fast spindles. Although we did
not systematically investigate the effect of montage size, preliminary analyses in
several subjects suggest that a montage of 19 channels may be sufficient, and
successful component selection may even be possible with as few as five channels in
some cases (Supplementary code available at
https://doi.org/10.6084/m9.figshare.4905677). However, components based on
fewer channels are more likely to reflect a mixture of slow and fast spindle activity,
yielding less reliable estimates of slow and fast spindle frequencies. Indeed, whereas
high-density recordings typically resulted in multiple components peaking in a very
narrow (+ 0.2 Hz) frequency range, components derived from smaller montages had
more variable peak frequencies, making it more difficult to select the most
appropriate component. Thus, high-density montages are recommended whenever
possible.
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