Appendix A
Technical details of the multivariate empirical mode decompositions (MEMD)
The following MEMD algorithm introduced by Rehman and Mandic (2010) was used in the present study (see acknowledgment):   
Step 1: Generate a Hammersley sequence-based point set on a 3m – 1 dimensional sphere where m is the number of lags in the state space reconstruction method (m = 1, 2, and 3 in the present study).

Step 2: Compute the projection of the gait dynamics x(t) = (or residual r(t) or d(t) for iterative steps) along the unit direction vectors θk of the 3m – 1 dimensional sphere.   



Step 3: Find the time instant that corresponding to the maxima  of  along all k = 1, 2,…,3m – 1 dimensions.



Step 4:  Obtain the envelope curves, , by component-wise spline interpolations between all time instants of .

Step 5: Compute the mean m(t) of all envelope curves, , across all 3m – 1 directions of the sphere by the following equation:

									(A6)



Step 6: The first series of details d1(t) around the mean m1(t) is defined as d1(t) = x(t) – m1(t). If d1(t) satisfies the selected stopping criteria, then d1(t) is defined as an intrinsic mode function (IMF) and Step 2 to 5 is performed on first residual, r1(t) = x(t) – d1(t). The second IMF is defined as d2(t) = r1(t) – m2(t) with residual r2(t) = r1(t) – d2(t). Consequently, the nth IMF is defined as dn(t) = rn-1(t) – mn(t) with residual rn(t) = rn-1(t) – dn(t).  This iterative shifting procedure (i.e., Step 2 to 5) is continued until two maxima of the projection in Step 3 can no longer be found. If dn(t) does not satisfy the stopping criteria, step 2 to 5 are performed as an iterative procedure on dn(t) until the stopping criteria is met and an IMF is defined. Subsequently, steps 2 to 5 are repeated on the residual, rn(t) = rn-1(t) – dn(t).  The stopping criteria used in the present study is similar to the stopping criteria proposed by Rilling et al. (2003), except that we in/excluded the criteria of equality between the number of zero crossings and number of maxima. The sum of all IMFs and the final residual, , correspond to the gait dynamics x(t). 

Appendix B
Generalized sample entropy (i.e., qSaEn) for the trunk dynamics in reconstructed state space (see Eq. 1 and 2 in the main text) were defined by the following equation (Silva and Murta, 2012): 

								(B1)
where the nx and ny are the total normalized number of points in state space with distance below r of the reconstructed gait dynamic of Eq. 1 and Eq. 2, respectively, in the main text. nx and ny across j points is given by: 


 	and 							(B2)
whereas nj,x and nj,y is given by the following two equations:

 		for 	i ≠ j					(B3)

		for	i ≠ j					(B4)
where N is the sample size of the 3D acceleration or velocity signal, l is the lag size, and [image: ] is the Chebyshev distance between two points of the gait dynamics Xj and Xi defined by Eq. 1 or 2 above. The Heavyside step function [image: ] is given by the following equation:
[image: ]										(B5)
The computation of qSaEn differs from the conventional computation of sample entropy because the points Xj and Xi of the gait dynamics in Eq. B3 and B4 are defined as points in the reconstructed gait dynamics from 3D acceleration (i.e., Eq. 1 and 2 in the main text) whereas the conventional SaEn is based on the dynamics reconstructed from 1D signals. 


Appendix C
Matlab code for the phase-dependent generalized multiscale entropy (PGME)
The following Matlab function, PGME_compute, estimates PGME as a function of scale, q-order and phase within the step cycle. The Matlab code calls the function, phase_qSaEn, to calculate the phase-dependent q-order sample entropy and memd developed by Silva and Murta (2012), which is available at http://www.commsp.ee.ic.ac.uk/~mandic/research/emd.htm.
 function [PGME]=PGME_compute(TempMat1,TempMat2,locs,r,phase,q,scl)
 
%Matlab function to estimate phase-dependent generalized multiscale entropy (PGME) 
%Computation time: 135 sec for length(TempMat) = 3000 on a Xeon 2.8 GHz CPU  
 
%Input%%%%%%%%%%%%%%%%%
%___TempMat1__________Reconstructed state space of dimension m (e.g. Eq. 1)
%___TempMat2__________Reconstructed state space of dimension m+1 (e.g. Eq. 2)
%___locs______________Vector of sample number for the initiation of each step cycle
%___r_________________Threshold r for the Heavy-side step function in Eq. B5
%___phase_____________vector of phases within the step interval (values [0 to 1]) 
%___q_________________vector of q-orders in Eq. 5
%___scl_______________Number of scales from memd (Eq.3) to be used to compute PGME
 
%Output%%%%%%%%%%%%%%%%%
%__PGME_______________Phase-dependent generalized multiscale entropy
 
%--------------------------------------------------------------------------
%Created by Espen A.F. Ihlen ©
%Email: espen.ihlen@ntnu.no
%Please refer to the paper: Improved prediction of falls in community-dwelling %older adults through phase-dependent irregularity of daily-life walking
%The authors take no responsibility in the use of this Matlab function

%------Code----------------------------------------------------------------
 
% Multivariate Empirical Mode Decomposition of reconstucted state space;
% TempMat1 and TempMat2; see Appendix A
 
PGME=zeros(scl,length(q),length(phase));
 
imf1=memd(TempMat1);
imf2=memd(TempMat2);
 
%Computation of generalized sample entropy (qSaEn) with respect to step-phase and scale 
for n=1:length(phase),%Step-phase
    locs2=locs(1:end-1)+round(phase(n).*diff(locs));%location in the step cycle
    for nn=1:scl, %Scale
        %Low-pass filtered TempMat1 (see Eq. 3)
        X1_imf(1:size(imf1,1),1:size(imf1,3))=sum(imf1(:,nn:end,:),2);
        %Low-pass filtered TempMat2 (see Eq. 3)
        X2_imf(1:size(imf2,1),1:size(imf2,3))=sum(imf2(:,nn:end,:),2);
        %Computation of phase-dependent qSaEn (see Appendix B)
        [phase_qsaen] = Phase_qSaEn(X1_imf',X2_imf',locs2,r,0.1,q);
        %Phase-dependent generalized multiscale entropy (PGME)
        PGME(nn,1:length(q),n)=phase_qsaen;   
    end
end


function [phase_qsaen] = Phase_qSaEn(tempMat1,tempMat2,locs,r,prc,q)
 
%Matlab function estimate phase-dependent generalized sample entropy 
 
%Input%%%%%%%%%%%%%%%%%
%___tempMat1__________Reconstructed state space of dimension m (e.g. Eq. 1)
%___tempMat2__________Reconstructed state space of dimenion m+1 (e.g. Eq. 2)
%___locs______________Vector of sample number for the initiation of each step cycle
%___r_________________Threshold r for the Heavy-side step function in Eq. 9
%___prc_______________Portion/interval (value between 0 and 1) after starting point used to compute phase_qSaEn 
%___q_________________vector of q-orders to compute phase_qSaEn
 
%Output%%%%%%%%%%%%%%%%%
%__phase_saen_________Phase-dependent qSaEn
%-------------------------------------------------------------------------

%Created by Espen A.F. Ihlen ©
%Email: espen.ihlen@ntnu.no
%Please refer to the paper: Improved prediction of falls in community-dwelling %older adults through phase-dependent irregularity of daily-life walking
%The authors take no responsibility in the use of this Matlab function
 
%------Code----------------------------------------------------------------
 
tempMat1=tempMat1';
tempMat2=tempMat2';
maxiter=round(prc.*diff(locs));
count1=zeros(size(tempMat1));
count2=zeros(size(tempMat2));
logq1=zeros(size(q));
logq2=zeros(size(q));
phase_qsaen=zeros(size(q));
 
%Phase-dependent counts (see Eq. B2-B5) for reconstructed state space of Eq. 1
for i = 1:length(tempMat1)
    % calculate Chebyshev distance, excluding self-matching case
    dist1 = max(abs(tempMat1(:,i+1:length(tempMat1)) - repmat(tempMat1(:,i),1,length(tempMat1)-i)));
    D1 = (dist1 < r);
    count1(i) = sum(D1)/length(tempMat1);
end
count1_phase=0;
length1_phase=0;
for i=1:length(locs)-1
    length1_step=length(locs(i):locs(i)+maxiter(i));
    length1_phase=length1_phase+length1_step;
    count1_phase=sum(count1(locs(i):locs(i)+maxiter(i)))+count1_phase;
end
 
%Phase-dependent counts (see Eq. B2-B5) for reconstructed state space of Eq. 2
for i = 1:length(tempMat2)
    % calculate Chebyshev distance, excluding self-matching case
    dist2 = max(abs(tempMat2(:,i+1:length(tempMat2)) - repmat(tempMat2(:,i),1,length(tempMat2)-i)));
    D2 = (dist2 < r);
    count2(i) = sum(D2)/length(tempMat2);
end
count2_phase=0;
length2_phase=0;
for i=1:length(locs)-1,
    length2_step=length(locs(i):locs(i)+maxiter(i));
    length2_phase=length2_phase+length2_step;
    count2_phase=sum(count2(locs(i):locs(i)+maxiter(i)))+count2_phase;
end
 
%Computation of phase-dependent q-order sample entropy (see Eq. 4 and Eq. B1)
 
correl1 = count1_phase/length1_phase;
correl2 = count2_phase/length2_phase;
for nq=1:length(q),
    logq1(nq)=((correl1^(1-q(nq)))-1)/(1-q(nq)); 
    logq2(nq)=((correl2^(1-q(nq)))-1)/(1-q(nq));
    if q(nq)==1,
       phase_qsaen(nq)=log(correl1/correl2);
    else
       phase_qsaen(nq)=logq1(nq)-logq2(nq);
    end
end
%--------------------------------------------------------------------------
        
  

Appendix D
Supplementary material
The PLS regression model used in present study was compared with a support vector machine prediction model based on ReliefF procedure (see Kira and Rendell, 1992 for further details). SVM is a binary classifier that will try to create a m-1 dimensional boundary in a m dimensional feature space that optimizes the separations of fallers and non-fallers (Cortes and Vapnik, 1995). Similar to the PLS prediction model, the most influential PGME metrics in the SVM prediction model were defined at 60% of the step cycle whereas the influence of scale k = 4 and q = -0.5 to 0.4 seemed to be different from the PLS prediction model (see Table A1). The gait features identified as most influential by SVM differed from the PLS prediction model (compare Table A2 with Table 4 in the main text). However, the SVM prediction model supported the findings of the PLS prediction model that different features are selected for prediction of single- and multiple-time fallers. The SVM prediction model had a substantially lower accuracy for both single- and multiple-time fallers when compared to the PLS prediction model (compare Table A3 and Table 5 in the main text). The ReliefF feature selection procedure is not integrated in the SVM and, thus, may choose a sub-optimal combination features for the SVM prediction model. 

Table A1: The top ten ranked parameter settings of the PGME metrics in the ReliefF feature selection and SVM model.
	Rank
	Phase
	Scale k
	q-order

	Single-time fall prediction

	1
	60 %
	4
	0.1

	2
	60 %
	4
	0.4

	3
	60 %
	4
	-0.4

	4
	60 %
	4
	0

	5
	60 %
	4
	-0.3

	6
	60 %
	4
	-0.1

	7
	60 %
	4
	1

	8
	80 %
	6
	0.2

	9
	60 %
	4
	-0.5

	10
	60 %
	4
	-0.2

	:
	:
	:
	:

	115
	60%
	1
	1

	Multiple-time fall prediction

	1
	60%
	6
	0.4

	2
	60%
	6
	0.6

	3
	60%
	6
	0.5

	4
	80%
	4
	0.9

	5
	60%
	6
	0.3

	6
	80%
	4
	1.0

	7
	60%
	6
	0.7

	8
	60%
	6
	0.2

	9
	80%
	4
	0.8

	10
	60%
	6
	0.1

	:
	:
	:
	:

	145
	20%
	1
	1




[bookmark: _GoBack]Table A2: The top ten ranked gait features and demographic variables in the ReliefF feature selection and SVM model.
	Rank
	Feature name
	Feature type
	Direction

	Single-time fall prediction

	1
	Lyapunov exponent RC
	Gait
	V

	2
	Lypunov per stride RC
	Gait
	V

	3
	Harmonic ratio
	Gait
	V

	4
	Lyapunov RC
	Gait
	AP

	5
	Frequency range (Weiss)
	Gait
	ML 

	6
	Harmonic RatioP
	Gait
	V

	7
	Standard deviation
	Gait
	ML

	8
	Lyapunov per stride W 
	Gait
	ML

	9
	Lyapunov RC
	Gait
	AP

	10
	Index harmonicity
	Gait
	AP (4)

	Multiple-time fall prediction

	1
	Harmonic ratio P
	Gait
	V

	2
	Harmonic ratio P
	Gait
	AP

	3
	Dominant Freq (Weiss)
	Gait
	V (3)

	4
	LASA fall risk score
	Other
	--

	5
	Stride frequency
	Gait
	--

	6
	Stride time
	Gait
	--

	7
	Harmonic Ratio
	Gait
	V

	8
	Harmonic Ratio
	Gait
	AP

	9
	Dominant Freq (Weiss)
	Gait
	AP

	10
	Low freq precentage
	Gait
	AP



Table A3: Performance of ReliefF feature selection and support vector machine (SVM).


	

	Sensitivity
	Specificity
	Pos. predictive value
	Neg. predictive value
	Accuracy

	
	Single time fallers (N = 52)

	PGME
	0.65 (0.64, 0.66)
	0.67 (0.66, 0.68)
	0.67 (0.66,0.68)
	0.67 (0.66,0.68)
	0.66 (0.65,0.67)

	Gait features + demograph. var
	0.55 (0.54, 0.56)
	0.55 (0.53,0.56)
	0.55 (0.54, 0.56)
	0.55 (0.54, 0.56)
	0.55 (0.54, 0.56)

	Fall history:
6 months
	0.47 (0.46,0.48)
	0.67 (0.65,0.68)
	0.59 (0.57,0.60)
	0.56 (0.55,0.57)
	0.57 (0.56,0.58)

	All combined
	0.51 (0.49,0.52)
	0.54 (0.53, 0.56)
	0.53 (0.52,0.54)
	0.53 (0.53, 0.54)
	0.53 (0.52, 0.54)

	
	Multiple time fallers (N = 46)

	PGME
	0.66 (0.65, 0.68)
	0.64 (0.62, 0.65)
	0.66 (0.65, 0.67)
	0.66 (0.65, 0.67)
	0.65 (0.64,0.66)

	Gait features + demograph var
	0.69 (0.68, 0.71)
	0.69 (0.68, 0.71)
	0.71 (0.70, 0.72)
	0.71 (0.70, 0.72)
	0.69 (0.68, 0.70)

	Fall history:
6 months
	0.55 (0.53,0.56)
	0.65 (0.64,0.67)
	0.62 (0.61,0.63)
	0.60 (0.59,0.61)
	0.60 (0.59, 0.61)

	All combined
	0.67 (0.66, 0.68)
	0.70 (0.68, 0.71)
	0.70 (0.69, 0.71)
	0.69 (0.68,0.70)
	0.68 (0.67,0.69)






image4.wmf
()

k

pt

q


oleObject4.bin

image5.wmf
()

k

et

q


oleObject5.bin

oleObject6.bin

oleObject7.bin

image6.wmf
()

k

et

q


oleObject8.bin

image7.wmf
31

1

1

()()

31

k

m

k

tet

m

q

-

=

=

-

å

m


oleObject9.bin

oleObject10.bin

image8.wmf
()

k

pt

q


oleObject11.bin

image9.wmf
1

()()()

N

nN

n

ttt

=

=+

å

xdr


oleObject12.bin

image10.wmf
log()log()

rqxqy

qSaEnnn

=-


oleObject13.bin

image11.wmf
,

1

1

Nl

xjx

j

nn

Nl

-

=

=

-

å


oleObject14.bin

image12.wmf
2

,

1

1

2

Nl

yjy

j

nn

Nl

-

=

=

-

å


oleObject15.bin

image13.wmf
(

)

,

1

1

,

Nl

jxji

j

ndXX

Nl

-

=

éù

=Q

ëû

-

å


oleObject16.bin

image14.wmf
(

)

2

,

1

1

,

2

Nl

jyji

j

ndYY

Nl

-

=

éù

=Q

ëû

-

å


oleObject17.bin

image15.wmf
,

ji

dXX

éù

ëû


image16.wmf
()

d

Q


image17.wmf
0, 

()

1, 

dr

d

dr

³

ì

Q=

í

<

î


image1.wmf
()

k

pt

q


oleObject1.bin

image2.wmf
k

t

q


oleObject2.bin

image3.wmf
max

()

k

pt

q


oleObject3.bin

