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1 HOPFIELD NETWORK MODEL FOR ASSOCIATIVE MEMORY

J. Hopfield made seminal contributions to the study of collective properties that emerge on systems of2
equivalent components (or neurons). He developed a model to describe content-addressable memory in an3
appropriate phase space for neuronal networks. The model incorporated aspects of neurobiology and its4
underlying neuronal circuitry. Within this framework, he was able to study properties such as familiarity5
recognition, categorization, error correction, and time sequence retention. Our computational model is6
based on J. Hopfield’s original publications (Hopfield, 1982, 1984; Hopfield, Tank, 1985) and more recent7
extensions (Gerstner et al., 2014; Benna, Fusi, 2015).8

1.1 Standard Hopfield Model9

In Hopfield’s original model, a neuronal network is composed of N neurons that attend binary states Si ∈
{−1, 1}. The connections between neurons are responsible for information transference and processing in
the network. They are represented by weights wij (linking neurons i and j), and stored in a connectivity
matrix W = (wij). In this setting, the neuronal states evolve in time according to (Hopfield, 1982, 1984;
Hopfield, Tank, 1985)

dSi(t) =
∑
j

wij · g(Sj(t))dt (S1)

where the gain function g is given by

g(x) =

{
1, x ≥ 0

−1, x < 0
. (S2)

The most important property of the model is the ability to encode memories as fixed points of the system.10
When a noisy input is presented, it converges to the closest fixed point (closest known concept) in a process11
commonly referred as memory association.12

1.2 Extended Hopfield Model13

Neuronal states are theoretically modeled as continuous spike trains transmitted through axonal channels
Adrian (1926); Richmond et al. (1987). In computational studies, these continuous states are discretized
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for more efficient computability. Hopfield’s original model as described in the previous section considers
two binary states distinguishing between an ’on’ and an ’off’ mode. However, the binary model is not rich
enough to model more sophisticated injury mechanism, such as filtering and reflexion in the Maia and
Kutz theory. While a continuous model was beyond the scope of this study, we implemented a multi-level
discrete state model to account for different modes of neuronal activity. In our extended Hopfield model,
neurons may achieve multiple discrete states (Gerstner et al., 2014; Benna, Fusi, 2015)

Si ∈ {0, 1, ..., s− 1, s}.

The dynamical evolution of the system is also governed by a more sophisticated equation:

dSi(t) = −τ−1 · Si(t)dt︸ ︷︷ ︸
self-dynamics

+ Ii(t)dt︸ ︷︷ ︸
external input

+
∑
j

wij · g(Sj(t))dt︸ ︷︷ ︸
input from other neurons

+µ · dBi︸ ︷︷ ︸
noise

, (S3)

with sigmoid gain function g given by

g(x) = 0.5(1 + tanh(βx)). (S4)

The constant τ gives the time-scale of the dynamics. Direct inputs for neuron i (e.g. external stimuli) are
represented by Ii(t). The term Bi corresponds to a Wiener Process with intensity µ, and is a proxy for
stochastic fluctuations in the firing rates. The (continuous) states are ultimately rounded to the nearest
discrete state by a scaling function

m(t) = max
1≤i≤N

|Si(t)| (S5)

Ŝi(t) =

[
s · Si(t)
m(t)

]
(S6)

The resulting stochastic differential equation takes the following form when discretized:

Si+1 = Si + ∆t f1(Si) + f2(Si) dBi (S7)

with f1(Si) = −τ−1Si +
∑
j

wijg(Sj) + Ii , f2(Si) = µSi

and Brownian increment dBi = Bi(t+ ∆t)−Bi(t).14

We solved the system numerically using the Euler-Maruyama Method (Higham, 2001) and made all our15
codes available. If higher accuracy is desired beyond the Euler-Maruyama scheme, recent algorithms have16
been developed to potentially improve accuracy and stability (see (Rößler , 2009) and (Omar et al. , 2011)17
based on (Milstein , 1975)). For the purposes of this study, such schemes are not required.18

For the simulations, we considered the following stopping criterion: The final state is reached, once the19
states of individual neurons do not change anymore under the network dynamics. Computationally, this is20
indicated by the absence of significant changes in the overlap function. In our simulations the final state21
was reached after a small number of time steps due to the relatively small network sizes.22

As noted earlier, FAS may alter the activity state of an injured neuron. Thus, a broader class of states23
is required to study effects of more sophisticated mechanisms. Whereas blockage of spike trains can24
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be described in binary networks, more complex feature discriminations like reflection and filtering, that25
transfer partial or altered information, require a multi-state setting. For this, we converted our sample set of26
facial images (Weyrauch et al., 2004) from originally colored to nine distinct shades of gray (s = 8) in27
addition to the (standard) binary black-white states. With this extension, the computational network can28
also discriminate images of human faces that naturally share several features (high overlap).29

1.3 Earlier Associative Memory Models30

A number of early attempts on modeling associative memory with networks predates key ideas in31
Hopfield’s model (McCulloch, Pitts, 1943; Hebb, 1949; Steinbuch, Piske, 1963; Willshaw, 1969; Little,32
1974; Kohonen, 1989). Among the very early work is Pitt’s 1943 article (McCulloch, Pitts, 1943) that33
introduces a simple neuron model with binary states {0, 1}, where output signals (1) indicate an input34
signal above a certain threshold. Later a similar setup is used by Willshaw et al. (Willshaw, 1969) to35
describe recurrent neural networks where the output at step t is taken as input in step t+ 1. A few years36
before Hopfield’s work, Little (Little, 1974) suggested an Ising model – well known from physics – for37
modeling neural system. In analogy to binary spins, Little’s neurons could take the states {−1, 1}. With his38
model, Little showed the emergence of persistant states in the neural network.39

2 THEORETICAL FRAMEWORK FOR FAS EFFECTS

Maia and Kutz developed in a series of papers a theoretical framework for characterizing the anomalous40
effects of FAS to spike propagation (Maia, Kutz, 2014a,b; Maia et al., 2015). We review their main results41
and explain how to add such pathologies (or their proxies) into account for the firing-rate dynamics of42
neuronal networks (see the schematics in Fig. S1).43

The authors distinguish axonal enlargements that lead to minor changes in propagation (β1) from those44
that result in critical phenomena such as collisions, reflections or blockage of traveling spikes (β2, β3 and45
β4). They use three geometrical parameters (δB, δT , δA) to model a prototypical shaft enlargement and46
characterize all possible propagation regimes in an unmyelinated action potential model. The regimes can47
be distinguished by evaluating a (simple) function of the FAS geometrical parameters inferred through48
numerical simulations. They suggest that evaluating this function along axon segments can help detect49
regions most susceptible to (i) transmission failure due to perturbations, (ii) structural plasticity, (iii) critical50
swellings caused by brain traumas and/or (iv) neurological disorders associated with the break down of51
spike train propagation.52

Swellings typically delete spikes by a mechanism called filtering (β2), when a first spike changes its53
profile at the axonal enlargement region and a close second spike interacts with its refractory period. As54
a consequence, the second spike is deleted in a mechanism of the so-called pile-up collision (see (Maia,55
Kutz, 2014b) for details). Distorted spike trains do not match their corresponding original firing rates (as56
illustrated in Fig. S1). Instead, they are confused with lower rates, which decrease the system’s overall57
denoising abilities. We simulate the harmful effects of filtering by implementing a statistical version of58
the confusion matrix from the same source, that in simple terms, evaluates the probability that state i gets59
confused as state j due to the FAS.60

A less frequent mechanism of spike deletion is reflection (β3). There, a traveling pulse is divided into61
two pulses when it reaches the FAS: one propagating forwards and the other propagating backwards. The62
backward pulse will collide with the next spike and have them both deleted. Thus, only a fraction of the63
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Figure S1. Panel A: Schematics for injurious effects of Focal Axonal Swellings (FAS) to spike trains
according to the theoretical framework of Maia and Kutz (Maia, Kutz, 2014a,b; Maia et al., 2015).
Spike trains may be distorted in four qualitatively distinct regimes depending on geometrical parameters
associated to FAS: transmission (β1), filtering (β2), reflection (β3) or blockage (β4). See references and
text for more details. Injuries can then be characterized by the transfer function S̃ = F (S, β) where S̃
is the effective firing rate (state) after the FAS, S is the firing rate (state) before. Such distortions are
incorporated to injured neurons in our Hopfield network simulations in conjunction with experimental
morphometric results from Wang et al. (Wang et al., 2011) and Dikranian et al. (Dikranian et al., 2008).
Panel B: Distribution of functional impairments in injured axons following TBI experiments from Wang
et al. (Wang et al., 2011). We generate ovoid/spheroid FAS with areas compatible with the experimental
distribution. The geometrical parameters of the FAS define the spike propagation regime. Panel C: We
generate 12 FAS (column) for each injured axon (row) and order them from worst to best case scenario
(upper “flags”). We assume that the worse FAS within an injured axon dominates the others, and classify the
entire axon within that category (intermediary “flags”). This leads to the (bottom) pie-charts of impairments
for an injured neuronal population. See text for more details.

original encoded information is ultimately transmitted by the spike train. We add this effect in our neuronal64
network by halving the firing-rate of an injured neuron in this regime.65

Figure S1 finally illustrates the blockage of spikes (β4) that occur typically in regions of more dramatic66
axonal enlargement. In this scenario, no information is transmitted through the damaged axon and the67
neuron cannot adapt and play its role in the desired collective dynamics: it remains in its initial state. In68
our neuronal network model, a significant amount of neurons in the blockage regime causes blurs in the69
reconstructed concepts (memories) and therefore decreases the accuracy of the recalled information. We70
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Figure S2. Pie charts illustrating the
distribution of functional impairments in injured axons following TBI experiments from Dikranian et al.

(Dikranian et al., 2008). We generate ovoid/spheroid FAS following the reported experimental distribution
of FAS diameters. The geometrical parameters of the FAS define the spike propagation regime. We
generate 5 FAS (column) for each one of the 40 injured axons (row) and order them from worst to

best-case scenario (upper “flags”). We assume that the worse FAS within an injured axon dominates the
others, and classify the entire axon within that category (intermediary “flags”). This leads to the (bottom)

pie-charts of impairments for an injured neuronal population. See text for details.

modeled this mechanism by introducing non-adapting neurons into the network, that keep their (possibly71
noise-affected) initial state over time.72

Traumatic Brain Injuries and neurodegenerative diseases induce FAS with tremendous variety of shapes73
and, consequently, with different functional deficits regarding spike train propagation. Thus, we consider a74
distribution of different FAS mechanism where fractions of neurons are affected by blockage, reflection75
and filtering (confusion) respectively.76

3 IMPLEMENTATION OF MEMORY STORAGE

To simulate a face recognition task, the set of memories has to be learned by the network. For this, we77
encode them in the weights of the neuronal connections as specified by the weight matrix of the network:78

We consider a system of weighted neurons. The strength wij of the connection between neuron i and neuron79
j, described by the weight of the respective edge, characterizes the information transfer from i to j. Stored80
in the connectivity matrix W = (wij)1≤i,j≤N , they characterize the network’s dynamics and encode the81
set of known concepts corresponding to the system’s fixed points.82
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The weight matrix is constructed from the training set of memories represented as network states:

C :=


...

... . . .
...

face 1 face 2 . . . face M
...

... . . .
...

 → W = CTC (S8)

The theoretical storage capacity of a (Standard) Hopfield network of size N is 0.14N random patterns. In83
this study, we use a much smaller set of memories, respectively five and three. This is due to the fact, that84
we store highly correlated facial images as opposed to random patterns. They have a pairwise overlap of85
60% due to the structural similarity of faces. The high correlation of the memories significantly decreases86
the storage capacity and therefore requires the choice of a small set of memories. We choose a setting with87
highly correlated memories to demonstrate the effects of memory confusion arising from FAS as described88
earlier.89

4 GENERATING RANDOM, UNCORRELATED MEMORIES

We want to generate a set of M random memories to initialize a Hopfield network with N neurons with a90
size of about the theoretical capacity of the network (M ≈ 0.14N Hopfield (1984)). This can be achieved91
with the following algorithm:92

1. Generate a random N ×M pattern matrix P .93

2. Apply a predefined threshold to achieve a desired level of sparsity (Pthresholded) and update the pattern94
matrix95

P̂ = P · Pthresholded .

3. Construct weight matrix as96
W = P T · P .

In our computational experiments, we set N = 900, M = 126 and threshold = 1.5, which yields a97
sparsity of about 13% in matrix P and a conditionl number of 49.28 .98

5 RECOGNITION SCORE FOR NETWORK PERFORMANCE

We developed a recognition score that measures recognition abilities with respect to significance and99
accuracy in recalling previously stored memory patterns (see Fig. S3).100

We assume the existence of an ideal observer (cf. Benna and Fusi(Benna, Fusi, 2015)), that knows the101
whole set of memories and the original pattern underlying the current noisy input. Our recognition score102
takes the place of this observer by evaluating the current network state against all memorized patterns. In103
what follows, we describe the computational steps of the recognition algorithm:104

(i) Overlap: We determine the overlap between the current network state {ĵ} and the set of stored
memories µ = 1, ...,M by calculating the respective overlap mµ ∈ {0, 1} of individual neuronal states
{j}:

mµ =
1

N

∑
j

δ|j−ĵ|<1
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Figure S3. Calculation of recognition scores for measuring memory performance (see Hopfield
Recognition Toolbox, current version available at GitHub: https://github.com/MelWe/
hopf-recognition). We use the Hamming distance mµ

i to measure the overlap between the current
network state and the fixed points corresponding to known facial images. Confusion or recognition is
characterized by mµ

i : if the overlap with the correct facial image is highest, we speak of recognition,
otherwise of confusion. A threshold for the difference between the highest and second highest overlap
determines whether the recognition or confusion was significant. According to this classification, we assign
color labels to each trial which can be displayed in a heat map.

(ii) Recognition and Significance: After a pre-defined number of time steps (system’s parameter), the
network’s states are matched to the closest pattern, i.e., we determine the µ ∈ 1, ...,M , such that

dµ = |morig −mµ| is minimal.

If the output pattern matches the original one (µ ≡ orig), we say that recognition occurs. Otherwise,105
we speak of confusion of the memories (concepts). The classification is considered significant only if106

|dµ − di| < t ∀i = 1, ...,M ; (µ 6= i),

where t is a threshold parameter. With this scheme, we classify the memory recall into four groups and107
assign (numerical) labels.108

(iii) Evaluation: The recognition score was developed to evaluate the memory performance of our Hopfield109
neuronal network model over a broad range of injury (parameter inj) and initial noise (parameter noise).110
For each pair of parameters (inj, noise) we calculate the score as value of the significance label scaled111
by the accuracy of the recognition (overlap mµ).112

The final result is a heat map (see Fig. 2,3 in main text) that links recognition score, memory performance113
and noise handling to different levels of injury.114

Code available on GitHub: MelWe/hopf-recognition115
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