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Figure S1. Number of DAPs among three stages of ‘Anji Baicha’ leaf development.
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Figure S2. The volcano plots of differential DAPs (A) and ASs (B).
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Figure S3. Enrichment-based clustering analysis of DAPs. (A) Cellular component;

(B) molecular function; (C) biological process; (D) protein domain; and (E) KEGG

pathway.

S3



Stage 1l Stage 2 Stage3

250KD
130KD

100KD
70KD

55KD

35KD

25KD

15KD
10KD

Figure S4. Western blot analysis of acetylation levels at three stages of ‘Anji Baicha’
leaf development.
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Figure S5. Mass error distribution of peptides identified in the proteome (A) and
acetylome (B) profiles (based on three biological replicates).
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Figure S6. Distribution of peptides in proteome profiles (A-C) and acetylated
peptides in acetylome profiles (D—F) according to length (based on three biological
replicates).
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Figure S7. Comparative analysis of differentially ASs among the three ‘Anji Baicha’
developmental stages.

Supplementary materials and methods

LC—-MS/MS measurement and data analysis for complete peptide mixture

The peptide mixture was loaded onto a reversed-phase pre-column (Acclaim PepMap
100, Thermo Scientific). Peptide separation was performed using a reversed-phase
analytical column (Acclaim PepMap RSLC, Thermo Scientific). Briefly, the peptide
mixture was separated by a linear gradient of 8 to 26% buffer containing 98%
acetonitrile and 0.1% formic acid for 22 min, 26 to 40% for 12 min and increasing to
80% in 3 min then holding at 80% for the last 3 min. The flow rate was 400 nl/min.
The results were analyzed by Q ExactiveTM Plus hybrid quadrupole-Orbitrap mass
spectrometer (Thermo Fisher Scientific). The peptides were subjected to NSI source
followed by tandem mass spectrometry (MS/MS) in Q ExactiveTM Plus (Thermo)
coupled online to the UPLC. Intact peptides were acquired at a resolution of 70,000.
Peptides were selected for MS/MS using the NCE setting as 30, and ion fragments
were detected at a resolution of 17,500. A data-dependent “top 20” method was
applied to obtain the most abundant precursor ions (mass range 350—1800 m/z) above
a threshold ion count of 1E4 in the MS survey scan with 30.0-s dynamic exclusion.
The electrospray voltage used was 2.0 kV.

The resulting MS/MS data was processed using MaxQuant with integrated
Andromeda search engine (v.1.5.2.8). The tandem MS data were searched against the
C. sinensis genome dataset (Xia et al., 2017) concatenated with a reverse decoy
database. Trypsin/P was specified as the cleavage enzyme allowing up to 2 missing
cleavages. The mass error was set to 10 ppm for precursor ions and 0.02 Da for
fragment ions. Carbamido methylation on cysteine was specified as a fixed
modification. Oxidation on methionine was set as variable modification. False
discovery rate (FDR) thresholds for peptide, protein were specified at 1%. The
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minimum peptide length was set to 7. All other parameters were set to the default
values specified by MaxQuant.
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