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S1 DIFFERENTIAL EQUATIONS OF THE EXTENDED MODEL

In the following, the differential equations of the extended model presented in Section 2 of the main
article are described. Since the equilibrium values of this system are of particular interest for the parameter
estimation of GD1, k, and GT3, we also show how to compute the equilibria depending on the parameters.
The model can be expressed via the following system of five coupled nonlinear delay differential equations:

dT4
dt

(t) = αT ·GT ·
TSH (t− τ0T )

TSH (t− τ0T ) +DT
− βT · T4 (t) (S1)

dT3P
dt

(t) = α31

(
GD1 ·

FT4 (t)

FT4 (t) +KM1
+GD2 ·

FT4 (t)

FT4 (t) +KM2
(S2)

+GT3 ·
TSH (t)

TSH (t) +DT
+ GD1

T4,th (t)
TSH(t)

TSH(t)+k

KM1 + T4,th (t)
TSH(t)

TSH(t)+k

+GD2

T4,th (t)
TSH(t)

TSH(t)+k

KM2 + T4,th (t)
TSH(t)

TSH(t)+k

− β31 · T3P (t)

dT3c
dt

(t) = α32GD2 ·
FT4 (t− τ03Z)

FT4 (t− τ03Z) +KM2
− β32 · T3c (t) (S3)

dTSH

dt
(t) = (S4)

αSGH · TRH (t− τ0S)

(TRH (t− τ0S) +DH)
(
1 + SS · TSHz(t−τ0S)

TSHz(t−τ0S)+DS

)
(1 + LS · T3R (t− τ0S))

− βS · TSH (t)
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dTSHz

dt
(t) = (S5)

αS2GH · TRH (t− τ0S2)

(TRH (t− τ0S2) +DH)
(
1 + SS · TSHz(t−τ0S2)

TSHz(t−τ0S2)+DS

)
(1 + LS · T3R (t− τ0S2))

− βS2 · TSHz (t)

where

T4,th = GT ·
TSH

TSH +DT
· s
l

(S6)

FT3 = T3P ·
1

1 +K30 · TBG

FT4 = T4 ·
1

1 +K41 · TBG+K42 · TBPA

T3N = T3c ·
1

1 +K31 · IBS

T3R = GR ·
T3N

T3N +DR

As described in Section 2 in the main text, the novelty of the presented model is the inclusion of
intrathyroidal T3 production, depicted by the three blocks ”T1D“, ”T3 Synthesis“ and ”T2D“ in Figure 1 in
the article. This results in the last three terms inside the bracket on the right hand side of Equation (S2).
Concerning the TSH-stimulated deiodination (corresponding to the last two terms inside the bracket
on the right hand side of Equation (S2)), the following comments are in order. First, the thyroidal T4
concentration, T4,th, is modeled as a zero-th order process, i.e., given by (S6). This is a valid approximation
under the assumption that the thyroidal T4 production is fast compared to peripheral T4 distribution.
Second, the stimulation of the deiodinases by TSH is modeled by the additional multiplicative term
TSH/(TSH +DT ). This can be derived as follows. The considered deiodination is an enzymatic reaction
and can be modeled as many basic enzymatic reactions by

d + T4,th −−⇀↽−− dT4,th −−→ d + T3, (S7)

compare, e.g., [1]. Here, d is the (activated) deiodinase concentration and dT4,th is the concentration of an
intermediate complex between the deiodinase and thyroidal T4. Using the quasi-steady-state assumption1

for the complex dT4,th, such a reaction scheme can be approximated by the well-known Michaelis-Menten-
Hill kinetics GD1T4,th/(KM1 + T4,th) with appropriate constants GD1 and KM1, see, e.g., [1]. The
activation/stimulation of the thyroidal deiodinases by TSH is now modeled by a reaction of the form

d
′
+ TSH −−⇀↽−− d,

1 In case that this assumption does not hold, approximation by a Michaelis-Menten-Hill kinetics might not be valid and other modeling approaches might be
required, compare, e.g., [2].
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where d
′

is the concentration of an inactive form of deiodinase. Combining this equation with (S7) and
using again the quasi-steady-state assumption (both for deiodinase activation and the complex dT4,th)
results in the term appearing in (S2), i.e.,

GD1

T4,th
TSH

TSH+k

KM1 + T4,th
TSH

TSH+k

for some constant k > 0.

We note that an interesting topic for future work would be to include a more precise model of the thyroid
and thyroidal T4 production, e.g., a compartmental model including membrane transporters, or modeling
the dynamics of the second messenger cAMP .

The numerical values of the parameters for the model (S1)–(S5) are listed in Section S3. In order to obtain
the equilibrium hormone levels of the system (S1) - (S5), we set all of the derivatives in equations (S1) -
(S5) to zero and solve the resulting equations for the corresponding hormone values. Due to the complex
structure and the many parameters of the system, this is rather cumbersome but straightforward, as outlined
in the following.

After defining some intermediate parameters

a1 =
αTGT
βT

, a3 =
α32GD2

β32
, b1 =

1

1 +K41TBG+K42TBPA

c2 = 1 +
KM2

a1b1
, c3 = DT

KM2

a1b1

and plugging T4 from equation (S1) into (S3), one arrives at

T3c = a3
TSH

c2TSH + c3
.

This can then be inserted into (S5) which, after performing some algebraic computations, leads to

TSH =
g1TSH

2
z + g2TSHz + g3

g4TSH2
z + g5TSHz + g6

, (S8)

where we again define intermediate parameters as follows:
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a5 =
αS2GH
βS2

, b3 =
1

1 +K31IBS
, c1 =

TRH

TRH +DH
, d2 = LSGRb3a3,

d3 = b3a3 + c2DR, d4 = c3DR, d5 = d2 + d3, d6 = 1 + SS , f1 = c1a5,

g1 = −d4d6, g2 = f1d4 − d4DS , g3 = f1d4DS , g4 = d5d6, g5 = −f1d3 + d5DS ,

g6 = −f1d3DS , g7 =
αS2βS
βS2αS

.

From equations (S4) and (S5), we can also conclude that TSHz = g7TSH . Now, plugging this into (S8),
we finally arrive at a cubic equation in TSH:

m1TSH
3 +m2TSH

2 +m3TSH +m4 = 0 (S9)

where

m1 = g4g
2
7, m2 = g5g7 − g1g27, m3 = g6 − g2g7, m4 = −g3

Solving this cubic equation yields three (complex-valued) solutions for the equilibrium level of TSH . In
practice, it turns out that for the most common parameter settings, there is, indeed, only one solution that is
real-valued and positive and therefore physically reasonable.

Now, one can simply plug this solution for TSH into equations (S1), (S2), (S3), and (S5) to solve for the
other steady-state values. Since the equilibrium value of free peripheral T3 is of particular interest for the
parameter identification, we state the formula for its computation, depending on the parameters GT3, k,
and GD1.

FT3,eq (GT3, k, GD1) = b2
α31
β31

[
GT3

TSH

TSH +DT

+ GD1

(
T4,th

TSH
TSH+k

KM1 + T4,th
TSH

TSH+k

+
FT4

FT4 +KM1

)

+ GD2

(
T4,th

TSH
TSH+k

KM2 + T4,th
TSH

TSH+k

+
FT4

FT4 +KM2

)]

where

b2 =
1

1 +K30TBG

T4,th = GT
TSH

TSH +DT
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It can be seen that FT3,eq (GT3, k, GD1) is affine in GD1 and GT3 for a fixed value of k and given the
equilibrium concentrations of TSH and T4, which can be computed independently of GD1 and GT3. This
fact is used in the parameter identification in the main article.

In the dynamic simulations of the model shown in Section 3 of the main text, we observe that the
stationary hormone levels are slightly higher than the equilibrium value FT3,eq computed above. This is
due to the following. For our dynamic simulation, the TRH concentration arriving at the pituitary has a
circadian oscillation with additional stochastic noise with a log-normal distribution, as discussed in detail
in [3]. On the other hand, for the parameter identification described in Section 2 of the main text, a constant
(equilibrium) value for TRH was assumed. The presence of the additional log-normally distributed noise
causes an offset in TSH (its mean value increases by approximately 17%) which in turn results in the
observed slight increase in FT3 levels. The transient increase in FT3-levels, which can be observed in both
plots in Figure 3 of the main text, is a result of this additional noise and the chosen initial conditions for the
simulation.
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S2 FORMAL DEFINITION OF SENSITIVITY ANALYSIS

The purpose of this section is to formally define the first-order sensitivity matrix of a system of ordinary
differential equations (ODEs) w.r.t. several parameters, following the exposition in [4]. As stated in
Section 4 in the main article, we consider ODEs of the form

ẋ(t) = f(t, x, p), x(t0) = x0. (S10)

where

• t ∈ I denotes time, where I is some closed interval I = [t0, t1] on which the solution x to (S10) is
defined

• p ∈ Rm denotes the m-dimensional parameter vector
• x : I × Rm → Rn denotes the solution to (S10), i.e. x(t, p) is the value of the system state at time t

for a given parameter p
• x0 ∈ Rn is the system’s initial value
• f : I × Rn × Rm → Rn is a continuous vector field that is continuously differentiable w.r.t. x and p

It can be shown (cf. [4]) that if the system (S10) has a unique solution x(t, p0) over I for some fixed
(nominal) parameter vector p0, then it also has a unique solution x(t, p) for all parameter variations p
sufficiently close to p0, i.e. for all p such that ‖p − p0‖ is sufficiently small. Thus, we can define the
sensitivity matrix S : I → Rn×m as the matrix of partial derivatives of the components of x w.r.t. to the
components of p:

(S(t))ij =
∂xi(t, p)

∂pj

∣∣∣∣
(t,p0)

(S11)

Note that, indeed, this matrix describes how sensitive each state component is w.r.t. variations in one
component of the parameter vector p around some nominal value. According to [4], S(t) can be computed
by solving the following system of ODEs:

ẋ(t) = f(t, x, p0)

Ṡ(t) =

[
∂f(t, x, p)

∂x

]
p=p0

· S +

[
∂f(t, x, p)

∂p

]
p=p0

x(t0) = x0, S(t0) = 0

(S12)

This approach can easily be extended to time-varying parameter vectors which is needed in the modeling
of the pituitary-thyroid feedback loop due to the sinusoidal circadian rhythm of TRH .
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S3 NUMERICAL PARAMETER VALUES FOR THE IMPLEMENTATION OF THE
PRESENTED MODEL

Symbol Description Value Origin
TBG Concentration of 300 nmol/l [5] /

thyroxine-binding Globulin well-known reference value
TBPA Concentration of 4.5 µmol/l [5] /

Transthyretin well-known reference value
IBS Concentration of intra-cellular 8 µmol/l Estimated from TBG-level,

T3-binding substrate corrected for intra-cellular
T3-accumulation (according

to values from [6])
TRH TRH-level in hypophyseal 6.9 nmol/l [7]

portal system
GH Secretory capacitiy of the 817mU/s Calculated according to

pituitary values from [8] and [9]
DH Damping constant (EC50) of 47 nmol/l [10]

TRH at the pituitary
αS Dilution factor for 0.4 l−1 Reciprocal value of the

peripheral TSH volume of distribution for
plasma volume of 2.5 l

βS Clearance exponent for 2.3 · 10−4s−1 Calculated from plasma
peripheral TSH half-life of 50 min

([11, 12])
LS Brake constant of 1.68 l/µmol Calculated from clinical

long feedback data of hyperthyroid
patients

GT Secretory capacity of thyroid 3.4 pmol/s [12]
gland

DT Damping constant (EC50) of 2.75mU/l [13]
TSH at the thyroid gland

Table S1. Numerical parameter values for the implementation of the presented model of the HPT axis,
adopted from [14] - part 1.
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Symbol Description Value Origin
αT Dilution factor for T4 0.1 l−1 Reciprocal value of the

volume of distribution (the
latter from [15])

βT Clearance exponent for T4 1.1 · 10−6s−1 Calculated from plasma
half-life of 7 days

([16, 15])
KM1 Dissociation constant of 5’- 500nmol/l [15]

deiodinase I
α31 Dilution factor for 2.6 · 10−2l−1 Reciprocal value of the

peripheral T3 volume of distribution (the
latter from [15])

β31 Clearance exponent for 8 · 10−6s−1 Calculated from plasma
peripheral T3 half-life of 24 h ([15])

GD2 Maximum activity of type II 4.3 fmol/s Calculated from pituitary
deiodinase T3-level ([17])

KM2 Dissociation constant of 5’- 1 nmol/l [18]
deiodinase II

α32 Dilution factor for central T3 1.3 · 10−5l−1 Calculated from volume
of distribution 7.6µl

β32 Clearance-Exponent for 8.3 · 10−4s−1 Calculated from intra-
central T3 cellular half-life of 15 min

[19] and [20])
αS2 Dilution factor for 2.6 · 10−5l−1 Calculated from volume

pituitary TSH of distribution 3.8µl
βS2 Clearance exponent for 140 s−1 estimated corresponding

pituitary TSH to half-life of 5s
DR Damping constant for 100 pmol/l [21]

central T3
GR Maximum gain of TRβ 1mol/s Value unknown, normalized

receptors to 1 (magnitude of feedback
is determined by LS)

SS Brake constant of 100 l/mU Determined according to
ultrashort feedback values from [22]

DS Damping constant for TSH 50mU/l Determined according to
inside the pituitary values from [22]

Table S2. Numerical parameter values for the implementation of the presented model of the HPT axis,
adopted from [14] - part 2.
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Symbol Description Value Origin
K30 Dissociation constant 2 · 109l/mol [12]

T3-TBG
K31 Dissociation constant 2 · 109l/mol Value unknown, adapted

T3-IBS to extra-cellular
dissociation constant

K41 Dissociation constant 2 · 1010l/mol [12]
T4-TBG

K42 Dissociation constant 2 · 108l/mol [12]
T4-TBPA

τ0S Peripheral delay for TSH 120 s Derived from circulation time
τ0S2 Pituitary delay for TSH 3240 s Derived from period of TSH-

pulses (data from [23, 24])
τ0T Delay for T4 300 s Estimated according to

circulation and diffusion times
τ03Z Delay for pituitary T3 3600s Derived from [25]

Table S3. Numerical parameter values for the implementation of the presented model of the HPT axis,
adopted from [14] - part 3.
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Model Configuration Parameter Value
(1) no shunt GT3 -

GD1 27.5 nmol/s
k -

(2) full TSH-T3-shunt GT3 394 fmol/s
GD1 22 nmol/s
k 1mU/l

Table S4. Numerical parameter values for the implementation of the presented model of the HPT axis -
parameters identified via least squares estimation. GT3 is the gain of the Michaelis-Menten-Hill kinetics
in the TSH-T3-Shunt, GD1 describes the maximum activity of type I deiodinase. The parameter k of the
Michaelis-Menten-Hill kinetics that is used to model the TSH-stimulated deiodination inside the shunt
was normalized to 1mUl . There are two different model configurations for which we separately identified
the parameters: The model from [14] without the TSH-T3-shunt (1), and the model including the full
shunt as described in the main article (2). For version (2), the optimal parameters cannot be determined
uniquely. In this case, the above values correspond to a peripheral contribution to the T3 production of
approximately 80%, as described in Section 2 in the article.
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