
Appendix - Histogram Distance Metric Descriptions 

Minkowski Metrics 

We consider five metrics from the Minkowski family as they are the simplest versions of 

distance metrics: 1) City Block (Duda et al., 2000) (also known as the L1-norm), Euclidean 

(Duda et al., 2000) (L2-norm), and Chebyshev (Webb and Copsey, 2011).  The City Block 

metric simply adds up the absolute differences between histogram bins.  The Euclidean metric is 

the familiar distance formula between two points, generalized to the case of histograms.  The 

Chebyshev metric is simply the maximum value of the difference between the histograms for any 

of the bins.  These are some of the simplest metrics, but are not very sensitive to the case in 

which histograms that may be similarly shaped, but simply offset from each other.  

 

City Block: 

 

𝐷𝐶𝐵(𝐴, 𝐵) = ∑|𝐻𝑖

𝑏−1

𝑖=0

(𝐴) − 𝐻𝑖(𝐵)| 

     (1a) 

 

Euclidean: 

𝐷𝐸𝑢𝑐(𝐴, 𝐵) = (∑ (𝐻𝑖
𝑏−1
𝑖=0 (𝐴) − 𝐻𝑖(𝐵))

2)1/2  

     (2a) 

Chebyshev: 

 

𝐷𝐶ℎ𝑒(𝐴, 𝐵) = max⁡i |𝐻𝑖(𝐴) − 𝐻𝑖(𝐵)| 
 

                 (3a) 

 

Here b is the the total number of bins in the set x = x0, x1, …xb-1, n is the total number of binned 

elements, and Hi(X) is the frequency of histogram X in bin i.   

 

The Canberra and Lorentzian metrics are variations of the L1-norm.  The Canberra (Webb and 

Copsey, 2011), which normalizes the absolute differences to the sum of the two bins values and 

is known to be sensitive to small changes near zero, and the Lorentzian (Deza and Deza, 2012) 

which is essentially the log of the L1-norm, though unity is added to ensure non-negativity and 

to avoid the log of zero.   

 

Canberra: 

 

𝐷𝐶𝑎𝑛(𝐴, 𝐵) = ∑ ⁡
(|𝐻𝑖(𝐴)−𝐻𝑖(𝐵)|)

𝐻𝑖(𝐴)+𝐻𝑖(𝐵)
𝑏−1
𝑖=0      

        

    (4a) 

Lorentzian: 

 

𝐷𝐿𝑜𝑟(𝐴, 𝐵) = ∑ ln⁡(

𝑏−1

𝑖=0

1 + |𝐻𝑖(𝐴) − 𝐻𝑖(𝐵)|) 



 

                 (5a) 

 

Intersection Family 

The non-intersection (Duda et al., 2000) metric is based on the minimum value between the 

histograms at each bin. Since we are here interested in the differences between histograms we 

choose the non-intersection, rather than the intersection metric and because we are dealing with 

normalized histograms, this metric is zero if the histograms are identical.  Other, more 

complicated versions of the Intersection family, such as the Czekanowski (Gordon, 1999) metric 

can be shown to be equivalent to the simpler non-intersection metric used here in the case of 

normalized histograms. 

 

Non-Intersection: 

 

 

𝐷𝑁𝐼(𝐴, 𝐵) = 1 −∑min⁡(

𝑏−1

𝑖=0

𝐻𝑖(𝐴),𝐻𝑖(𝐵)) 

(6a) 

 

Fidelity family 

This family contains metrics that employ the sum of the modified geometric means of the 

histograms using the square root rather than the b-th root.  We choose the commonly-used 

Hellinger (Deza and Deza, 2012) metric and the Squared-chord (Deza and Deza, 2012) metric 

which is the most general version. Other commonly used metrics from this family are the 

Bhattacharyya (Bhattacharyya, 1943; Choi and Lee, 2003) distance, Matusita (Matusita, 1951; 

1955) distance.  The Bhattacharyya distance has been shown to be a bound on the Bayesian 

minimum mis-classification probability and is related in form to the Matusita distance.   

 

Hellinger: 

𝐷𝐻𝑒𝑙(𝐴, 𝐵) = 2[1 −∑[𝐻𝑖

𝑏−1

𝑖=0

(𝐴) ∙ 𝐻𝑖(𝐵)]
1/2]

1
2 

                       

     (7a) 

 

 

Squared-chord: 

𝐷𝑆𝐶(𝐴, 𝐵) = ∑(

𝑏−1

𝑖=0

√𝐻𝑖(𝐴) − √𝐻𝑖(𝐵))
2 

                         

     (8a) 

 

 

Inner product Family 

Metrics in the Inner Product family treat the two histograms as vectors and calculate the inner 



product normalized by some factor.  Here we choose the Cosine (Webb and Copsey, 2011) 

metric that is the inner product normalized by the square-root of the sum of the squares of each 

histogram element.  This family also contains the familiar Jacquard (Jacquard, 1901) and Dice 

(Dice, 1945) metrics and which also contain the inner product but have a different normalizing 

factor. 

 

Cosine: 

 

 

𝐷𝐶𝑜𝑠(𝐴, 𝐵) =
∑ 𝐻𝑖
𝑏−1
𝑖=0 (𝐴) ∙ 𝐻𝑖(𝐵)

[∑ (𝐻𝑖
𝑏−1
𝑖=0 (𝐴))2]

1
2 ∙ [∑ (𝐻𝑖

𝑏−1
𝑖=0 (𝐵))2]1/2

 

                         

                  (9a) 

               

Squared –L2 Norm 

Here we use the squared 2 metric (Deza and Deza, 2012) because its normalizing factor is 

symmetric in the two histograms (as opposed to the Pearson (Deza and Deza, 2012) and Neyman 

(Deza and Deza, 2012) 2 metrics which normalize the squared differences in the numerator by 

the bin value of one or the other of the histograms). This metric is essentially the normalized 

Euclidean distance between two vectors.   

 

Squared Chi-Squared 

𝐷𝑆𝑄𝑆(𝐴, 𝐵) = ∑
(𝐻𝑖(𝐴) − 𝐻𝑖(𝐵))

2

𝐻𝑖(𝐴) + 𝐻𝑖(𝐵)

𝑏−1

𝑖=0

 

                  

                          (10a) 

 

Shannon Entropy 

These metrics take the form of Shannon’s entropy (the quantity p  ln(p)) with various choices of 

normalizing factors.  When applied to two histograms, it measures the minimum cross entropy of 

two probability distributions.  The metrics in this family are not, in fact, true distances since they 

are not symmetric with respect to the ordering of the input histograms.  We used the Kullback-

Leibler (Kullback and Liebler, 1951) distance, and Jeffreys (Jeffreys, 1946) metrics, the latter 

being the symmetric form of the former. 

 

Kullback-Leibler  

𝐷𝐾𝐿(𝐴, 𝐵) = ∑𝐻𝑖(𝐴)𝑙𝑛
𝐻𝑖(𝐴)

𝐻𝑖(𝐵)

𝑏−1

𝑖=0

 

 

               

              (11a) 

Jeffreys: 



𝐷𝐽(𝐴, 𝐵) = ∑(𝐻𝑖(𝐴) − 𝐻𝑖(𝐵))𝑙𝑛
𝐻𝑖(𝐴)

𝐻𝑖(𝐵)

𝑏−1

𝑖=0

 

                  

              (12a) 

 

Earth Movers Family 

The Earth Mover’s distance (EMD) (Rubner et al., 1998) calculates the minimum amount of 

work that is necessary to transform one distribution to another.  We have used the Cha-Srihari 

(Cha and Srihari, 2002) distance for ordinal data, which is related to the EMD rather than the 

EMD itself because the Cha-Srihari metric is a special univariate case of the EMD and is of O(b) 

rather than O(b3) complexity and therefore has a lower computational burden. Note that all the 

metrics discussed here operate on single-bins except for the Cha-Srihari metric.    

 

Cha-Srihari distance: 

𝐷𝐶𝑆(𝐴, 𝐵) = ∑|∑(𝐻𝑗

𝑖

𝑗=0

𝑏−1

𝑖=0

(𝐴) − 𝐻𝑗(𝐵)| 

  

           

                 (13a) 

 

All of the chosen metrics, except for the K-L distance, are true metrics because they each satisfy 

the properties of non-negativity ( d(xy)  0 ), commutativity ( d(x,y) = d(y,x) ), reflexivity 

(d(x,x) = 0 ), and the triangle inequality ( d(x,z)  d(x,y) + d(y,z) ). 
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