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Supplementary Methods

Cerebellar microcomplex model

S1.1 Circuit model

The cerebellar microcomplex model (Fig. 2B in the main text) captures the main processing stages

and connectivity layout (e.g. convergence/divergence ratios) of its biological counterpart (see Ito, 2006

for a recent review). model, the mossy fibre (MF) layer consists of 200 cell axons. MFs activate a

population of 104 granule cells (GCs), which produce a sparse representation of the input state space

(see in the main text, Sec. 3.1). Each MF is connected to a GC with a probability PMF�GC = 0.02.

Thus, each GC receives an average of 4 MF inputs and each MF projects onto approximately 200 GCs.

GCs project onto a population of 100 Purkinje cells (PCs) through the parallel fibres (PFs), i.e. GCs’

axons. Each GC can create a connection to a PC with a probability PGC�PC = 0.75. Thus, each PC

can receive about 7500 input connections from PFs. MFs also excite a population of 50 deep cerebellar

nuclei (DCN) cells by all-to-all connections (PMF�DCN = 1). In addition to the excitatory MF input,

the discharge of each unit of the DCN layer —which constitutes the output of the cerebellar network—

is modulated by the inhibitory action of 2 a↵erent PCs. This simplification of the model (a real DCN

is targeted by tenths to hundreds of PCs, Palkovits et al., 1977) has been adopted to merely bypass

a computational load issue: given that each simulated PC integrates the signal of thousands GCs, we

could only implement a small number of PCs, and consequently limit the convergence ratio from PCs

to DCN. A bidirectional long-term plasticity rule modifies the strength of PF–PC synapses, changing

the input-output relationship of the circuit. The teaching signal for the learning rule is conveyed to

the PCs by a population of 2000 inferior olive (IO) neurons, whose axons (i.e. climbing fibres, CFs)

project onto PCs according to a twenty-to-one connection scheme. The biological IO-to-PCs convergence

ratio is actually significantly lower, but we used this connectivity layout to functionally compensate for

the e↵ect of the aforementioned low synaptic convergence from PCs to DCN in our model (Fig. A1).

Finally, the highly simplified microcomplex model does not account for cerebellar interneurons, which

are likely to be involved in denoising neurotransmission in the cerebellum (Hirano et al., 2002), conveying

timing information (Desmond and Moore, 1988; Yamazaki and Tanaka, 2007; D’Angelo and De Zeeuw,

2009), and providing the biological substrate for the implementation of covariance-based learning rules

(Sejnowski, 1977; Dean et al., 2010). Parameters of a simulated cerebellar microcomplex are summarized

in table A1

Di↵erent instances of the microcomplex circuit are used to implement 4 inverse corrector models

(IMs) and 4 forward predictor models (FMs). Both IMs and FMs receive as inputs the motor command

e↵erent copies (i.e. the pair of actual torque values ⌧ 0s(t) and ⌧ 0s(t)), the current state (i.e. the perceived
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Unit name Number of

units

A↵erent con-

nection

E↵erent con-

nection

Connectivity type

MF 200 GR (±200) Random (p = 0.04)

DCN (50) All to all

GR 10.000 MF (±4) Random

PC (±75) Random (p = 0.75)

PC 100 GR (±7500) Random

IO (20) Topographic

DCN (2) Topographic

IO 2000 PC (1) Topographic

DCN 50 PC (2) Topographic

MF (100) All to all

Table A1. Number of units and connectivity between layers for a simulated microcomplex

angular position ✓s(t) and ✓e(t) of shoulder and elbow joints, respectively) and the desired next angular

positions ✓s, ✓e and velocities ✓̇s, ✓̇e for both joints (shoulder s and elbow e). IMs learn to map desired

states (positions and velocities) into torque corrections to compensate for local errors and deviations

during the reaching movement. IM outputs are torque correction values ⌧̂s, ⌧̂e for the shoulder and elbow

joint, respectively. Among the 4 IMs, 2 learn to correct errors in the positive and negative ranges of

the shoulder torque, ⌧̂+s (t) and ⌧̂�s (t), respectively. The other 2 learn to correct errors in the positive

and negative ranges of the elbow torque, ⌧̂+e (t) and ⌧̂�e (t), respectively. The final motor commands sent

to each arm joint are then ⌧ 0s = ⌧s + ⌧̂s, and ⌧ 0e = ⌧e + ⌧̂e, with ⌧s, ⌧e denoting the ideal torque values

computed by the high-level controller (see main text, Fig. 1A).

FMs learn to infer the next shoulder and elbow positions and velocities based on the current state and

torque commands applied to each joint. The FM outputs at time t are the predicted angular positions

✓̂s(t) and ✓̂e(t), the predicted angular speeds ˆ̇
✓s(t) and ˆ̇

✓e(t). Predictions are occurring 100 ms before

the actual sensory feedback for a given context.

S1.2 Neuronal models

We model each MF as the axon of a leaky integrate-and-fire neuron whose membrane potential V (t)

dynamics is defined as:

C
dV (t)

dt
= gleak

⇣

Vleak � V (t)
⌘

+ I(t) (A1)

where C denotes the membrane capacitance and gleak the leak membrane conductance —i.e. ⌧ = C/gleak

is the membrane time constant; Vleak is the resting membrane potential, and I(t) the total synaptic drive.

Whenever the membrane potential reaches a threshold Vth the neuron emits a spike. We used a time step

dt = 1 ms for numerical integration.

GCs, PCs and DCN neurons are conductance based leaky integrate-and-fire units (similar to Carrillo
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Figure A1. Stabilisation of DCN firing rate under di↵erent connectivity layouts. IO neurons

have a very low discharge rate (⇠ 1 to 2 Hz when recorded in vivo) (Gibson et al., 2004). In a network

model with only 2 PCs targeting each DCN cell, and with biologically-plausible 1:1 IO-to-PC connections,

the resulting DCN activity is rather unstable (CVDCN = 0.57 ± 0.06). To compensate for this e↵ect,

each PC of the model receives 20 IO projections, which leads to a more stable DCN activity (CVDCN =

0.16 ± 0.08), with a mean frequency comparable to that of a cerebellar network model in which the

IO-to-PC connection ratio is 1:1 and the PC-to-DCN connection ratio is 20:1 (which is more biologically

plausible). This homoeostatic condition indicates that, in the presence of a nil error signal conveyed

by the IO, LTD and LTP at PF–PC synapses can compensate each other on a long time scale basis,

preventing DCN activity from diverging.

et al., 2008) described by the following equation:

C
dV (t)

dt
= gleak(t)

⇣

Vleak � V (t)
⌘

+ gexc(t)
⇣

Vexc � V (t)
⌘

+ ginh(t)
⇣

Vinh � V (t)
⌘

(A2)

where the membrane potential V (t) depends on an excitatory synaptic conductance gexc, an inhibitory

conductance ginh, and a leaky conductance gleak. Vleak, Vexc, and Vinh are the corresponding resting

potentials. Again, when V (t) reaches a threshold Vth the cell emits a spike. All active conductances

gleak(t), gexc(t), ginh(t) vary according to:

g(t) = g
X

j

Wj

Z t

�1
exp

⇣ t� t0

⌧

⌘

�(t� t0)dt (A3)

where g is the maximal conductance, Wj is the e�cacy of the projection from a presynaptic neuron j

(with hard bounds [0, 1]), ⌧ is the synaptic time constant, t0 is the time of a presynaptic spike, and �(t�t0)

is a Dirac function equal to 1 only when the presynaptic neuron emits a spike at time t0.

The discharge of each IO neuron is modelled by a discrete Poisson spike-train generator with rate r(t)

determined by the corresponding teaching signal (see below).

Table A2 provides the parameter settings for all neuronal models used in our simulations.
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Neuronal parameters

DCN GR PC MF

Vth mV -60 -60 -60 -60

C pF 2 2 2 2

gleak nS 2 2 2 2

Vleak mV -70 -70 -70 -70

gexc nS 0.1 0.2 60 -

Vexc mV 0 0 0 -

ginh nS 2 - - -

Vinh mV -80 -80 -80 -

⌧leak ms 20 20 20 20

⌧exc ms 0.5 0.5 0.5 -

⌧inh ms 10 - - -

Plasticity parameters

Model LTD (�) LTP (↵)

Forward -0.5 1

Inverse -0.025 0.1

Table A2. Parameter settings for neuronal and plasticity models.

S1.3 Encoding MF cerebellar inputs

MFs constitute the main input stage of the cerebellar microcomplex (Eccles et al., 1967). In the model,

they carry information about desired future states (for the input of inverse corrector microcomplexes)

and about current states and torque commands (for the input of forward predictor microcomplexes). For

each input variable, a population of 50 MFs acts as a family of radial basis functions encoding the values

of a variable. More specifically, the input current Ii(t) (Eq. A1) of each MF neuron i is:

Ii(t) = � + exp
⇣

� (x(t)� µi)2

2�2

⌘

(A4)

where µi and �2 are the centre and the variance of the kernel associated to the MF i, respectively. The

distribution of all kernel centres µi covers the input space uniformly and the variance parameter �2

ensures a small overlap between MF responses. The � constant factor in Eq. A4 endows each MF neuron

with intrinsic spontaneous activity at about 5 Hz, whereas the parameters regulating the discharge of

MFs (Eq. A1) limit their activity to 50 Hz.

S1.4 Decoding DCN cerebellar outputs

Decoding DCN activity in inverse corrector models
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For the 4 inverse corrector models, the decoding of DCN activity must produce motor command adjust-

ments —i.e. positive and negative shoulder torque corrections (⌧̂+s (t), ⌧̂�s (t)) and elbow torque corrections

(⌧̂+e (t), ⌧̂�e (t)). For each of the 4 inverse models, an average decoding scheme maps DCN outputs into

torque corrections. For instance, as shown in Figure S3 for the microcomplex correcting positive torque

applied to the shoulder, we take:

⌧̂+s (t) =
A

⌫max
·
D

⌫i(t)
E

i2DCN
(A5)

where ⌫i(t) denotes the instantaneous spike frequency of a DCN neuron i, calculated by averaging over

a rectangular sliding window of 50 ms; the normalisation term ⌫max = 200 Hz is the maximum spike

frequency of DCN cells; the scaling factor A determines the maximum correction amplitude. Similarly,

the output of the microcomplex devoted to negative shoulder torque correction produces a decoded signal

⌧̂�s (t). Then, the overall correction for the shoulder torque is:

⌧̂s(t) = ⌧̂+s (t) + ⌧̂�s (t) (A6)

A similar decoding scheme maps the outputs of the two microcomplexes correcting the elbow torque

signal into a signal ⌧̂e(t).

Decoding DCN activity in forward predictor models

For the 4 forward predictor models, the decoding of DCN activity at time t must estimate the angular

positions (✓̂s and ✓̂e) and the angular velocities (ˆ̇✓s and ˆ̇
✓e) for the shoulder and elbow, respectively, at

time t + �t. A population decoding scheme computes the predictions based on the DCN activity (see

example in Fig. S4):

✓̂(t) =

P

i ⌫i(t) · ✓i
P

i ⌫i(t)
(A7)

ˆ̇
✓(t) =

P

i ⌫i(t) · ✓̇i
P

i ⌫i(t)
(A8)

where ⌫i(t) indicates the instantaneous spike frequency of a DCN neuron i, ✓i denotes the preferred

angular encoded by a DCN neuron i, and ✓̇i the preferred angular velocity of a DCN neuron i in the

corresponding forward models predicting angular position and velocity of the shoulder and elbow joint.

Both preferred angular position and speed values are evenly distributed over the output space (Fig. S4).

The prediction of a forward model is considered as valid if the total activity of its DCN layer overcomes

a threshold (20 Hz in our simulation), that is
P

i2DCN ⌫i(t) > 20 Hz. Otherwise, we consider the forward

model output as being ‘silent’ (see Sec. S1.7).

S1.5 Synaptic e�cacy and plasticity rules

Only the PF–PC synapses of the simulated microcomplex circuit are plastic —i.e. the model does not

account for other plasticity sites in the real cerebellar microcomplex (Hansel et al., 2001; Boyden et al.,

2004; De Zeeuw and Yeo, 2005; Pugh and Raman, 2009).
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The tuning of non-plastic synapses and neuronal parameters is such that the activity of model cerebel-

lar units is compatible with experimental data. The discharge of simulated GCs is consistent with recent

in vivo recordings suggesting that joint-related movement inputs generate sustained GC activity at ⇠ 150

Hz and that two or more MF input spikes are necessary to elicit one GC burst of spikes (Chadderton

et al., 2004; Jörntell and Ekerot, 2006; Rancz et al., 2007; Arenz et al., 2008). Simple spikes of model

PCs occur at a frequency  150 Hz (Raman and Bean, 1999) when PCs are activated by PFs. Complex

spikes of simulated PCs, caused by a single discharge of the a↵erent CF, correspond to learning triggering

events —we do not simulate high frequency components of the bursts. Finally, DCN neurons discharge

at mean firing rates of ⇠ 20 Hz in the presence of active PC inhibitory inputs (Lamont, 2009), whereas

their activity upper-bound is 200 Hz otherwise.

Model PF–PC synapses undergo bidirectional long-term plasticity, i.e. both potentiation, LTP, and

depression, LTD. We implement LTP at each PF–PC synapse as a non-associative weight increase trig-

gered by each GC spike, consistent with the homosynaptic rule described by Lev-Ram et al. (2002):

�W+

PF�PC(t) = ↵ · �(t� tGC) (A9)

where ↵ denotes the gain factor for LTP. The weight is increased only when the presynaptic GC emits a

spike at time t = tGC .

We implement LTD at PF–PC synapses as an associative weight decrease triggered by a spike from

the IO. This is in agreement with the heterosynaptic plasticity mechanism described by Ito and Kano

(1982):

�W�
PF�PC(t) = �� ·

Z tIO

�1
f(t� tGC) �(t� tIO) dt (A10)

where � is a gain factor for LTD, and the temporal kernel function f correlates each IO spike with the

past discharge of a GC (Carrillo et al., 2008). In the model, the largest LTD amplitude occurs when the

PC receives an IO spike approximately 100 ms after an input spike from a GC (see Fig. A2), consistent

with Safo and Regehr (2008).

The total change in synaptic weight in one PF–PC synapse is then:

�WPF�PC(t) = �W+

PF�PC(t) +�W�
PF�PC(t) (A11)

Table A2 provides the parameter settings for the implemented plasticity models.

S1.6 Encoding of error/teaching signals

In both inverse corrector and forward predictor models, IO neurons convey error/teaching signals via the

CFs that target PCs and mediate LTD at PF–PC synapses.

Teaching signal for the inverse corrector model

For the 4 inverse models, the error signal accounts for the di↵erence between desired and actual torque

command. The teaching signal encodes the perceived motor error, which is the discrepancy between the

desired position ✓i of joint i and its real position ✓̄i. The error signal, at time t and for joint i, is then
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Figure A2. LTD kernel for LTD induction at PF–PC synapses (adapted from Carrillo et al.

2008). The kernel is convolved with the spike train of the a↵erent PF (all spikes emitted at time t < 0).

This provides a trace of the past PF activity setting the eligibility of the synapse to depression when the

IO neuron (a↵erent to the PC) emits a spike (at time t = 0). In this example the resulting LTD at the

PF–PC synapse would be equal to
P

7

i=1

LTDi.

✏i = ✓i�✓̂i. This error signal is used to modulate the firing rate r(t) of each IO cell. To compute this value,

we first extract the positive part of the error signal for joint i, [✏i]+, which is related to an error in the

corresponding agonist muscle, and the negative part [✏i]�, which is related to an error in the antagonist

muscle. For instance, the firing rate r(t) of all IO neurons in the two microcomplexes correcting errors in

the positive range (⌧̂+s ) and negative range (⌧̂�s ) of the torque command of the shoulder vary respectively

according to:

r⌧+
s
(t) = k · H([✏s(t)]

+) (A12)

r⌧�
s
(t) = k · H([✏s(t)]

�) (A13)

where k = 10 is a scaling factor and H is the Heaviside function defined such that H(0) = 0.1. According

to Eqs. A12, A13 (and see also example in Fig. S3):

• When the cerebellar output equals the output required for the shoulder, i.e. no torque change is

needed and ✏s(t) = 0, the mean IO firing rates are r⌧+
s
(t) = r⌧�

s
(t) = 1 Hz, which make heterosy-

naptic LTD (Eq. A10) and homosynaptic LTP (Eq. A9) at PF–PC synapses to compensate each

other in both microcomplexes —i.e. no adaptation takes place.

• When the cerebellar output is smaller than necessary for the shoulder, i.e. the torque of the shoulder

must be increased and ✏s(t) > 0, then r⌧+
s
(t) = 10 Hz, which makes LTD to take over LTP in the

active PF–PC synapses of the corresponding microcomplex. The consequent decrease of PF–PC
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synaptic e�cacy reduces the inhibitory action of PCs onto DCN neurons the next time that the

microcomplex receives the same contextual input —which activates the same PF–PC synapses and

then the same PC responses. As a consequence, the population activity of DCN neurons increases,

which reinforces the correction signal ⌧̂+s (t) (according to Eq. A5). In addition, for ✏s(t) > 0,

the mean IO firing rates r⌧�
s
(t) = 0 Hz, which blocks LTD in the active PF–PC synapses of the

corresponding microcomplex. Thus, LTP increases and strengthens future inhibitory actions of PCs

onto DCN neurons in the presence of the same contextual input to the microcomplex. Then, the

correction signal ⌧̂�s (t) decreases over time. As a consequence, the resultant correction ⌧̂s(t) tends

to increase and become positive over training.

• Conversely, when the cerebellar output overshoots the output required for the shoulder —i.e. the

torque command of the shoulder must be decreased and ✏s(t) < 0— the overall correction ⌧̂s(t)

tends to decrease and become negative over training.

During o✏ine consolidation, the sensory feedback is not available. Therefore, teaching signals are

calculated based on the predictions provided by the forward model. The error signal, at time t, for joint

i is then given by ✏i(t) = (✓i(t) � ✓̂i(t)), with ✓i(t) denoting the desired position of joint i at time t

and ✓̂i(t) its predicted position estimated by the corresponding cerebellar forward model. When forward

predictions are not available (i.e. when the DCN activity of corresponding microcomplex are at baseline),

then the input-output function stored in the inverse model must be preserved. Hence, heterosynaptic LTD

(Eq. A10) and homosynaptic LTP (Eq. A9) at PF–PC synapses must lead to a homeostatic condition

(see Sec. S1.7))

Teaching signal for the forward predictor model

For the forward model, the teaching signal relies on the perceived state of each limb. The mean firing

rates of IO cells in each microcomplex vary according to a set of radial basis functions spanning the state

space uniformly. For instance, in the microcomplex sub-serving the prediction of the shoulder angular

position (Fig. S4), the mean firing rates of each IO cell i varies as:

ri(t) = k · exp
⇣

� (✓ � ✓i)2

2�2

i

⌘

(A14)

where k = 10 is a scaling factor, ✓i is the “preferred angle” of the cell, and � determines the degree of

overlap between adjacent IO responses. In this microcomplex, a group of 40 IO cells shares the same

preferred angle. Each group of IO neurons targets two distinct PCs, which in turn inhibit the same DCN

unit. The latter codes for the same portion of the ✓ state space (and has the same preferred angle ✓i)

than the IO cells that modulate its inhibitory PC a↵erents. According to Eq. A14 and to the plasticity

rules (see also example in Fig.. S4):

• If the firing rate of the group of IO cells with preferred angle ✓i is ri(t) ⇠ 1 Hz, then LTD and

LTP at PF–PC synapses of the two PCs driven by these two IO cells compensate each other. No

learning occurs.
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• If the firing rate of the IO cells with preferred angle ✓i is 1 < ri(t)  10 Hz, then LTD dominates

LTP at the PF–PC synapses of the two PCs driven by these two IO cells. Thus, over training,

the DCN unit whose preferred angle is close to ✓i tends to increase its firing activity, whereas the

other DCN units tend to either decrease or maintain their spike frequency. As a consequence, the

decoding scheme used to readout the population activity of DCN neurons in the forward predictor

model (Eq. A7) will tend towards an estimate of the next angular position close to ✓i.

• Conversely, if the firing rate of the IO cells with preferred angle ✓i is 0  ri(t) < 1 Hz, then LTP

dominates and the corresponding DCN neuron tends to decrease its spike frequency. Thus, this

DCN unit will not contribute to the population decoding scheme significantly.

During o✏ine consolidation, the real state of each limb is not perceived by the system (sensory

feedback isn’t available), hence no modification occurs in forward microcomplexes, and ri(t) = 1 Hz for

all IO neurons.

S1.7 Bistability of the forward model

We assume that forward predictions are useful only when accurate (Shadmehr et al., 2010). The accuracy

of the forward prediction is reflected by a bistable behaviour, with active DCN neurons in the presence of

reliable predictions and with below-threshold DCN activity otherwise. This all-or-none response results

from the connectivity and coding schemes employed for the forward model. Recall that each DCN unit

and each IO cell codes for a specific value of a variable, with the whole range of values being distributed

over the entire population of cells.

The following example illustrates how the all-or-none response of the forward model works. Before

training, DCN neurons discharge at baseline activity due to dominant PC inhibition —which results

from the initialised large synaptic weights between PFs and PCs. When feeding this “näıve” network

with a torque command ⌧ 0
1

, the latter activates a subset of GGs (G
1

), which in turn excite the PCs, and

then inhibit DCN activity. Let us now suppose that the actual execution of ⌧ 0
1

took the shoulder at an

angular position ✓, and let IO✓ be the subset of IO cells coding for that angular value. The discharge

of IO✓ cells triggers LTD between active PFs and PCs. Let PC✓ denote the subgroup of PCs targeted

by IO✓. The induction of LTD decreases the connection strength between G
1

and the PC✓. Then, the

activity of PC✓ directly influences the activity of the subgroup of DCN cells that code for the angular

position ✓, i.e. DCN✓. Reiterating this adaptation process will incrementally decrease the activity of

the PC✓ population and prevent it from inhibit DCN✓ cells completely. Hence, in response to the next

presentation of the torque command ⌧ 0
1

, DCN✓ cells will discharge and the output of the forward model

will code for the predicted angular position ✓. Conversely, if we now present a new motor command ⌧ 0
2

,

a new set G
2

of GCs will become active. Since previous training did not modify the connections between

G
2

and PCs, DCN cells will remain silent (due to dominant PC inhibition).

This bistability is fundamental in our simulations for two reasons. First, during online processing,

the simulated high level controller uses incoming signals from forward models to recompute the optimal

trajectory. Thus, erroneous state predictions conveyed by the forward models would lead to catastrophic
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performance. Second, during o✏ine processing, the predictive outputs of forward models is exploited to

extract the teaching signal for the inverse corrector models. Again, suboptimal state predictions would

favour destructive interferences.

S1.8 Sparseness of neural activity

We quantify both population and lifetime sparseness (Willmore and Tolhurst, 2001; Martinet et al., 2011)

of simulated MF and GC activity by means of the kurtosis function (Field, 1994).

Population kurtosis is defined as:

K(s) =

*



rj(s)� r̄J(s)

�J(s)

�

4

+

j2J

� 3 (A15)

with r̄J(s) and �J(s) representing the mean and the standard deviation of the population activity dis-

tribution for a given input s, respectively. It estimates how many neurons j in a population J are, on

average, simultaneously responding to an input s.

Single cell lifetime kurtosis is defined as:

K(j) =

*



rj(s)� r̄j
�j

�

4

+

s2S

� 3 (A16)

with r̄j and �j being the mean and the standard deviation of the cell response rj to the set of inputs S,

respectively. It assesses how rarely over time a neuron j responds to inputs S.

To compute the Kurtosis values reported in the main Results section, we fed the cerebellar networks

with a set of 10000 distinct patterns covering the input entry space uniformly. Each pattern was considered

independent from the others and presented 100 times for 100 ms.

S1.9 LTD–LTP compensation and stabilisation protocol

In order to evaluate the extent of LTD–LTP compensation at parallel fibre–Purkinje cell synapses, we

used a simple stabilisation protocol in which the input/output relationship of the cerebellar microcomplex

model had to remain stable over time. The protocol consisted of one session of 1000 s during which we

fed a subset of 100 mossy fibres with a constant current making them discharge at approximately 100 Hz.

A null error signal was used to modulate the firing rate r(t) of each IO cell. Thus, each IO cell discharged

at approximately 1 Hz following a Poisson process (we recall that 1 Hz is the firing rate of IO cell when

no error is sensed). We measured the variability of simulated DCN activity by computing the coe�cient

of variation (CVDCN ) as a function of the number of PCs projecting onto each DCN unit. We averaged

the results over a population of 10 model instances (see Fig. 4 F).

S1.10 Computational aspects of the model implementation

The spiking neurons of the cerebellar network were simulated by using a table-based event-driven sim-

ulator, namely the EDLUT simulator (Ros et al., 2006). The control system was tested in simulations



11

on a Intel Centrino dual core –2.4 GHz. Each cerebellar network consisted of nearly 40000 neurons and

approximately 3500000 synaptic connections. During 1 s of simulation, the cerebellar network received

an average of 2250 spikes, delivered 3350 output spikes, and processed approximately 2500000 events.

Under these conditions the simulator ran at 1/2 real time speed.

Model of the controller

S2.1 Minimum jerk model

We use a minimum-jerk model (Flash and Hogan, 1985) to determine the optimal trajectory of the hand

between an initial position and a target, as it is done in Carrillo et al., 2008. This method helps to to

reduce the computational load and the degree of freedom of a given movement, and it constrains the

limbs to act as one unit instead of sets of muscles and joints.

Jerk is defined as the rate of change (i.e. derivative) of acceleration along time. If x(t) is a function

defining the position of a moving object along time t, then jerk is defined by: x(3)(t). The minimum jerk

model is an optimization methods based on smoothness cost function defined on the whole movement

(from time t
0

to time t
1

):

C(x) =
1

2

t1
Z

t0

h

x(3)(t)
i

2

dt (A17)

We use calculus of variation methods to determine the function Xj that minimizes C.

Any function y(t) describing a movement with the same boundary conditions (initial and final position,

velocity and acceleration) can be written as:

y(t) = Xj(t) + e⌘(t) (A18)

where e is a real number and ⌘ a function satisfying the following boundary conditions:

⌘(t
0

) = ⌘(t
1

) = 0

⌘̇(t
0

) = ⌘̇(t
1

) = 0

⌘̈(t
0

) = ⌘̈(t
1

) = 0

(A19)

As Xj represents the minimum C, we should have:

t1
Z

t0

X
(3)

j (t)⌘3(t)dt = 0 (A20)

for all functions ⌘. Given the boundary values of ⌘, integrating by parts the left side of the above

equation leads to:
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t1
Z

t0

X
(6)

j (t)⌘(t)dt = 0 (A21)

This must hold true for each function ⌘, therefore X
(6)

j (t) = 0, 8t 2 [t
0

, t
1

]:

If we now consider a two-dimensional movement X(t) = (x(t), y(t))t, the previous demonstration still

holds and the result can be projected onto each dimension:

8 t 2 [t
0

, t
1

], x(6)

j (t) = 0 and y
(6)

j (t) = 0 (A22)

S2.2 Inverse kinematics model

The inverse kinematics of the arm are given by the following set of equations.

✓s = atan
�

y
x

�� atan
⇣

l2 sin ✓e
l1+l2 cos ✓e

⌘

✓e = acos
⇣

x2
+y2�l21�l22

2l1l2

⌘ (A23)

 

✓̇s

✓̇e

!

= J�1

 

ẋ

ẏ

!

 

✓̈s

✓̈e

!

= J�1

" 

ẍ

ÿ

!

+

 

l
1

✓̇2s cos ✓s + l
2

(✓̇s + ✓̇e)2 cos(✓s + ✓e)

l
1

✓̇2s sin ✓s + l
2

(✓̇s + ✓̇e)2 sin(✓s + ✓e)

!#

J =

 

�l
1

sin ✓s � l
2

sin(✓s + ✓e) �l
2

sin(✓s + ✓e)

l
1

cos ✓s + l
2

cos(✓s + ✓e) l
2

cos(✓s + ✓e)

!

(A24)

J represents the Jacobian of the coordinates transformation, l
1

is the length of the upper arm and

l
2

is the length of the forearm. We assume homogeneity along the limb, then I
1

= (m1
3

+ M
2

)l2
1

and

I
2

= m2l
2
2

3

, where m corresponds to the weight of the limb, M for the weight of its control motor, and

I its inertia at joint (again, subscript 1 represent the variables related to the upper arm and subscript

2 the variable related to the forearm). Parameters used for the arm are: l
1

= 22.5 cm, l
2

= 25.5 cm ,

m
1

= 0.15 kg, m
2

= 0.15 kg, M
2

= 0.3 kg as in Carrillo et al. (2008).

✓s represents the angle of the upper arm relative to the X axis (shoulder angle), and ✓e the angle of

the forearm relative to the upper arm (elbow angle). x and y correspond to the Cartesian coordinates of

the arm end-point E.

S2.3 Inverse dynamics model

The inverse dynamics model of the arm is given by:

 

⌧s

⌧e

!

= M(⇥des)

 

✓̈s,des

✓̈e,des

!

+ C
⇣

⇥des, ⇥̇des

⌘

 

✓̇s,des

✓̇e,des

!

(A25)
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where ⌧i is the torque to apply at joint i to follow the desired trajectory:

T arm
des =

n⇣

⇥des(t), ⇥̇des(t), ⇥̈des(t)
⌘

, t 2 [0,�T ]
o

,

The matrices of inertia and of Coriolis and centrifugal coe�cient are given by:

M(⇥) =

 

I
1

+ I
2

+ 2m
2

l
1

lg2 cos ✓e +m
2

l2
1

I
2

+m
2

l
1

lg2 cos ✓e

I
2

+m
2

l
1

lg2 cos ✓e I
2

!

C(⇥, ⇥̇) =

 

�2m
2

l
1

lg2✓̇e sin ✓e �m
2

l
1

lg2✓̇e sin ✓e

m
2

l
1

lg2✓̇s sin ✓e 0

!

(A26)

where lg2 is the distance of the center of mass of the forearm relative to the elbow. In our simulation,

we suppose a uniform repartition of the mass of the limb, then lg2 = l2
2

.
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Supplementary Results

Properties of cerebellar internal models subserving sensorimotor

adaptation

S1.1 Sparse coding of contextual information by the cerebellar granular layer

Cerebellar granule cells (GCs) are thought to optimally re-encode mossy fibre (MF) inputs to enhance

learning capacity at parallel fibre–Purkinje cell (PF–PC) synapses (Marr, 1969; Schweighofer et al., 2001;

Brunel et al., 2004; Philipona and Coenen, 2004; Ito, 2006). Accordingly, our simulated granular layer

produced a sparse representation (both in space and time) of the a↵erent MF signals (Figs. A1A, B). A

comparative kurtosis analysis (Field, 1994; Willmore and Tolhurst, 2001) of simulated GC and MF codes

showed a significant increase of sparseness at the level of both population and unitary GC responses

(Fig. A1C). The population sparseness of the GC code was significantly larger relative to MF inputs

(KGC = 14.1± 1.8, mean ± std; KMF = 4± 2; ANOVA, F1,18 = 140.83, P < 0.001), suggesting a better

separation of sensorimotor contexts downstream from the GC layer. The selectivity of single neurons

with respect to a↵erent patterns (i.e. lifetime kurtosis) was also significantly larger in GCs compared

to MFs (K 0
GC = 25.7 ± 2; K 0

MF = 3.9 ± 1.6; ANOVA, F1,18 = 710.08, P < 0.001), suggesting that, on

average, single GCs responded to a smaller number of contexts than single MFs.

S1.2 Bistability of forward predictor models

In our cerebellar model, the accuracy of a prediction was reflected by a bistable behaviour, with active

DCN neurons (output) in the presence of reliable predictions, and with below-threshold DCN activity

otherwise. This all-or-none response resulted from the connectivity and coding schemes employed for the

forward model (see Supplementary Methods). When forward models were inactive, the mean prediction

errors were large (e.g. larger than 20° for the predicted positions of both arm joints, Fig. A1D). By

contrast, when the forward models became active, the mean prediction errors reduced below 4° for

both joints, with the prediction accuracy tending to improve with the increase of DCN spike rates. The

number of context presentations necessary for FMs to reliably predict the shoulder and elbow joint angular

positions was 5 ± 0.9 (mean ± s.e.) and 5.5 ± 0.7, respectively (Fig. A1E). Similarly, few presentations

were necessary to acquire accurate joint speed predictions for the two joints (8.1 ± 0.5 and 7.5 ± 0.5,

respectively, Fig. A1E).
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Figure A1. Properties of cerebellar internal models subserving sensorimotor adaptation.

A. Global activity of the granular cells (GCs) of a forward model during a 700 ms simulation. The GC

population is represented on a square array of 35 by 35 cells. The z axis shows the number of spikes

that the neuron of index (i, j) fired during the generation of the movement. Every 10ms, an average of

35 ± 1 GR cells discharged, which represents nearly 3% of the granular layer population and 7% of the

active cells during the whole movement. B. Snapshots of GC population activity at three di↵erent times

of the same trajectory (i.e. at time t=100; 200 and 500 ms). The same colour map of A is used. C.

Comparison between population and lifetime kurtosis of GC and mossy fibre (MF) activity. D. Mean

angular prediction error of the forward model activity for elbow and shoulder joints as a function of the

DCN activity of the corresponding forward model. E. Mean number of presentations necessary to create

stable context-response associations. F. Coe�cient of variation of DCN activity as a function of the

number of Purkinje cells (PCs) connected to each DCN.
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S1.3 The amount of synaptic convergence from PCs onto DCNs is relevant

to the stability of sensorimotor learning

The teaching signal driving learning in cerebellar internal models could happen to be unavailable or nil

(e.g. during o✏ine consolidation, see below). In this situation, previously learnt sensorimotor associations

had to persist unchanged to avoid destructive interference. This requirement implied that, in the absence

of a teaching signal, LTP and LTD at model PF–PC synapses had to compensate for each other, letting the

cerebellar input-output dynamics unchanged. Maintaining this balance was not trivial to achieve because

LTP and LTD are not symmetrical processes. Indeed, LTP at PF–PC synapses is an homosynaptic

process occurring before knowing whether the teaching signal will be available or not. By contrast,

LTD is a heterosynaptic mechanism triggered by climbing fibre activity and signaling past events (see

Supplementary Methods).

In our simulations, we observed that LTP/LTD mutual compensation at PF–PC synapses depended

on the connectivity layout of the cerebellar network, and in particular on the PC–to–DCN synaptic

convergence. We assessed the extent of LTP/LTD compensation indirectly, by measuring the firing

variability of simulated DCN cells. We quantified the coe�cient of variation of DCN neurons (CVDCN )

as a function of the number of PCs projecting onto each DCN unit (Fig. A1F; see Supplementary

Methods for protocol details). The CVDCN was large for small PC-to-DCN synaptic convergence (e.g.

< 5 PC a↵erent projections per DCN cell), whereas it significantly decreased for larger values of the

PC-to-DCN convergence (e.g. � 30 PC synaptic contacts per DCN neuron). This result is consistent

with neuroanatomical data suggesting that each DCN cell is likely to integrate information from tenth

to hundreds PCs (Palay, 1974; Palkovits et al., 1977).
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Figure Captions

Figure S1 Coupling scheme for online and o✏ine sensorimotor adaptation. A. Online

learning scheme. At each time step, the limb controller (motor cortex) receives the desired state in the

form of target position of the arm end-point and transforms them into torque motor commands for each

joint. The desired state is also sent to a set of cerebellar inverse corrector models (IMs) that calculate

context-dependent adjustments of motor commands prior to their transmission to the motor apparatus

(e.g. muscles). An e↵erence copy of final motor commands is sent to a set of cerebellar forward predictor

models (FMs) that estimate the future state of each joint. Based on FM predictions, the controller can

then eventually update the inverse dynamics calculations. At each time step, the teaching signal for the

IM is computed by sensing the di↵erence between desired and actual state, whereas the teaching signal

for the FM is based on the sensed actual state only. B. O✏ine learning scheme. In the absence of

sensory feedback during o✏ine processing, the state predictions of at least partially trained FMs can be

used to train the IMs o✏ine —by assuming that the entire sequence of actions executed during online

training can be replayed o✏ine, in order to provide an input to the controller.

Figure S2 Coding scheme for the inverse corrector implemented by the cerebellar micro-

complex model. Example of error encoding and output decoding for the virtual agonist muscle of the

shoulder joint (positive correction). The teaching signal encodes the angular error, that is the di↵erence

between desired ✓s and actual ✓̄s angular position of the shoulder. Here, the error ✓s � ✓̄s indicates that

the torque command sent to the shoulder must increase, i.e. [✏+i ] > 0. Then the mean firing rate of IO

neurons is set to r⌧+
s

(t) = 10 Hz, which makes LTD to take over LTP in the active PF–PC synapses

of the corresponding microcomplex. The consequent decrease of PF–PC e�cacy reduces the inhibitory

action of PCs onto DCN neurons. Hence, the next time that the microcomplex will receive the same

contextual input, the average population activity of DCN neurons h⌫(t)i will increase, reinforcing the

correction signal ⌧+
s (t).

Figure S3 Coding scheme for the forward predictor implemented by the cerebellar mi-

crocomplex model. Example of error encoding and output decoding for the predicted angular position

of the shoulder. The teaching signal encodes the actual position ✓̄s reached by the shoulder joint 100

ms after the execution of the last motor command. The firing rates of IO cells ri(t) vary according to a

set of radial basis functions spanning the ✓̄s state space uniformly. A group of IO cells share the same

preferred angle and each group targets two distinct PCs, which in turn inhibit a single DCN unit. The

latter codes for the same portion of the angular state space (and has the same preferred angle ✓i) than
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the two IO cells that modulate its inhibitory PC a↵erents. Depending on the firing rate of a group of

two IO cells, three cases can be distinguished: (i) if the firing rate of the IO cells with preferred angle ✓i

is ri(t) ⇠ 1 Hz (r1 in this example), then LTD and LTP at PF–PC synapses of the two PCs driven by

these two IO cells compensate each other and no learning occurs. The corresponding DCN neuron tends

to stabilise its spike frequency (⌫1); (ii) if the firing rate of the two IO cells with preferred angle ✓i is

0  ri(t) < 1 Hz (rn�1 and rn in this example), then LTP dominates and the corresponding DCN neuron

tends to decrease its spike frequency (⌫n�1 and ⌫n); (iii) if the firing rate of the two IO cells with preferred

angle ✓i is 1 < ri(t)  10 Hz (r2 in this example), then LTD dominates LTP at the PF–PC synapses

of the two PCs driven by these two IO cells. Thus, over training, the DCN unit whose preferred angle

is close to ✓i tends to increase its firing activity (⌫2 in this example). As a consequence, the decoding

scheme used to readout the population activity of DCN neurons will tend towards an estimate of the next

angular position ✓̂ close to ✓̄s. (The colour code used to describe the intensity of neuronal discharges is

the following: white for no activity, light blue for low activity, and dark blue for high activity).

Figure S4 Adaptation in forward and inverse cerebellar models. A. Normalised prediction

error for the angular position of the shoulder in three sample contexts. The prediction error of forward

cerebellar models (FMs) is large at the beginning of the training, but it decreases to small values after few

motor command presentations. Simulated FMs have a bistable behaviour: at the beginning of training,

their output is silent (i.e. DCN neural activity is at baseline) due to dominant inhibition from PCs.

After a few input presentations, learning inhibits PCs enabling DCN firing, and the prediction error of

FMs decreases abruptly. B. Time course of FM learning. After 60 presentations of the same context,

simulated FMs could reliably predict the outcome of ⇠ 35% of torque commands applied to both joints

—i.e. they could estimate both future angular position and velocity prior to the execution of 35% of

the received torque commands. The performance of FM predictors increased monotonically and reached

65 � 70% after 5 minutes of training (i.e. 300 presentations of the same target). C. Time course of

inverse model (IM) adaptation. Learning in simulated IM correctors improved the accuracy of motor

command execution. The residual error of IM correctors decreased steadily over time. The convergence

of the learning process required ⇠ 300 presentations.

Figure S5 Coupling forward and inverse models enhances online sensorimotor adaptation.

Time course of the distance error. The mean normalised distance error (averaged over all subjects)

is plotted as a function of training trials. Only subjects using a coupled cerebellar model (i.e. CM group,

plain green curves) succeeded in reducing the distance error e↵ectively over training. Subjects using the
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inverse model only (i.e. IM, red line) demonstrated a slower learning process compare to those using a

forward model only (i.e. FM, blue line).

Figure S6 Examples of torque commands over time. The time course of torque intensities for

target 1 and target 2 (green circles) are shown (top and bottom rows, respectively) through the realisation

of one reaching movement (⇠ 700ms). For both targets, 4 di↵erent configurations are shown (from left

to right: with no adaptation, forward model scheme only, inverse model scheme only, and coupling

scheme). Note that the torques sent to each articulation are not static during movement. Rather, they

change dynamically to achieve the desired trajectory. Also, two symmetrical movements imply two sets

of independent torque commands (compare first and second trajectories, in top and bottom rows, when

no adaptation is allowed). Finally, a correction of the angular deviation implies a new set of torque

commands independent from those of the not corrected movement (compare torque commands of ‘No

adaptation scheme’ versus ‘Coupling scheme’ for target 2).
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