Supporting information

Combined metabonomic and quantitative RT-PCR analyses revealed metabolic reprogramming associated with *Fusarium graminearum* resistance in transgenic *Arabidopsis thaliana*

Fangfang Chen^{1,2#}, Caixiang Liu^{3#}, Jingtao Zhang³, Hehua Lei³, He-Ping Li², Yu-Cai Liao^{2*}, Huiru Tang^{3,4,*}

¹CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.

²College of Plant Science and Technology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.

³CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China.

⁴State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Collaborative Innovation Centre for Genetics and Development, Shanghai International Centre for Molecular Phenomics, Metabonomics and Systems Biology Laboratory, Fudan University, Shanghai, 200433, China.

*Correspondence should be addressed to H.T. (Huiru_tang@fudan.edu.cn) or Y.C.L. (yucailiao@mail.hzau.edu.cn)

[#] These authors contributed equally to this work.

Running title: Metabolic reprogramming of A. thaliana against FG

List of Supplementary Figures and Tables:

Figure S1. Phenotype for mature seeds of the *F. graminearum* inoculated *A. thaliana*.

Figure S2. Differential metabograms for wild-type (WT) and transgenic *A. thaliana* expressing Chi, CWP2 and Chi-CWP2, respectively, treated with water (but without FG).

Figure S3. Differential metabograms for wild-type (WT) and transgenic *A. thaliana* expressing Chi, CWP2 and Chi-CWP2, respectively, with FG challenge.

Figure S4. Heatmaps showing correlations of mycotoxin contents with the FG-induced significant changes of metabolites (a) and mRNA levels of twelve genes (b) for wild-type (WT) and transgenic *A. thaliana* expressing Chi, CWP2 and Chi-CWP2 respectively.

Table S1. T_1 values (seconds) for protons of some selected metabolites in *A. thaliana*.

Table S2. Primers for quantitative real-time PCR (qRT-PCR) analysis of gene expressions.

 Table S3. Tail-PCR primers used in this study.

Table S4. NMR data and signal assignments for metabolites in wild-type and transgenic *A*. *thaliana* expressing Chi, CWP2 and Chi-CWP2.

Table S5. P-values for inter-group differentiated metabolites in transgenic A. thaliana

 expressing Chi, CWP2 and Chi-CWP2 inoculated with water and FG, respectively.

Figure S1. Phenotype for mature seeds of the *F. graminearum* inoculated *A. thaliana*.

A, WT; B, Chi; C, CWP2; D, Chi-CWP2; E, Healthy seeds; Bar=1 mm.

Figure S2. Differential metabograms for wild-type (WT) and transgenic *A. thaliana* expressing Chi, CWP2 and Chi-CWP2, respectively, treated with water (but without FG). Only the red-colored metabolites had significant inter-group differences. Keys for metabolites are given in Table S4.

Figure S3. Differential metabograms for wild-type (WT) and transgenic *A. thaliana* expressing Chi, CWP2 and Chi-CWP2, respectively, with FG challenge. Only the red-colored metabolites had significant inter-group differences. Keys for metabolites are given in Table S4.

Figure S4. Heatmaps showing correlations of mycotoxin contents with the FG-induced significant changes of metabolites (a) and mRNA levels of seven genes (b) for wild-type (WT) and transgenic *A. thaliana* expressing Chi, CWP2 and Chi-CWP2 respectively. The correlation coefficients were color-coded with hot color (e.g., red) denoting positive correlations whereas the cool one (e.g., green) indicating negative ones. *TAT*, tyr aminotransferase; *ACS*, acetyl-CoA synthetase; *a-KGDH*, *a*-ketoglutarate dehydrogenase; *IDH*, isocitrate dehydrogenase; *BADH*, betaine-aldehyde dehydrogenase; *OAT*, ornithine aminotransferase; *SSADH*, succinic-semialdehyde dehydrogenase; *XS*, xylan synthase; *G6PD*, glucose-6-phosphate -1-dehydrogenase; *IDO*, indoleamine 2,3-dioxygenase; *PAL*, phenylalanine ammonia-lyase; *SS*, strictosidine synthase.

match alitas	$\int (multiplata)^a$	T_1 Values		
metadomes	o (multiplets) –	Mean	SD	
Tsp	0.00 (s)	2.03	0.01	
alanine	1.48 (d)	2.42	0.01	
isoleucine	1.01 (d)	0.85	0.01	
valine	1.04 (d)	1.01	0.01	
threonine	1.33 (d)	0.94	0.01	
γ-aminobutyrate	2.30 (t)	1.47	0.01	
pyruvate	2.37 (s)	1.46	0.06	
succinate	2.41 (s)	1.07	0.01	
glutamine	2.45 (m)	1.22	0.01	
citrate	2.56 (d)	0.18	0.02	
aspartate	2.80 (dd)	0.63	0.01	
asparagine	2.88 (dd)	1.13	0.01	
ethanolamine	3.14 (t)	2.42	0.02	
choline	3.19 (s)	2.33	0.01	
betaine	3.26 (s)	1.51	0.02	
myo-insitol	3.27 (t)	1.51	0.01	
fructose	4.11 (d)	1.07	0.01	
proline	4.14 (m)	ND	ND	
malate	4.32 (dd)	0.25	0.01	
galactose	5.26 (d)	1.93	0.02	
α-glucose	5.23 (d)	2.42	0.01	
sucrose	5.40 (d)	1.07	0.01	
fumarate	6.52 (s)	1.98	0.01	
histidine	7.11 (s)	1.70	0.01	
phenylalanine	7.42 (m)	2.50	0.01	
trytophan	7.53 (d)	2.09	0.02	
tyrosine	6.90 (d)	2.59	0.02	
uridine	7.85 (d)	1.48	0.01	
inosine	8.22 (s)	ND	ND	
hypoxanthine	8.24 (s)	2.70	0.01	
adenosine	8.32 (s)	1.27	0.01	

Table S1. T_1 values (seconds) for protons of some selected metabolites in *A. thaliana*.

ND: T_1 value was not determined because of signal overlapping; ^a δ : chemical shifts.

	Gene encoded protein	Sequence (F: Forward, 5'-3'; R: Reverse, 5'-3')	Gene
1	beta-tubulin	F: TGCTATTCTGCGTTTGGACCTTG	At3g12110
		R: ATCCCTTACGATTTCACGCTCTG	
2	tyrosine aminotransferase (TAT)	F: GGGAATGTTTTCTCTCGCCAA	At5g36160
		R: CACCATCCAACCAAGTCTCCA	
3	acetyl-CoA synthetase (ACS)	F: TAAACGCCGTCGTGTTAGGAGA	At5g36880
		R: TATCAGACCAAAAAGCAGCAGGG	
4	α-ketoglutarate dehydrogenase(α-KGDH)	F: TCTTCTTCTGCTTCGGGATTGG	At5g55070
		R: TGGACACCCTGGACAAGAACG	
5	isocitrate dehydrogenase subunit (IDH)	F: ACTGCTGCTGGTATTGCTGGA	At2g17130
		R: TGCTCTTCCGTTGTATCCTTCC	
6	betaine-aldehyde dehydrogenase(BADH)	F: CCACCGAGGATGAGGCAATT	At3g48170
		R: GCCTGGAAAGCCTTACTAACACG	
7	ornithine aminotransferase (OAT)	F: ATGATGCTACTCGTGGATTCGG	At5g46180
		R: TTTCAAGTAACCGTCGGGAGG	
8	succinic-semialdehyde dehydrogenase	F: GCGGCAACGCACCCTCTAT	At1g79440
	(SSADH)	R: CCCATCCCTAAACCCATCTCCT	
9	phenylalanine ammonia-lyase (PAL)	F:AAGTGAAGAGAATGGTTGCTGAG	At2g37040
		R:GAAGTGCGACACCGTTTTTG	
10	indoleamine 2,3-dioxygenase (IDO)	F: CACAACACCCACAACTCCAAAAG	At4g02610
		R: TATGCCAAATCCAACTGCCACTG	
11	xylan synthase (XS)	F: AACGAGCAGTTCTGGGTCATAGG	At1g02730
		R: CGCAAACTCATCGTCTCCATCT	
12	glucose-6-phosphate -1-dehydrogenase (G6PD)	F: GAAGGACGTGGAGGGTACTTTG	At5g13110
		R: TCGGTGTAGGCAGGATATGTGA	
13	strictosidine synthase (SS)	F:TTTGTCTCGTTGATTTCTCTTCTCC	At1g74000
		R:CGTTAGTGGTTCCAAGTGCTCC	

 Table S2. Primers for quantitative real-time PCR (qRT-PCR) analysis of gene expressions.

 Table S3. Tail-PCR primers used in this study.

Primers	Sequence (5'-3')
LAD1	ACGATGGACTCCAGAGCGGCCGC (G /C /A) N (G /C /A) NNNGGAA
LAD2	ACGATGGACTCCAGAGCGGCCGC (G /C /T) N (G /C /T) NNNGGTT
LAD3	ACGATGGACTCCAGAGCGGCCGC (G /C /A) (G /C /A) N (G /C /A) NNNCCAA
LAD4	ACGATGGACTCCAGAGCGGCCGC (G /C /T) (G /A /T) N (G /C /T) NNNCGGT
AC	ACGATGGACTCCAGAG
LB0a	CGCGCGATATAAAAAAAAAGATAGCTCATAA
LB1a	ACGATGGACTCCAGTCCGGCCTTAAATAGGATCAAACGCG
LB2a	ATGGTCTATAGTCGAACGTACGGCC

NO	metabolites	mojety	δ^{1} H (multiplicity) ^a	δ ¹³ C	experiments
		s ou			
I	Leucine (Leu)	o-CH ₃	0.94 (t, 7.2 Hz)	24.4	TOUSY, HSQC,
		δ'-CH ₃	0.96 (t, 6.3 Hz)	26.3	HMBC
		γ -CH ₂	1.69 (m)	26.4	
		β -CH ₂	1.72 (m)	42.6	
		α-CH	3.69 (t, 8.7 Hz)	56.9	
2	Isoleucine (Ile)	δCH_3	0.94 (t, 7.2 Hz)	16.2	TOCSY, HSQC,
		β -CH ₃	1.01 (d, 7.0 Hz)	18.9	HMBC
		γ -CH ₂	1.25 (m)	27.1	
		β-СН	1.98 (m)	38.4	
		α-CH	3.65 (m)	63.3	
3	Valine (Val)	γ -CH ₃	1.04 (d, 7.2 Hz)	20.4	TOCSY, HSQC,
		γ' -CH ₃	0.99 (d, 7.0 Hz)	19.2	HMBC
		β-CH	2.27 (m)	31.8	
		α-CH	3.61 (d, 5.0 Hz)	63.3	
		COOH	/	175.6	
4	Ethanol	CH3	1.17 (t, 6.1 Hz)	19.4	TOCSY, HSQC,
		CH2	3.66 (q, 2.0 Hz)	60.1	HMBC
5	Threonine (Thr)	CH_3	1.33 (d, 6.6 Hz)	21.9	TOCSY, HSQC,
		α-CH	3.59 (q, 4.7 Hz)	63.2	HMBC
		β-CH	4.27 (m)	68.7	
		СООН	/	185.1	
6	Lysine (Lys)	γ -CH ₂	1.45, 1.51 (m)	24.2	TOCSY, HSQC,
		δ -CH ₂	1.73 (m)	26.6	HMBC
		β -CH ₂	1.91 (m)	30.2	
		ε-CH ₂	3.03 (t, 7.5 Hz)	43.1	
		α-CH	3.76 (t, 5.0 Hz)	56.9	
7	Alanine (Ala)	CH ₃	1.48 (d, 7.3 Hz)	18.9	TOCSY, HSQC,
		СН	3.79 (q, 6.3 Hz)	53.6	HMBC
		СООН	\	178.7	
8	Arginine (Arg)	γ-CH	1.68, 1.72 (m)	26.5	TOCSY, HSQC,
	-	β-CH2	1.91 (m)	30.0	HMBC
		δ-CH2	3.25 (m)	43.1	
		α-CH	3.78 (t, 4.7 Hz)	56.9	
9	γ-aminobutyrate (GABA)	β-CH ₂	1.91 (m)	26.3	TOCSY, HSQC,
	· · · · · · ·	α-CH ₂	2.30 (t, 7.4 Hz)	36.7	HMBC
		γ-CH2	3.02 (t, 7.9 Hz)	42.2	
		СООН		184.3	
10	Acetate (Acet)	CH ₃	1.92 (s)	26.7	HSQC, HMBC
	× /	СООН		177.3	
11	Proline (Pro)	γ-CH ₂	2.01 (m)	26.6	TOCSY, HSOC.
		β -CH ₂	2.35 (m)	29.6	HMBC

Table S4. NMR data and signal assignments for metabolites in wild-type and transgenic *A*. *thaliana* expressing Chi, CWP2 and Chi-CWP2.

		δ -CH ₂	3.34, 3.41 (m)	48.7	
		α -CH ₂	4.14 (m)	63.5	
		СООН	\	177.6	
12	Glutamate (Glu)	β -CH ₂	2.02, 2.09 (m)	29.4	TOCSY, HSQC,
		γ -CH ₂	2.36 (m)	35.9	HMBC
		α-CH	3.75 (m)	57.4	
		COOH	/	182.5	
		СООН	\	177.7	
13	Glutamine (Gln)	β -CH ₂	2.14 (m)	29.1	TOCSY, HSQC,
		γ -CH ₂	2.45 (m)	33.5	HMBC
		α-CH	3.75 (m)	56.9	
		COOH	\	208.2	
		C=O	/	184.1	
14	Pyruvate (Pyr)	CH_3	2.37 (s)	29.5	HSQC
15	Succinate (Succ)	CH_3	2.41 (s)	36.2	HSQC
		COOH	/	183.4	
16	Malate (Mal)	β'-СН	2.37 (dd, 10.1, 15.3	45.9	TOCSY, HSQC,
			Hz)		HMBC
		β-CH	2.68 (dd, 3.1, 15.4 Hz)	45.9	
		СН	4.31 (dd, 3.0, 10.1 Hz)	72.6	
		COOH	/	183.9	
17	α -ketoglutarate (α -KG)	γ -CH ₂	2.45 (t, 7.9 Hz)	35.9	TOCSY, HSQC
		β -CH ₂	3.02 (t, 8.3 Hz)	41.6	
18	Citrate (Cit)	$1/2CH_2$	2.55 (d, 15.8 Hz)	51.5	TOCSY, HSQC,
		$1/2CH_2$	2.68 (d, 15.8 Hz)	51.5	HMBC
		3 C	\	78.3	
		COOH	\	177.3	
		COOH	\	180.4	
19	Aspartate (Asp)	β -CH ₂	2.68 (dd,7.6, 16.5 Hz)	39.0	TOCSY, HSQC,
		β' -CH ₂	2.80 (dd,4.4, 17.5 Hz)	39.0	HMBC
		α-CH	3.89 (dd, 4.3, 7.6 Hz)	55.0	
		COOH	/	176.9	
20	Asparagine (Asn)	β-CH	2.87 (dd,7.6, 16.5 Hz)	37.1	TOCSY, HSQC,
		β'-CH	2.95 (dd,4.6, 16.5 Hz)	37.1	HMBC
		α-CH	4.00 (dd, 4.6, 7.6 Hz)	54.0	
		γ -CONH ₂	/	177.1	
		COOH	/	176.9	
21	Dimethylamine	CH ₃	2.72(s)	39.2	HSQC
22	Ethanolamine (EA)	N-CH ₂	3.15 (t, 5.2 Hz)	44.0	TOCSY, HSQC,
		O-CH ₂	3.83 (t, 5.1 Hz)	60.1	HMBC
23	Phenylalanine (Phe)	β -CH ₂	3.12 (dd,7.8, 14.9 Hz),	38.9	TOCSY, HSQC,
			3.25 (dd, 5.3, 14.7 Hz)		HMBC
		α-CH	4.00 (m)	58.9	
		3,5CH,	7.33 (m)	131.8	

		ring			
		3,5CH,	7.38 (m)	130.2	
		ring			
		3,5CH,	7.43 (m)	131.7	
		ring			
		СООН		174.9	
24	Choline (Cho)	N-(CH ₃) ₃	3.20 (s)	56.6	TOCSY, HSQC,
		N-CH ₂	3.52 (m)	\	HMBC
		O-CH ₂	4.07 (m)	70.1	
25	Phosphocholine (PC)	N-(CH ₃) ₃	3.23 (s)	56.6	TOCSY, HSQC
	•	N-CH ₂	4.23 (m)	١	
		O-CH ₂	3.61 (m)	\	
26	Betaine	CH_3	3.26 (s)	56.6	TOCSY, HSQC,
		CH_2	3.91 (s)	72.4	HMBC
		СООН		174.6	
27	Methanol	CH_3	3.36 (s)	51.7	TOCSY, HSQC
28	Tryptophan (Trp)	β-CH ₂	3.31 (dd,4.9, 14.3 Hz),	27.9	TOCSY, HSQC,
			3.48 (dd, 9.1, 14.0 Hz)		HMBC
		α-CH	4.05 (m)	58.4	
		6 CH, ring	7.29 (t, 7.3 Hz)	120.1	
		7 CH, ring	7.53 (d, 8.2 Hz)	114.6	
		4 CH	7.74 (d, 8.0 Hz)	120.7	
		СООН		175.8	
29	Myo-inositol (mIno)	2-CH	4.07 (t, 2.5 Hz)	75.1	TOCSY, HSQC,
	•	1,3-CH	3.52 (dd, 5.1, 10.9 Hz)	75.3	HMBC
		4,6-CH	3.61 (t, 4.9 Hz)	73.9	
		5-CH	3.29 (t, 4.5 Hz)	77.1	
30	Glycine (Gly)	CH_2	3.57 (s)	44.3	TOCSY, HSQC,
	• • •	СООН		175.3	HMBC
31	Fructose (Fru)	3 CH	3.79, 3.81 (m)	63.8	TOCSY, HSQC
		4 CH	4.01 (m)	54.1	
		3 CH	4.11 (d, 3.7 Hz)	77.8	
32	Sucrose (Suc)	F-1 CH	4.22 (d, 8.8 Hz)	94.8	TOCSY, HSQC
		G-1 CH	5.42 (d, 3.8 Hz)	75.2	_
33	Maltose	2 CH	5.22 (d, 3.8 Hz)	102.7	TOCSY, HSQC
		11 CH	5.42 (d, 3.8 Hz)	102.1	
34	NMNA ^b	2 CH	9.13 (s)	148.4	TOCSY, HSQC
		6 CH	8.84 (t)	147.7	
		4 CH	8.85 (t)	145.8	
		CH ₃	4.44 (s)	51.0	
35	β -glucose (β -Glc)	2 CH	3.25 (dd, 2.9, 7.0 Hz)	76.8	TOCSY, HSQC
		3 CH	3.49 (m)	78.6	
		4 CH	3.42 (m)	72.6	
		5 CH	3.47 (m)	78.7	

		6,6′ CH	3.73, 3.90 (m)	63.5	
		1 CH	4.65 (d, 8.0 Hz)	98.7	
36	α-glucose (α-Glc)	4 CH	3.42 (m)	72.2	TOCSY, HSQC
		2 CH	3.53 (dd, 3.8, 9.9 Hz)	74.1	
		3 CH	3.73 (m)	74.8	
		6,6′ CH	3.74, 3.83 (m)	63.5	
		5 CH	3.86 (m)	74.3	
		1 CH	5.23 (d, 3.7 Hz)	94.8	
37a	α-arabinose (α-Arab)	α-1 CH	5.21 (d, 4.0 Hz)	94.5	TOCSY, HSQC
		\	3.87 (m)	63.3	
37	β- arabinose (β-Arab)	β-1 CH	4.52 (d, 8.2 Hz)	98.8	TOCSY, HSQC
b		\	3.52 (dd, 5.5, 10.2 Hz)	\	
		\	3.69 (m)	\	
38a	α-galactose (α-Galac)	1 CH ₂	5.27 (d, 3.8 Hz)	94.9	TOCSY, HSQC
		2 CH	3.81 (dd, 4.7, 8.7 Hz)	73.6	
		3 CH	3.97 (m)		
38	β -galactose (β -Galac)	1 CH ₂	4.59 (d, 7.7 Hz)	99.2	TOCSY, HSQC
b		2 CH	3.49 (dd, 5.3, 10.2 Hz)	78.4	
		3 CH	3.67 (m)	\	
39	Uridine (Uri)	6 CH	4.36 (t, 4.9 Hz)	77.1	TOCSY, HSQC
		12 CH	5.90 (d, 8.1 Hz)	104.9	
		7 CH	5.92 (d, 4.5 Hz)	91.7	
		11 CH	7.88 (d, 8.1 Hz)	144.3	
40	Uracil (Ura)	5 CH	5.80 (d, 7.7 Hz)	103.6	TOCSY, HSQC
		6 CH	7.54 (d, 7.6 Hz)	147.4	
41	Raffinose	G-1 CH	5.44 (d, 3.7 Hz)	95.0	TOCSY, HSQC
		F-1 CH	4.99 (d, 3.6 Hz)	101.1	
		G-1 CH	3.57 (m)	74.1	
42	Guanosine (Guan)	СН	8.01 (s)	138.0	TOCSY, HMBC
		5'-CH ₂	5.90 (d, 4.4 Hz)	91.9	
		4'-CH	4.41 (dd, 4.8, 10.4 Hz)	73.8	
		3'-CH	4.22 (m)	88.5	
43	Inosine (Ino)	2 CH	6.08 (d, 6.1 Hz)	92.8	HSQC
		7 CH	8.21 (s)	\	
		12 CH	8.32 (s)	143.3	
44	Hypoxanthine (Hyp)	2 CH	8.20 (s)	١	JRES, TOCSY
		7 CH	8.24 (s)	\	
45	Adenosine (Aden)	14 CH	8.35 (s)	143.2	TOCSY, HSQC
		8 CH	8.26 (s)	155.1	
		1 CH	6.06 (d, 5.7 Hz)	91.0	
46	Sinapate	8 CH	6.50 (d, 15.8 Hz)	117.9	TOCSY, HSQC,
		7 CH	7.67 (d, 15.8 Hz)	149.1	HMBC
		1 CH	\	128.5	
		2,6 CH	7.01 (s)	108.8	

		3,5 CH	/	139.7	
		4 CH	/	151.0	
		$4-OCH_3$	3.89 (s)	58.7	
		COOH	\	172.0	
47	Fumarate (Fum)	2,3 CH	6.52 (s)	138.0	TOCSY, HSQC,
		СООН	\	177.7	HMBC
48	Polyphenolics	\	6.89 (m)	108.9	TOCSY, HSQC,
		\	7.63 (m)	123.7	HMBC
49	Tyrosine (Tyr)	β -CH ₂	3.05 (dd,7.7, 14.9 Hz),	39.2	TOCSY, HSQC,
			3.15 (dd, 8.5, 14.4 Hz)		HMBC
		α-CH	3.93 (m)	58.7	
		3,5 CH,	6.90 (d, 8.6 Hz)	118.3	
		ring			
		2,6 CH,	7.20 (d, 8.4 Hz)	133.2	
		ring			
		СООН		175.1	
50	Histidine (His)	4 CH, ring	7.09 (s)	119.8	TOCSY,HSQC,
		4 CH, ring	7.92 (s)	138.6	HMBC
		β-CH ₂	3.20 (dd, 5.1, 14.7 Hz),	30.5	
			3.25 (dd, 9.4, 14.6 Hz)		
		α-CH	4.00 (m)	56.6	
		СООН	\	174.6	
51	Formate (Form)	СН	8.46 (s)	173.5	HSQC
52	Sarcosine	CH ₃	2.75 (s)	38.9	TOCSY, HSQC,
		СООН	/	180.2	HMBC
53	Methionine (Met)	γ-CH2	2.65 (t, 7.5 Hz)	32.6	TOCSY, HSQC
		β-CH2	2.17 (m)	32.9	
		α-CH	3.78 (m)	56.8	
		S-CH3	2.14 (s)	16.1	
		СООН	/	174.3	
54	$\mathrm{NAD}^{+\mathrm{b}}$	N2 CH	9.47 (s)	143.6	TOCSY,HSQC,
		N4 CH	8.19 (t, 6.9 Hz)	130.5	HMBC
		N5 CH	9.16 (d, 6.2 Hz)	143.8	
		N6 CH	8.95 (d, 7.8 Hz)	149.4	
		N1'CH	6.23 (d, 4.8 Hz)	57.3	
		A2 CH	8.32 (s)	143.7	
		A6 CH	8.23 (s)	155.0	
		A1' CH	6.06 (d, 5.6 Hz)	90.9	
55	Dimethylglycine	CH ₃	2.94 (s)	54.6	TOCSY, HSQC
			/	41.2	
56	D - α -aminobutyrate ^b	$2 \mathrm{CH}_2$	1.89 (m)	27.5	TOCSY, HSQC
		1 CH	3.68 (t, 5.8 Hz)	56.5	
		3 CH ₃	0.97 (t, 7.4 Hz)	11.2	
		COOH		176.7	

57	Ethylmalonate ^b	5 CH ₃	1.24 (t, 7.1 Hz)	15.3	TOCSY, HSQC,
		6 CH ₂	3.28 (s)	42.6	HMBC
		4 CH ₂	4.17 (q, 7.2 Hz)	63.1	
		2 COOH	/	169.2	
		7 COOH	/	171.3	
58	α -ketoisovalerate ^b	7,8 CH ₃	1.10 (d, 6.7 Hz)	19.8	TOCSY, HSQC,
		6 CH	3.05 (dq, 7.1 Hz)	41.5	HMBC
		COOH	/	178.2	
		COOH	/	196.1	
59	U1	\	1.37	30.6	TOCSY, HSQC
		\	1.85 (m)	23.7	
		\	3.07	56.6	
60	U2	\	0.86 (d, 6.4 Hz)	\	JRES, TOCSY
		\	3.12 (s)	\	
		\	3.36 (m)	\	
		\	3.75 (m)	\	
		\	4.23 (m)	\	
61	U3	\	1.29 (d, 6.0 Hz)	19.5	JRES, TOCSY,
		\	3.55 (dd, 3.7, 11.1 Hz)	30.9	HSQC
		\	3.73 (dd, 5.1, 11.1 Hz)	\	
		\	3.96 (dd, 5.8, 12.5 Hz)	74.5	
		\	4.12 (d, 3.8 Hz)	77.5	
62	U4	\	1.14 (d, 6.1 Hz)	19.0	JRES, TOCSY,
		\	3.47 (m)	72.2	HSQC
		\	3.96 (dd, 5.8, 12.5 Hz)	74.3	
		\	4.15 (m)	\	
63	U5	\	2.65 (dd,11.5, 15.5 Hz)	42.3	JRES, TOCSY,
		\	5.16 (dd, 2.7, 11.2 Hz)	76.6	HSQC
64	U6	\	6.02 (d, 12.5 Hz)	119.6	JRES, TOCSY
		\	7.02 (d, 12.6 Hz)	147.2	
65	U7	\	6.43 (d, 15.8 Hz)	\	JER, TOCSY,
		\	6.64 (d, 15.8 Hz)	97.6	HSQC
66	U8	\	4.19 (dd, 2.5, 8.0 Hz)	78.7	JRES, TOCSY,
		\	4.61 (dd, 2.4, 5.3 Hz)	75.2	HSQC
67	U9	\	7.97 (s)	\	JRES, TOCSY

^aMultiplicity: s, singlet; d, doublet; dd, doublet of doublets; t, triplet; q, quartet; m, multiplet; U, unidentified signal; \, signals or multiplicities were not determined; ^b, tentatively assigned.

Metabolites	Chi-CWP2 vs Chi ^a	Chi-CWP2 vs CWP2 ^a	Chi-CWP2 vs Chi ^b	Chi-CWP2 vs CWP2 ^b
Sugars				
myo-inositol	0.038	0.038		
α-glucose			0.020	
Amino acids				
Thr				0.017
Ala				0.025
Arg	0.025	0.038	0.004	
Pro	0.025			
Asn	0.035	0.021		
Phe	0.025	0.023	0.035	0.032
Trp	0.025	0.032	0.023	0.019
Tyr	0.038		0.038	0.040
His	0.002	0.038	0.027	0.038
GABA				
Organic acids				
pyruvate		0.020		0.010
succinate				
malate			0.032	0.038
α-KG			0.028	0.025
citrate	0.028	0.035	0.029	0.027
fumarate	0.028	0.038	0.034	
Nucleoside/tides				
uridine				0.025
Choline metabolit	tes			
choline			0.015	0.018
betaine		0.038	0.004	0.017

Table S5. P-values for inter-group differentiated metabolites in wild-type and transgenic *A*. *thaliana* expressing Chi, CWP2 and Chi-CWP2 inoculated with water and FG, respectively.

^a inoculated with water; ^b inoculated with FG. ^c red and green signs denote elevation and decrease of metabolites,

respectively. Only those with p < 0.05 were tabulated.