

Supplementary Material

Transcript profiling identifies NAC-domain genes involved in regulating wall ingrowth deposition in phloem parenchyma transfer cells of *Arabidopsis thaliana*

Yuzhou Wu, Jiexi Hou, Fen Yu, Suong T.T. Nguyen, David W. McCurdy*

* Correspondence: David W. McCurdy: David.McCurdy@newcastle.edu.au

1 MATERIALS and METHODS

1.1 Extraction of genomic DNA and PCR-based genotyping of Arabidopsis T-DNA insertional mutants

Extraction of genomic DNA for genotyping of Arabidopsis lines was conducted based on the rapid procedures in Berendzen et al. (2005). Briefly, a single cotyledon from each 10-day-old seedling grown on MS agar plates was cut and transferred to a labelled microfuge tube under sterile conditions, which was then immediately snap frozen in liquid nitrogen. After all samples from a given genotyping experiment were collected, the tissue pieces were ground using sterile micropestles for 30 seconds, then ground for another 30 seconds after adding 50-100 μ L DNA extraction buffer containing 50 mM Tris-HCl (pH 7.5), 300 mM NaCl and 300 mM sucrose. The ground sample was then immediately stored on ice and after a group of samples were collected within 10 minutes, they were then incubated at 100°C for 10 minutes, and followed by centrifugation for 10 seconds at 6000 g. Thereafter, the extracted genomic DNA was either used directly for subsequent PCR-based genotyping, or stored at -20°C for longer term.

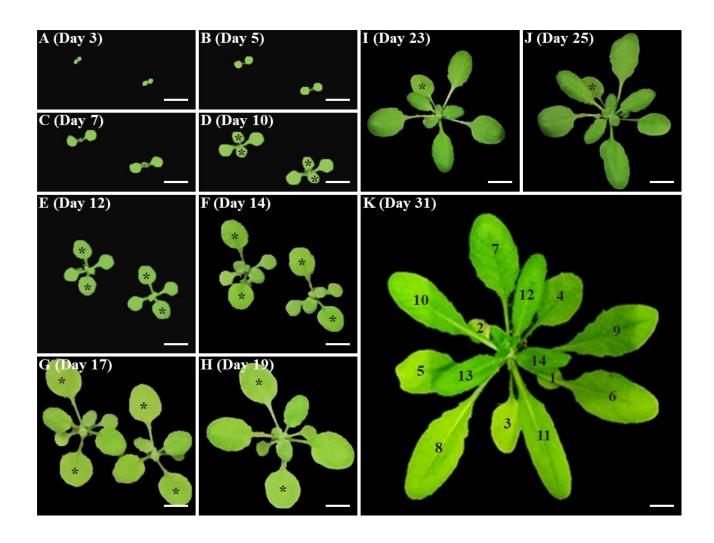
To identify homozygous individuals for Arabidopsis T-DNA insertional mutants, genotyping was performed based on a PCR strategy using two sets of primers: "control" primer set made up of left and right primers (LP+RP) that amplifies an approximately 1 kb fragment of the coding sequence in wild-type (WT) and surrounding the T-DNA insertion in each relevant mutant line, while the other "mutant" primer set used the right primer (RP) in combination with a left border (LB) primer on the T-DNA insertion. Details for structure of genes, location of insertions and primers as well as the determination of genotypes is presented in Supplementary Figure S4.

For each individual insertional mutant line, usually genomic DNA from eight different seedlings plus one WT seedling as control were used in PCR for genotyping of insertional mutants. One μ L of each genomic DNA was added to a mix of 0.5 μ L each of 10 μ M primer stock solutions, 0.125 μ L of the Taq DNA Polymerase plus 2.5 μ L 10X Standard Taq Reaction Buffer (NEB, M0273) and 20.9 μ L nuclease-free MQ water to make 25 μ L final volume. The reactions using both "control" and "mutant" primer sets for all mutants to be genotyped were carried out in Eppendorf thermal cycler (Mastercycler personal and/or Mastercycler ep gradient S) programmed as follows: Initial denaturation at 95°C for 30 seconds, denaturation at 95°C for 30 seconds, annealing at 55°C for 30 seconds, extension at 68°C for 60 seconds, and after 40 repeated cycles from the denaturation to extensions, there was a final extension at 68°C for 5 minutes.

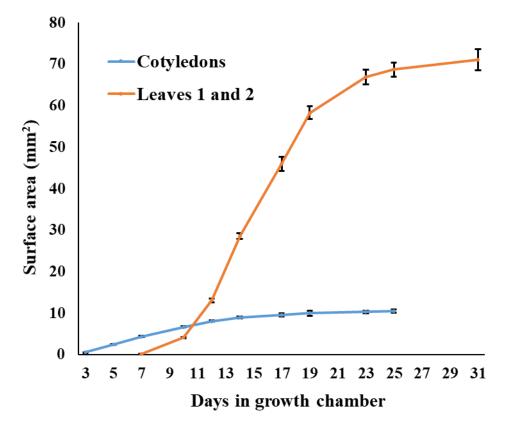
Subsequently, each 25μ L PCR product was mixed with 5 μ L of Fermentas 6x Loading Buffer and 20 μ L of this volume was loaded into each lane of 1% (w/v) agarose gel containing 0.1% (w/v) ethidium bromide, along with 5 μ L of GeneRuler 1 kb added to a single lane of each gel. After electrophoresis at 110 V, gels were photographed using GelDoc XR Imaging System (BIORAD) and Quantity One Ver. 4.6.6 software.

1.2 Semi-quantitative RT-PCR

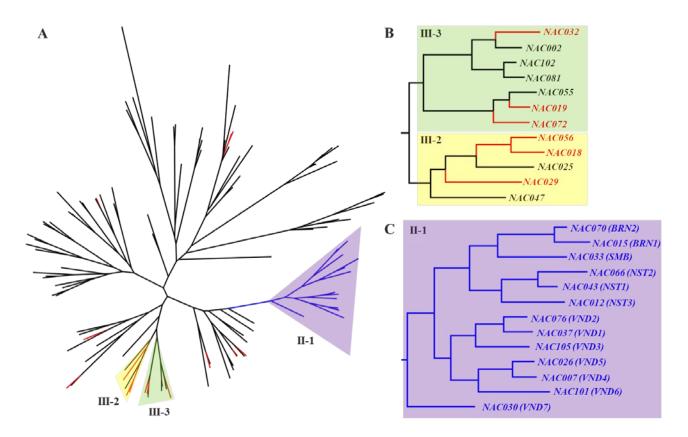
WT and homozygous plants were transferred from MS agar plates into soil after 7-10 days, and mature juvenile Leaf 1 and Leaf 2 from these plants at 3-w old were collected into labelled RNase-free microfuge tubes and immediately snap-frozen in liquid nitrogen. The RNA extraction, on-column gDNA elimination and assessment of RNA yield and purity was conducted as described in Materials and Methods in the main body.

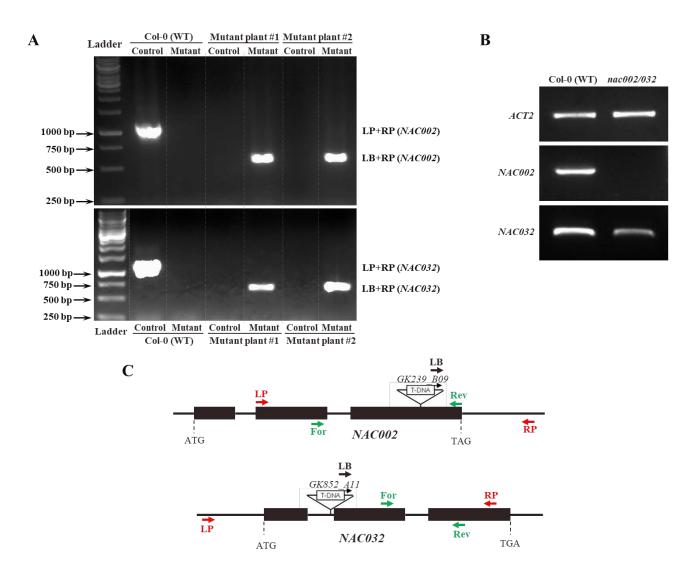

Reverse transcription of first strand cDNA synthesis was performed using 1 μ g of total RNA extracted as described above and Superscript IIITM First-Strand Synthesis System (Invitrogen) following the manufacturer's instructions. Subsequently, 1 μ L cDNA products of each reverse transcription reactions were used as template in 25 μ L PCR reactions using forward and reverse primers (labelled as For and Rev in green, see Supplementary Figure S4) designed for genes with T-DNA insertions plus *ACT2* (*AT3G18780*) as housekeeping control and NEB's Taq DNA Polymerase with Standard Taq Buffer (M0273) as described in the above section. Semi-quantification of gene expression was achieved by using the Gel tool in *ImageJ* that measures the intensity of bands on gels, and then the change of expression was normalized to the expression level of *ACT2* gene.

1.3 References

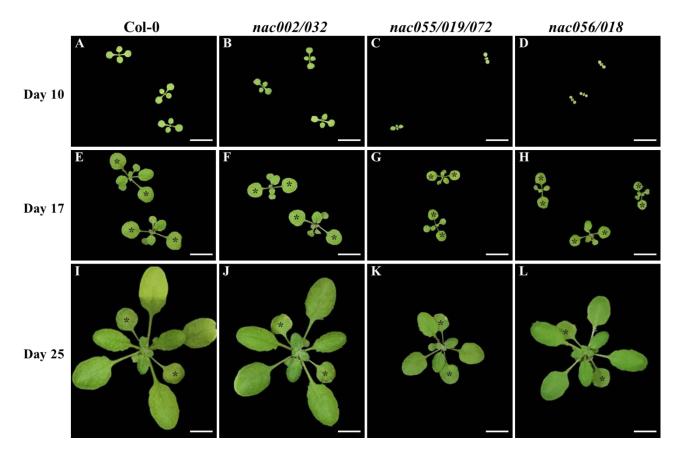

Berendzen, K., Searle, I., Ravenscroft, D., Koncz, C., Batschauer, A., Coupland, G., et al. (2005). A rapid and versatile combined DNA/RNA extraction protocol and its application to the analysis of a novel DNA marker set polymorphic between *Arabidopsis thaliana* ecotypes Col-0 and Landsberg *erecta*. *Plant Methods* 1, 4. doi: 10.1186/1746-4811-1-4

2. Supplementary Figures and Tables

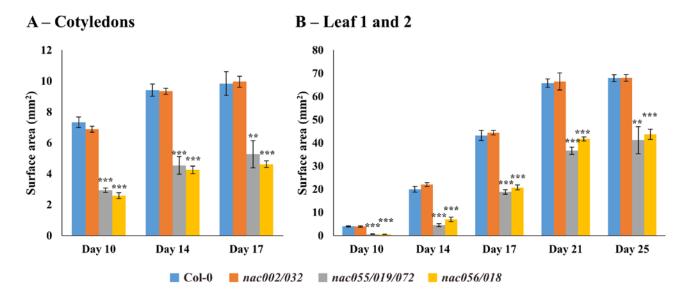

2.1 Supplementary Figures


Supplementary Figure 1. Growth of cotyledons and leaves of Arabidopsis plants grown in soil. (A–K) Growth at Day 3, 5, 7, 10, 12, 14, 17, 19, 23, 25 and 31, respectively. Cotyledons were visible at Day 3 (A), while Leaf 1 and Leaf 2 were visible by Day 7 (C). At Day 12 (E), Leaf 1 and Leaf 2 (asterisks) have expanded to exceed the size of the cotyledons. A total of 4, 5, 7, 8, 10, 12 and 14 rosette leaves visible at Day 12, 14, 17, 19, 23, 25 and 31, respectively, all showing the typical clockwise/anticlockwise spiral with constant divergence angle between successive leaves (E–K). Asterisks, first pair rosette leaves. Scale bars = 5 mm (A–H); 10 mm (I–K).

Supplementary Figure 2. Quantitative analysis of surface area expansion of cotyledons and Leaf 1 and 2 across Arabidopsis rosette development. Cotyledon surface area expanded in an apparent curvilinear manner with maximum expansion occurring from Day 3 to Day 10 and plateauing by approximately Day 17 (blue line). Leaf 1 and 2 surface areas expanded in a sigmoidal manner with linear expansion occurring from Day 10 to Day 19 and reaching maximum surface area (fully expanded) by approximately Day 25. Data shows mean \pm SE for surface area (mm²); plateauing stages were statistically determined by one-way ANOVA applied *a priori* contrasts and t-test thereafter; *n* >3 in all cases.



Supplementary Figure 3. Phylogenetic tree of NAC-domain transcription factors in Arabidopsis. (A) Radial tree layout. Red lines indicate the 15 NACs identified as commonly up-regulated in at least two of the three experimental conditions comparing wall ingrowth abundance from RNA-Seq analysis reported in Table 2 and Table S1. Of these 15 NACs, three belonged to Clade III-2 (yellow shading) while another three belonged to Clade III-3 (green shading). Blue lines indicate 10 NACs associated with secondary wall deposition belonging to Clade II-1 (purple shading). **(B)** Enlarged view of Clade III-3 (green shading) and Clade III-2 (yellow shading) with the individual NACs emerging from the RNA-Seq analysis (Table 2 and Table S1) shown in red. **(C)** Enlarged view of Clade II-1 (purple shading) with the individual secondary wall NAC master switches shown in blue (*VND1-VND7*, *NST1-NST3*, *SMB*, *BRN1* and *BRN2*).



Supplementary Figure 4. Molecular analysis of nac002/032 double mutant obtained from the GABI-**DUPLO collection.** (A) Examples of two homozygous plants identified by PCR genotyping. Top gel: Genotyping results for insertion GK 239B09 carried in NAC002. A band of approx. 1000 bp was amplified from Col-0 (WT) using "Control PCR" (LP+RP primers), but not by using "Mutant PCR" (LB+RP). In contrast, genomic DNA isolated from two mutant plant lines #1 and #2 supported amplification of an approximately 500 bp fragment using the "Mutant PCR" (LB+RP) but not "Control PCR" (LP+RP). No 1000 bp band was detected in these mutant lines using the LP+RP primer set, indicating that the two individual plants #1 and #2 were homozygous for insertion GK_239B09 in NAC002. Bottom gel: Genotyping results for insertion GK_852A11 carried in NAC032. A band of approx. 1000 bp was amplified from Col-0 (WT) using "Control PCR" (LP+RP primers), but not using "Mutant PCR" (LB+RP). In contrast, genomic DNA isolated from two mutant plant lines #1 and #2 supported amplification of an approx. 700 bp fragment using the "Mutant PCR" (LB+RP) but not "Control PCR" (LP+RP). No 1000 bp band was detected in these mutant lines using the LP+RP primer set, indicating that the same two individual plants #1 and #2 were homozygous for insertion GK 852A11 in NAC032. DNA ladder is shown to the left in both gels. (B) RT-PCR analysis of NAC002 and NAC032 expression in juvenile leaves of WT and the double homozygous line nac002/032. Expression of NAC002 and NAC032 is clearly evident in Col-0 (WT), but message of NAC002 in the nac002/nac032 double mutant is absent. In contrast, NAC032 expression in the double mutant is knocked down by about 60%. ACT2 was used as a loading

control. (C) Structure of T-DNA insertional mutants of *NAC002* and *NAC032*. T-DNA insertion of *GK_239B09* is located in the last exon (black box) of *NAC002*, while *GK_852A11* is located in the first intron (black line between boxes) of *NAC032*. Primer sets of LP and RP (red) were used for amplification of Col-0 (WT) gene flanking the insertions, while LB primer (black) is located in the T-DNA insertion. Primer sets For and Rev (green) were used for RT-PCR analysis of gene expression in the relevant insertional mutant line. ATG = start of coding region; TAG/TGA = stop codon.

Supplementary Figure 5. Growth of cotyledons and leaves of Col-0 and *nac* mutant plants grown in soil. (A–D) By Day 10, all WT and mutants developed a pair of cotyledons and first true Leaf 1 and 2, but sizes of *nac055/019/072* (C) and *nac056/018* (D) were much smaller than Col-0 (A) and *nac002/032* (B). (E–F) By Day 17, 5-6 rosette leaves were visible in Col-0 (E) and *nac002/032* (F) while only 3-4 leaves had emerged in *nac055/019/072* (G) and *nac056/018* (H). (I–L) By Day 25, rosette size was similar between Col-0 (I) and *nac002/032* (J) but both *nac055/019/072* (K) and *nac056/018* (L) were smaller; note that the size of the two first leaves were comparable between Col-0 and *nac002/032*, but these leaves were clearly smaller for *nac055/019/072* and *nac056/018*. Asterisks, first pair rosette leaves. Scale bars = 10 mm in all panels.

Supplementary Figure 6. Quantitative analysis of surface area expansion of cotyledons and first pair leaves across rosette development in Col-0 and *nac* mutant plants. (A) Cotyledon surface area expanded from Day 10 to Day 14 and reaching maximum surface area (fully expanded) by Day 17, in Col-0 and all *nac* mutants. (B) Leaf 1 and 2 surface area expanded rapidly from Day 10 to Day 21 and plateauing by Day 25. Surface area of cotyledons and first leaves in *nac055/019/072* and *nac056/018* were statistically smaller than in Col-0 at all tested stages. Data shows mean \pm SE for surface area (mm²). ***P*<0.01, ****P*<0.001, student's t-test comparing cotyledons and leaves size in each mutant line with Col-0 at each tested developmental stage, *n* = 3-5.

2.2 **Supplementary Tables**

Samples	Replicate	Trimmed reads	Mapped reads	0∕0 a	Uniquely mapped	% ^b	Non-specifically mapped	0∕0 c
	#1	36,764,981	36,210,704	98	34,846,403	96	1,364,301	4
Day 5 Cotyledons	#2	35,699,447	35,101,316	98	33,747,545	96	1,353,771	4
Cotyledolls	#3	45,334,263	44,690,500	99	43,043,513	96	1,646,987	4
	#1	38,363,610	37,876,410	99	36,517,721	96	1,358,689	4
Day 10 Cotyledons	#2	34,682,950	34,273,441	99	33,051,324	96	1,222,117	4
Cotyledons	#3	40,402,450	39,903,809	99	38,447,328	96	1,456,481	4
	#1	40,132,730	39,618,789	99	38,183,958	96	1,434,831	4
Day 10 First leaves	#2	40,729,962	40,173,683	99	38,732,196	96	1,441,487	4
First leaves	#3	41,400,529	40,927,734	99	39,602,921	97	1,324,813	3
	#1	39,687,664	39,223,692	99	37,841,449	96	1,382,243	4
Day 16 First leaves	#2	37,004,904	36,491,345	99	35,144,432	96	1,346,913	4
First leaves	#3	40,509,893	39,983,310	99	38,455,239	96	1,528,071	4
Leaf 12	#1	55,597,019	54,922,942	99	51,510,611	94	3,412,331	6
(Day 31)	#2	49,900,669	49,000,172	98	45,314,800	92	3,685,372	8
Basal	#3	51,570,790	50,921,920	99	47,709,324	94	3,212,596	6
Leaf 12	#1	51,971,922	51,243,442	99	48,097,777	94	3,145,665	6
(Day 31) Apical	#2	65,039,217	64,225,107	99	60,144,028	94	4,081,079	6
	#3	48,753,901	47,826,936	98	44,411,042	93	3,415,894	7

Supplementary Table 1. Mapping sta	tistics for each sample as	s reported from CLC Genomics
Workbench		

^a Percentage of mapped reads among trimmed reads;
^b Percentage of uniquely mapped reads among total mapped reads;
^c Percentage of non-specifically mapped reads among total mapped reads.

Supplementary Table 2. Transcription factors (51 in total) showing differential up-regulation in two of the three experimental comparisons analyzing wall ingrowth deposition in PP TCs of Arabidopsis

			(i) Coty			st leaves	(iii) Leaf 1	
Locus ^a	Symbol ^b	Family ^c	Day 5 vs Day 10		Day 10 vs Day 16		Basal vs apical	
			P ^d	FC ^e	Р	FC	Р	FC
AT4G01540	NAC68	NAC	0.00	2.7 ^f	0.00	7.3	0.04	1.8
AT4G27410	NAC072	NAC	0.24	-1.9	0.00	3.4	0.00	3.1
AT1G77450	NAC032	NAC	0.34	1.2	0.00	3.3	0.00	2.3
AT3G04420	NAC048	NAC	0.00	2.5	0.01	2.3	1.00	1.0
AT1G52890	NAC019	NAC	0.12	$+\infty^{\mathrm{g}}$	0.01	∞ +	0.00	3.6
AT5G07680	NAC080	NAC	0.00	3.4	0.00	∞ +	0.16	1.8
AT1G34180	NAC016	NAC	0.05	2.0	0.00	∞ +	0.09	$\infty +$
AT3G44350	NAC061	NAC	0.01	∞ + ∞	0.00	∞ +	0.42	1.7
AT5G39610	NAC092	NAC	0.00	∞ +	0.32	$\infty +$	0.00	$\infty +$
AT2G43000	NAC042	NAC	0.00	∞ + ∞	0.00	$\infty +$	0.17	
AT2G20880	ERF053	ERF	0.01	-1.6	0.00	3.7	0.00	5.9
AT5G25190	ERF003	ERF	0.00	6.4	1.00	-1.1	0.00	2.7
AT2G31230	ERF15	ERF	0.00	4.3	0.00	4.4	1.00	1.1
AT4G39780	ERF060	ERF	0.02	1.7	0.00	5.3	0.00	2.3
AT1G46768	RAP2-1	ERF	0.62	1.2	0.00	2.8	0.00	2.2
AT2G22200	ERF056	ERF	0.00	-1.7	0.00	2.9	0.00	2.1
AT1G72360	ERF073	ERF	0.00	2.1	0.00	2.8	0.17	1.5
AT4G36900	RAP2-10	ERF	1.00	1.0	0.00	2.3	0.00	2.3
AT4G34410	ERF109	ERF	0.00	+∞	0.28	-∞ ^h	0.00	+∞
AT4G05100	AtMYB74	MYB	1.00	1.0	0.00	13.0	0.00	3.9
AT3G11280	AT3G11280	MYB	0.00	2.0	0.00	6.8	0.00	1.4
AT5G07700	MYB76	MYB	0.00	3.2	0.00	4.3	1.00	1.4
AT5G61420	MYB28	MYB	0.00	2.8	0.00	3.2	0.23	1.0
AT5G07690	MYB29	MYB	0.00	2.8	0.00	3.1	0.23	-1.3
AT1G15790	AT1G15790	bHLH	0.00	4.3	0.00	10.9	0.18	1.5
AT3G07340	BHLH62	bHLH	0.00	3.3	0.00	2.0	0.22	1.2
AT2G46970	PIL1	bHLH	0.00	$+\infty$	0.00	2.0	0.02	2.0
AT3G19500	BHLH113	bHLH	0.01	$+\infty$	0.00	$+\infty$	1.00	-1.1
AT5G52830	WRKY27	WRKY	0.03	1.3	0.00	8.8	0.00	2.5
AT2G25000	WRKY60	WRKY	0.14	2.4	0.00	8.8 3.9	0.00	1.5
AT2G23000 AT5G07100	WRKY26	WRKY	0.00	6.1	0.00	$+\infty$	0.93	-1.3
AT5G06510	NFYA10	NF-YA	0.00	-1.3	0.00	6.6	0.93	2.5
AT1G54160	NFYA5	NF-YA	0.38	-1.5	0.00	2.8	0.01	2.3
AT1G77920	TGA7	bZIP	0.00	2.2	0.00	6.4	0.00	1.5
AT2G46270	GBF3	bZIP	1.00	-1.0	0.00	2.9	0.01	2.4
AT5G10970	AT5G10970	C2H2	0.00	2.1	0.00	2.9	1.00	1.1
AT3G46090	ZAT7	C2H2 C2H2	0.00	$\frac{2.1}{+\infty}$	0.00	2.0 +∞	0.64	-1.4
AT1G07900	LBD1	LBD	0.00	-1.8	0.00	$\infty + \infty$	0.04	4.7
AT3G27940	LBD1 LBD26	LBD	0.00	-1.8 +∞	0.00	$+\infty$	0.00	1.5
AT1G53160	SPL4	SBP	0.00	5.0	0.00	22.3	1.00	-1.1
				2.2				
AT2G18328	RL4	MYB-related AP2	0.00		0.00	6.2	0.00	1.6
AT1G16060	ADAP		0.00	2.6	0.00	4.5	1.00	1.1
AT2G33550 AT2G22430	AT2G33550	Trihelix	0.00	2.1	0.00	4.3	0.00	1.5
	ATHB-6	HD-ZIP	0.00	2.0	0.00	4.3	0.00	1.6
AT4G34680	GATA3	GATA	0.00	2.2	0.00	4.1	0.01	1.5
AT1G64620	DOF1.8	Dof	0.00	2.4	0.00	3.3	0.07	1.4
AT2G35940	BLH1	TALE	0.00	2.7	0.00	2.9	0.00	1.6
AT2G37650	SCL9	GRAS	0.00	2.0	0.00	2.7	0.06	1.4
AT1G04990	AT1G04990	СЗН	0.00	2.2	0.00	2.1	1.00	1.1
AT4G18960	AG	MIKC MADS	NAi	NA	0.00	$\infty +$	0.00	3.1

AT2G35550	BPC7	BBR-BPC	0.01 2.1	0.00	$+\infty$	0.48	1.7
abo 1	1 1 1	1.6	T A ID 10				

^{a, b} Gene locus and symbol was retrieved from TAIR10.

^c Transcription factors were classified into families based on the assignment rules in PlantTFDB. Within each family, transcription factors were ranked according to highest individual fold-change across the three experimental comparisons.

^d*P*-value adjusted by FDR, calculated by *Empirical analysis of DGE* in CLC Genomics Workbench.

^e FC - fold-change in expression of genes between data sets (comparing samples with abundant vs no wall ingrowths), calculated by *Empirical analysis of DGE* in CLC Genomics Workbench.

^fFold-changes of ≥ 2 or $+\infty$ with *P* < 0.05 are indicated in red.

 $g + \infty$ indicates gene was not expressed (exon counts <10) in samples with no detectable wall ingrowth, but was expressed (exon counts ≥ 10) in samples with abundant wall ingrowth deposition.

^h - ∞ indicates gene was not expressed (exon counts <10) in samples with abundant wall ingrowth deposition, but was expressed (exon counts ≥ 10) in samples with no detectable wall ingrowths.

ⁱNA indicates that the gene was not expressed in both samples of experimental comparison (i), thus no available fold-change or *P*-value.

Supplementary Table 3. Transcription factors (100 in total) showing differential down-regulation in two of the three experimental comparisons analyzing wall ingrowth deposition in PP TCs of Arabidopsis.

		(i) Cotyledo				st leaves	(iii) Leaf 1		
Locus ^a	Symbol ^b	Family ^c		Day 5 vs Day 10		Day 10 vs Day 16		Basal vs apical	
	-		<i>P</i> ^d	FC ^e	Р	FC	P	FC	
AT5G26660	MYB86	MYB	NA^{f}	NA	0.00	-15.9 ^g	0.00	-3.2	
AT3G50060	MYB77	MYB	0.95	1.3	0.00	-3.5	0.00	-8.0	
AT4G37260	MYB73	MYB	0.44	-1.7	0.00	-6.4	0.00	-4.0	
AT5G11510	MYB3R-4	MYB	0.00	-2.7	0.00	-5.6	0.01	-1.6	
AT5G12870	MYB46	MYB	0.00	-2.8	0.00	-3.5	0.25	-1.5	
AT5G15310	MYB16	MYB	0.00	-2.7	0.00	-3.0	0.14	1.2	
AT5G01200	AT5G01200	MYB	0.00	-3.0	0.00	-2.5	0.01	-1.9	
AT4G01680	MYB55	MYB	0.00	-2.2	0.00	-2.2	0.40	-1.6	
AT5G16600	MYB43	MYB	0.00	-2.3	0.00	-2.1	0.38	1.4	
AT3G61250	MYB17	MYB	0.00	-∞ ^h	0.00	-5.1	1.00	-1.3	
AT3G08500	MYB83	MYB	0.02	-2.1	0.00	-00	0.13	-1.9	
AT1G71930	NAC030	NAC	0.00	-2.4	0.00	-5.8	0.10	-1.7	
AT5G62380	NAC101	NAC	0.00	-3.6	0.00	-4.4	0.08	-1.6	
AT1G12260	NAC007	NAC	0.00	-2.5	0.00	-4.1	0.00	-1.8	
AT5G50820	NAC097	NAC	0.00	-3.7	1.00	-1.1	0.00	-2.1	
AT2G18060	NAC037	NAC	0.00	-2.6	0.00	-2.8	0.17	-1.6	
AT4G36160	NAC076	NAC	0.00	-2.5	0.00	-2.7	1.00	-1.0	
AT1G65910	NAC028	NAC	0.00	-2.5	0.00	-3.0	0.03	-1.6	
AT4G28500	NAC028 NAC073	NAC	0.00	-1.5	0.00	-2.6	0.00	-2.2	
AT4G28500 AT3G12910	AT3G12910	NAC	0.21		0.00 NA	-2.0 NA	0.00	-2.2 -4.9	
		NAC	0.00	-∞-	0.00	-3.1		-4.9 -1.7	
AT1G62700	NAC026			-∞-			0.11		
AT5G64060	NAC103	NAC	0.02	-00	0.00	-2.5	1.00	-1.1	
AT2G44840	ERF13	ERF	0.35	1.6	0.01	-2.8	0.00	-24.5	
AT2G46310	CRF5	ERF	0.00	-9.4	0.00	-5.0	0.02	-1.4	
AT4G11140	CRF1	ERF	0.13	-2.1	0.00	-8.6	0.00	-2.7	
AT2G25820	ERF042	ERF	NA 0.05	NA	0.00	-8.2	0.00	-2.4	
AT4G27950	CRF4	ERF	0.05	-2.4	0.00	-3.1	0.01	-2.8	
AT1G25470	ERF116	ERF	0.00	-2.1	0.00	-2.0	1.00	-1.1	
AT5G13330	ERF113	ERF	0.00	-6.1	0.00	-00	NA	NA	
AT5G44210	ERF9	ERF	0.00	-2.7	0.00	-∞	1.00	1.2	
AT1G22810	ERF019	ERF	0.00	-∞	NA	NA	0.00	-2.4	
AT5G25810	TINY	ERF	0.00	-∞	0.00	-00	1.00	1.0	
AT5G65640	BHLH93	bHLH	0.00	-3.8	0.00	-3.6	1.00	1.0	
AT1G12860	SCRM2	bHLH	0.00	-2.4	0.00	-4.5	0.00	-1.5	
AT1G63650	BHLH2	bHLH	0.00	-3.0	0.00	-3.7	1.00	1.1	
AT5G67110	ALC	bHLH	0.00	-3.0	0.00	-3.4	0.51	-1.3	
AT2G46810	BHLH70	bHLH	0.00	-2.1	0.00	-4.3	0.00	-1.5	
AT3G61950	BHLH67	bHLH	0.00	-2.7	0.00	-3.2	0.00	-1.7	
AT4G36930	SPT	bHLH	0.00	-2.4	0.00	-2.9	0.10	-1.7	
AT5G50915	BHLH137	bHLH	0.42	-1.3	0.00	-3.2	0.00	-2.0	
AT5G51790	BHLH120	bHLH	NA	NA	0.00	-∞	0.00	-2.2	
AT5G67060	HEC1	bHLH	0.00	-∞	0.00	-∞	NA	NA	
AT3G52910	GRF4_2	GRF	0.00	-11.5	0.00	-16.9	0.09	-1.6	
AT4G37740	$GRF2_2$	GRF	0.00	-2.8	0.00	-10.0	0.00	-1.8	
AT2G22840	GRF1_1	GRF	0.00	-2.6	0.00	-5.1	1.00	1.1	
AT2G45480	AtGRF9	GRF	0.00	-00-	0.00	-11.7	1.00	-1.1	
AT2G06200	GRF6_1	GRF	0.02	-1.9	0.00	-3.0	0.00	-00	
AT2G36400	GRF3_1	GRF	0.00		0.00	-00	0.72	-1.3	
AT2G45050	GATA2	GATA	0.00	-5.6	0.00	-8.1	0.12	-1.7	
AT3G16870	GATA17	GATA	0.00	-4.0	0.00	-3.4	0.00	-1.5	

AT3G51080	GATA6	GATA	0.00	-2.2	0.00	-3.4	0.01	-1.4
AT3G06740	GATA15	GATA	0.00	-2.0	0.00	-2.7	0.00	-1.6
AT3G54810	GATA8	GATA	0.09	1.4	0.00	-2.2	0.00	-2.2
AT1G75240	ZHD5	ZF-HD	0.00	-25.7	0.00	-27.1	0.00	-1.8
AT1G14440	ZHD4	ZF-HD	0.00	-3.3	0.00	-13.9	0.00	-1.9
AT3G50890	ZHD7	ZF-HD	0.00	-5.2	0.00	-5.4	0.06	-1.5
AT5G65410	ZHD1_2	ZF-HD	0.00	-2.6	0.00	-4.3	0.00	-1.9
AT5G25475	AT5G25475	B3	0.00	-2.3	0.00	-6.8	0.13	-1.4
AT3G11580	ARF32	B3	0.00	-3.7	0.00	-4.3	0.23	1.6
AT2G36080	ARF31	B3	0.02	-2.6	0.00	-∞	0.46	1.6
AT5G42700	AT5G42700	B3	0.00	-∞-	0.00		0.34	-00
AT5G37260	RVE2	MYB_related	0.00	-5.9	0.00	-2.4	0.09	1.4
AT1G18330	RVE7	MYB_related	0.00	-2.7	0.00	-2.8	0.00	1.6
AT1G17460	TRFL3	MYB_related	0.00	-2.7	0.00	-2.3	0.26	-1.5
AT1G15720	TRFL5	MYB_related	0.00	-2.2	0.00	-2.4	0.11	-1.5
AT2G44910	ATHB-4	HD-ZIP	0.00	-11.4	0.00	-15.2	0.04	1.7
AT1G73360	HDG11	HD-ZIP	0.00	-4.3	0.00	-8.8	1.00	-1.1
AT3G60390	HAT3	HD-ZIP	0.00	-2.6	0.00	-3.1	0.00	1.6
AT3G22760	TCX3	CPP	0.00	-3.5	0.00	-10.8	0.01	-1.5
AT4G14770	TCX2	CPP	0.00	-3.4	0.00	-8.2	0.00	-1.8
AT2G20110	TCX6	CPP	0.00	-2.4	0.00	-3.7	0.00	-1.4
AT4G37750	ANT	AP2	0.00	-2.4	0.00	-6.0	0.00	-1.4
AT5G10510	AIL6	AP2	0.00	-2.5	0.00	-2.4	0.00	-1.7
AT5G57390	AIL5	AP2	0.00	-2.3	0.00	-2.4	0.03	-1.9
AT3G01330	E2FF	E2F/DP	0.00	-2.4	0.00	-2.2	0.57	-1.3
AT3G48160	E2FF E2FE	E2F/DP	0.00	-3.7	0.00	-4.0	0.01	-1.8
AT5G14960	E2FE E2FD	E2F/DP	0.00	-3.7	0.00	-4.0 -∞	0.01	-1.8 -∞
AT3G14900 AT3G19360	AT3G19360	C3H	0.00	-3.9	0.00		0.00	
AT2G19300	AT2G19810	СЗН	0.00	-5.9	0.00	-4.1	0.00	-1.7
AT2G19810 AT2G28450	AT2G19810 AT2G28450	СЗН	0.00	-3.0	0.00	-2.9 -2.4	0.70	-1.1
	TCP19							
AT5G51910		TCP TCP	0.02	-2.8	0.00	-10.6	1.00	-1.0
AT2G37000	TCP11		0.00	-∞	0.00	-00	NA 0.21	NA
AT3G50410	DOF3.4	Dof	0.01	-2.0	0.00	-5.1	0.21	-1.5
AT3G61850	DOF3.7	Dof	0.00	-2.1	0.00	-3.1	0.00	-1.9
AT1G68120	BPC3	BBR-BPC	0.00	-2.3	0.00	-4.5	1.00	1.1
AT2G01930	BPC1	BBR-BPC	0.01	-2.5	0.00	-2.5	0.42	1.2
AT1G63100	SCL28_1	GRAS	0.00	-4.3	0.00	-15.4	0.07	-1.6
AT1G46264	HSFB4	HSF	0.00	-2.5	0.00	-8.9	0.10	-1.5
AT3G18010	WOX1	WOX	0.00	-6.5	0.00	-4.1	0.08	-1.9
AT3G50700	IDD2	C2H2	0.00	-3.4	0.00	-3.5	1.00	1.0
AT4G39070	BBX20	DBB	0.04	-3.3	0.04	-3.5	0.60	-1.3
AT1G68840	RAV2	RAV	1.00	-1.1	0.03	-4.0	0.00	-2.5
AT1G19850	ARF5	ARF	0.00	-2.8	0.00	-3.5	0.15	-1.3
AT5G15840	CO	CO-like	0.00	-3.6	0.00	-2.4	0.70	-1.4
AT2G47260	WRKY23	WRKY	0.00	-2.8	0.00	-2.9	0.00	-1.9
AT2G02060	AT2G02060	G2-like	0.00	-2.5	0.00	-3.0	0.06	1.6
AT1G61730	AT1G61730	GeBP	0.00	-2.1	0.00	-2.3	0.00	-1.5
AT1G23380	KNAT6	TALE	0.01	-∞-	0.03	-00	0.18	-1.7
AT1G47760	AGL102	M-type_MADS	0.03	-∞	0.00	-00	0.99	-1.4
AT1G31310	AT1G31310	Trihelix	0.00	-∞-	0.00	-00-	NA	NA
aho 1	1 1 1	. 10 5						

^{a, b}Gene locus and symbols were retrieved from TAIR10.

^c Transcription factors were classified into families based on the assignment rules in PlantTFDB. Within each family, transcription factors were ranked according to highest individual fold-change.

^d*P*-value adjusted by FDR, calculated by *Empirical analysis of DGE* in CLC Genomics Workbench.

^e FC - fold-change in expression of genes between data sets (comparing samples with abundant vs no wall ingrowths), calculated by *Empirical analysis of DGE* in CLC Genomics Workbench.

^fNA indicates gene that were identified as not expressed in both samples from each experimental comparison thus not available fold-change or *P*-value.

^gFold-changes ≤ 2 or $-\infty$ with *P* < 0.05 are indicated in red.

^h- ∞ indicates gene was not expressed (exon counts <10) in samples with abundant wall ingrowth deposition, but was expressed (exon counts ≥ 10) in samples with no detectable wall ingrowths.

Supplementary Table 4. Details of T-DNA insertional mutants for selected NAC-III-2 and III-3 transcription factors identified as putative candidate regulators of wall ingrowth deposition in Arabidopsis PP TC development.

Gene	Mutant allele	Mutant name	Resources	Publication	
NAC032	GK_852A11	nac002/032	Crossed by GABI-DUPLO project and	Bolle et al., 2013	
NAC002	GK_239B09	nuc002/032	donated to NASC	Done et al., 2015	
NAC055	SALK_014331				
NAC019	SALK_096295	nac019/055/072	Dong Lab, Duke University, US	Zheng et al., 2012	
NAC072	SALK_083756				
NAC056	SM_3_28017	nac056/018	Hara-Nishimura Lab, Kyoto	Kuniada at al. 2008	
NAC018	WiscDsLox364F11	nac030/018	University, Japan	Kunieda et al., 2008	