
𝑖𝑖𝑖𝑖 = int�
𝑧𝑧 + 0.5𝐿𝐿𝐿𝐿 + (𝑖𝑖 − 0.5)𝑆𝑆𝑀𝑀 + 𝜉𝜉𝑖𝑖,𝑗𝑗 − 𝑥𝑥𝑖𝑖,𝑗𝑗 − (0.5𝑆𝑆𝑆𝑆0 − 𝐿𝐿𝐿𝐿)

𝑆𝑆𝑇𝑇
�   (S1.1) 

Here, 𝐿𝐿𝐿𝐿  and 𝐿𝐿𝐿𝐿  are the lengths of the B-zone and the thin filament, respectively. 𝑆𝑆𝑀𝑀 =
0.5(𝐿𝐿𝐿𝐿 − 𝐿𝐿𝐿𝐿)/𝑛𝑛𝑀𝑀 is the spacing of the MHs, and 𝑆𝑆𝑇𝑇 = 𝐿𝐿𝐿𝐿/𝑛𝑛𝑇𝑇 is the spacing of the T/T units. Note 
that the corresponding T/T unit exists only if 1 ≤ 𝑖𝑖𝑖𝑖 ≤ 𝑛𝑛𝑇𝑇.  

The transition rates between the three states of the T/T unit are defined below. These transition rates 
are denoted by constants with a prime if there is an MH in a weakly or strongly bound state below the 
T/T unit, so that Ca binding can be facilitated by nearby cross-bridges.  

(1) Ca-off → Ca-on*

Supplementary Material 
Coupling Langevin Dynamics with Continuum Mechanics: Exposing 
the Role of Sarcomere Stretch Activation Mechanisms to Cardiac 
Function 

Takumi Washio1,2, Seiryo Sugiura1,2, Ryo Kanda3, Jun-ichi Okada1,2, and Toshiaki Hisada1,2 
1 UT-Heart Inc., UT Kashiwanoha Campus Satellite, 178-4-4 Wakashiba, Kashiwa, Chiba 277-0871, 
Japan 
2 Graduate School of Frontier Sciences, University of Tokyo, UT Kashiwanoha Campus Satellite, 
178-4-4 Wakashiba, Kashiwa, Chiba 277-0871, Japan
3 Predictive Health Team, Integrated Research Group, Compass to Healthy Life Research Complex 
Program, RIKEN, 6-7-1 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan 

* Correspondence: Takumi Washio: washio@sml.k.u-tokyo.ac.jp

S1. Details of the Half-Sarcomere Model

S1.1 Cooperative Mechanism during Transitions between the Nonbinding State NXB and the 
Weakly-binding State PXB 

All parameters introduced in this section are given in Table S1.1. We used the same values as in our 
previous work (Washio et al., 2016), with the exception of the length of a thin filament, which was 
set to 1.0 μm for better agreement with a recent measurement (Kolb et al., 2016). In our half-
sarcomere model, 𝑛𝑛𝑀𝑀 myosin molecules are arranged on a thick filament at regular intervals, except 
for the bare zone (B-zone). The thick filament is divided into 𝑛𝑛𝑇𝑇 se gments ca lled 
troponin/tropomyosin (T/T) units (Figure S1.1). Three states, called Ca-off, Ca-on*, and Ca-on, can 
be assumed by each T/T unit. The transitions between the states of a T/T unit are affected by the Ca2+ 
concentration [Ca] and the states of the MHs below that T/T unit. The corresponding T/T unit index 
𝑖𝑖𝑖𝑖 of the i-th MH in the j-th filament is given by:  

mailto:washio@sml.k.u-tokyo.ac.jp
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𝐾𝐾�on
∗ [Ca] = � 𝐾𝐾′

on
∗ [Ca]   if there is a bound MH below,

    𝐾𝐾on
∗ [Ca]    otherwise.                                             

                                                  (S1.2)   

(2) Ca-off ← Ca-on* 

𝐾𝐾�off
∗ = � 𝐾𝐾′

off
∗    if there is a bound MH below,

    𝐾𝐾off
∗     otherwise.                                                                                                               (S1.3) 

(3) Ca-on* → Ca-on 

𝐾𝐾�on[Ca] = � 𝐾𝐾′on[Ca]   if there is a bound MH below,
    𝐾𝐾on[Ca]    otherwise.                                                                                               (S1.4) 

(4) Ca-on* ← Ca-on 

𝐾𝐾�off = � 𝐾𝐾′off   if there is a bound MH below,
    𝐾𝐾off    otherwise.                                                                                                               (S1.5)  

The transitions between the NXB and PXB states are affected by the status of the T/T unit above it 
through modifications of 𝐾𝐾np and 𝐾𝐾pn , as well as by the state of the neighboring MHs through the 
integer 𝑛𝑛𝑛𝑛, where 𝑛𝑛𝑛𝑛 (= 0, 1, or 2) is the number of neighboring MHs in a weakly or strongly bound 
state. 

(1) NXB → PXB 

𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁→𝑃𝑃𝑃𝑃𝑃𝑃 = 𝐾𝐾np𝛾𝛾𝑛𝑛𝑛𝑛                                                                                                                          (S1.6) 

(2) NXB ← PXB 

𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃→𝑁𝑁𝑁𝑁𝑁𝑁 = 𝐾𝐾pn𝛾𝛾−𝑛𝑛𝑛𝑛                                                                                                                       (S1.7) 

The former is given by:  

𝐾𝐾np = �
𝛿𝛿𝑂𝑂𝑂𝑂𝐾𝐾np1  if the T/T unit above is in the Ca-on state,
𝛿𝛿𝑂𝑂𝑂𝑂𝐾𝐾np0  otherwise.                                                                                                            (S1.8) 

𝐾𝐾pn = �
𝐾𝐾pn1  if the T/T unit above is in the Ca-on state,
𝐾𝐾pn0  otherwise.                                                                                                                  (S1.9) 

Here, 𝛿𝛿𝑂𝑂𝑂𝑂 = 1 if the MH is located at the single overlap region with the thin filament, otherwise 
𝛿𝛿𝑂𝑂𝑂𝑂 = 0. This, along with 𝛾𝛾𝑛𝑛𝑛𝑛 or 𝛾𝛾−𝑛𝑛𝑛𝑛 (𝛾𝛾 = 40), represents the nearest-neighbor cooperativity of 
the MHs, following Rice (2003), which plays an important role for the force-pCa relationship, as 
shown in S2. We assume that one thin filament in the three-dimensional arrangement corresponds to 
two thin filaments in our half-sarcomere model. This is because we are assuming that cooperative 
behavior exists along the tropomyosin and tropomyosin molecules wrapped around the thin filament 
in a double spiral fashion, and one of the spirals is considered in our half-sarcomere model. The 
constants 𝐾𝐾np0, 𝐾𝐾np1, 𝐾𝐾pn0, and  𝐾𝐾pn1 are determined from 𝑄𝑄, 𝐾𝐾basic, and 𝜇𝜇, as follows:  
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𝐾𝐾np0 =
𝑄𝑄𝐾𝐾basic

𝜇𝜇
,  𝐾𝐾np1 = 𝑄𝑄𝐾𝐾basic,  𝐾𝐾pn0 = 𝐾𝐾pn1 = 𝐾𝐾basic𝛾𝛾2                                                       (S1.10) 

Here, 𝜇𝜇 > 1 controls the degree of cross-bridge inhibition for T/T units in states other than Ca-on, 
and 𝑄𝑄 controls the ratio of binding states of the MHs. The greater the value of 𝑄𝑄, the larger the ratio 
of binding states for a given Ca2+ concentration. To reproduce the sarcomere length (𝑆𝑆𝑆𝑆) dependence 
in the contraction force, 𝑄𝑄 is given as a function of 𝑆𝑆𝑆𝑆 by  

𝑄𝑄(𝑆𝑆𝑆𝑆) = �
𝑄𝑄0                                , 𝑆𝑆𝑆𝑆 ≥ 𝑆𝑆𝑆𝑆𝑄𝑄 ,
𝑄𝑄0 − 𝛼𝛼𝑄𝑄�𝑆𝑆𝑆𝑆𝑄𝑄 − 𝑆𝑆𝑆𝑆�, 𝑆𝑆𝑆𝑆 < 𝑆𝑆𝑆𝑆𝑄𝑄 .                                                                                  (S1.11) 

 

Table S1.1 Parameters for the transitions between NXB and PXB, and the sarcomere geometry. 

Parameter Value Unit Parameter Value Unit 

Transition of T/T unit Number of MHs and T/T units 

𝐾𝐾on
∗  150 µM−1s−1 𝑛𝑛𝑀𝑀 38 Unitless 

𝐾𝐾off
∗  80 s−1 𝑛𝑛𝑇𝑇 32 Unitless 

𝐾𝐾′
on
∗  150 µM−1s−1 Sarcomere Geometry 

𝐾𝐾′
off
∗  20 s−1 𝐿𝐿𝐿𝐿 1.65 µm 

𝐾𝐾on 150 µM−1s−1 𝐿𝐿𝐿𝐿 0.16 µm 

𝐾𝐾off 80 s−1 𝐿𝐿𝐿𝐿 1.0 µm 

𝐾𝐾′on 150 µM−1s−1 𝑆𝑆𝑆𝑆0 1.9 µm 

𝐾𝐾′off 40 s−1    

Transition between NXB and PXB    

𝐾𝐾basic 20.0 s−1    

𝑄𝑄0 2.2 Unitless    

𝑆𝑆𝑆𝑆𝑄𝑄 2.2 µm    

𝛼𝛼𝑄𝑄 1.0 µm−1    

𝜇𝜇 15.0 Unitless    

𝛾𝛾 40 Unitless    
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Figure S1.1 Transitions of the MH states (left), transitions of the T/T unit states (right), and 
geometry of the half-sarcomere model (right-bottom).  

 
S1.2 Nonlinear rod strain energy model 

The rod strain energy was nonlinear with the generated force, following Kaya (2010). We assume 
that the myosin rod behaves as a linear spring for positive stretches, whereas nonlinear behavior is 
introduced for negative stretches, because of the slack region along the myosin rod (Kaya and 
Higuchi, 2010), as depicted in Figure S1.2. The strain energy 𝑊𝑊𝑟𝑟𝑟𝑟𝑟𝑟 is given by integrating the force 
𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟 from 𝜉𝜉 = 0 given by 

𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟(𝜉𝜉) =

⎩
⎨

⎧
𝑏𝑏𝑥𝑥𝑥𝑥𝑘𝑘𝑥𝑥𝑥𝑥(𝜉𝜉 + 𝜉𝜉1) − 𝐹𝐹1, 𝜉𝜉 < −𝜉𝜉1 ,
𝑘𝑘𝑥𝑥𝑥𝑥
𝑎𝑎𝑥𝑥𝑥𝑥

(exp(𝑎𝑎𝑥𝑥𝑥𝑥𝜉𝜉) − 1),−𝜉𝜉1 ≤  𝜉𝜉 < 0 ,

𝑘𝑘𝑥𝑥𝑥𝑥𝜉𝜉,    𝜉𝜉 ≥ 0,

                                                                     (S1.12) 

where 𝑎𝑎𝑥𝑥𝑥𝑥 and 𝐹𝐹1 are determined from the other parameters so that the function 𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟  and its first 
derivative are continuous at 𝜉𝜉 = 0 and 𝜉𝜉 = −𝜉𝜉1:  

⎩
⎪
⎨

⎪
⎧ 𝑎𝑎𝑥𝑥𝑥𝑥 = −

(ln 𝑏𝑏𝑥𝑥𝑥𝑥)
𝜉𝜉1

,                    

𝐹𝐹1 =
𝑘𝑘𝑥𝑥𝑥𝑥(1− exp(−𝑎𝑎𝑥𝑥𝑥𝑥𝜉𝜉1))

𝑎𝑎𝑥𝑥𝑥𝑥
.
                                                                                                       (S1.13) 

The parameters adopted in our model are 𝑘𝑘𝑥𝑥𝑥𝑥 = 2.8 pN/nm, 𝜉𝜉1=4.35 nm, and 𝑏𝑏𝑥𝑥𝑥𝑥 = 0.05 . The 
profiles of the resultant force and potential functions are depicted in Figure S1.2. 
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Figure S1.2 Force 𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟 and the potential energy 𝑊𝑊𝑟𝑟𝑟𝑟𝑟𝑟 for the myosin rod strain 𝜉𝜉. 
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S2. Verification of the Basic Properties of the Half-Sarcomere Model 

The basic properties of the half-sarcomere model were verified as follows. For the Langevin 
dynamics, the trap model was applied. All the simulations were executed with the MTS scheme (∆𝑡𝑡 = 
0.25 ns, ∆𝑇𝑇 = 5000 ns:except for S2.4 where ∆𝑇𝑇 = 25ns was used). The contractile force per one 
thin filament, T,∆T𝐹𝐹 , in Equation (25) of the main text was averaged over 48 thin filaments (𝑛𝑛𝐹𝐹 = 48). 
Note that the contractile force computed in the numerical experiments corresponds to the force for 
one of the double spirals along the thin filament. Therefore, the factor 2/𝑆𝑆𝑆𝑆0 (𝑆𝑆𝑆𝑆0 = 0.001µm2, the 
cross-sectional area of a single thin filament) should be multiplied if one evaluates the tension within 
the sarcomere. All the numerical simulations were performed with the same parameters as those in 
the main text, which attempted to reproduce the muscle contraction at normal body temperature, 
while most of existing experimental data were obtained at lower temperatures. Therefore, we avoid 
quantitative comparisons with the existing experimental results.    

 

S2.1 SL and Ca2+ Force Relationships 

To obtain the force in each case, the simulations were started in the relaxed state (all MHs were in 
NXB) at 𝑇𝑇 = 0 s with a given Ca2+ concentration [Ca], and the contractile force was averaged over the 
time interval [0.75 s, 1 s]. In Figure S2.1, the SL and Ca2+ dependences of the contractile force are 
shown. Similar dependences as seen in the experimental results of Kentish et al. (1986) were 
reproduced. For the SL-force relation, the curvature of the profiles changed from negative to positive 
as the Ca2+ concentration decreased. The Ca2+-force relation clearly demonstrated increased Ca2+-
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sensitivity (a leftward shift of [Ca50]) at longer SLs. The Hill coefficient decreased for short values of 
SL (= 1.7 µm).  

 

Figure S2.1 Relationships between force and sarcomere length (A) or [Ca] (B) in the trap model. 

 

S2.2 Isometric Twitch 

A series of isometric twitches were simulated for the Ca2+ transient generated by the mid-myocardial 
cell model proposed by ten Tusscher et al. (2006) while varying the SL (Figure S2.2). As observed 
by Janssen et al. (1995), the 50% relaxation level was prolonged with increased SL and force, 
whereas the time to reach the 90% rise level was only slightly prolonged. 
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Figure S2.2 SL dependence of twitch duration. The force of the isometric twitches were compared 
while varying the SL (A). The same data with the forces normalized by the peak values (B). The 
applied Ca2+ transient is shown by the broken lines.  

 

S2.3 Force-Velocity Relation 

To predict the dependence of the force on the shortening velocity in the trap model, the half-
sarcomere excited with a constant [Ca] was quickly released from the initial SL value of 2.3µm with 
various constant loads (Figure S2.3(A)). Under this isotonic condition, the shortening velocities were 
measured (Figure S2.3(B)). Physiologically reasonable curves similar to the experimental results 
given by Piazzesi et al. (1995) were reproduced, with the maximal half-sarcomere shortening velocity 
close to 3 µm/s.  

  The SL transient shown in Figure S2.4(A) is similar to the experimental results obtained by 
Reconditi et al. (2004). As can be seen on the left side of Figure S2.4(B), the initial plateau region 
0 − 5 ms of the SL transient corresponds to the duration shifting towards the new equilibrium of the 
isotonic contraction after the non-equilibrium state was induced by the quick release, where a 
significant number of MHs in the pre-power stroke state (Pre) and the post-first power stroke state 
(PS1) were transferred rapidly to the post-second power stroke state (PS2). These rapid transitions 
were induced by a rapid decrease in the rod strain 𝜉𝜉 in the Pre and PS1 states, as shown in Figure 
S2.4(C). In the case of a smaller load (50 pN/Filament), the averaged 𝜉𝜉 in PS2 decreases until the 
increase in the shortening velocity stops. Although the averaged 𝜉𝜉 in PS2 is negative after 10 ms, the 
half-sarcomere produces a positive contractile force equal to 50 pN/Filament. This is due to the 
nonlinearity of the spring force (Figure S1.2).   
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Figure S2.3 Transients of SLs during the isotonic contractions for constant [Ca]= 1 µM or 0.6 µM 
with various loads (A). The given loads are represented by the forces [pN] per thin filament. The 
force-velocity relations were derived by the isotonic contraction experiments (B). For each isotonic 
case, the shortening velocity was computed from the difference in the SLs at 10 ms and 50 ms after 
the isotonic contraction was initiated.  

 

Figure S2.4 Transients of SL (A), the state ratios (B), and the averaged rod strains 𝜉𝜉 (C) for the three 
binding states during the initial phase of the isotonic contraction for a load 50 pN (left) or 100 pN 
(right) per thin filament with [Ca] = 1µM.   
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S2.4 Tension Recovery for the Step Length Change 

To examine the tension recovery after quick shortening, the half-sarcomere model was quickly 
shortened by 3, 5, or 7 nm within 0.1 ms after the contractile force was developped under a constant 
[Ca] = 10 µM (Figure S2.5(A)). The shortening effect is clearly recognizable as the sudden decrease 
of averaged rod strain 𝜉𝜉 in the pre-power stroke state (Pre) (Figure S2.5(B)). This induced the quick 
recovery of tension given by the collective power stroke transition from Pre to PS2 (Figures S2.5 C 
and D ).  

 

 

Figure S2.5 Tension recovery after a quick shortening of 3, 5, or 7 nm of the half-sarcomere (A). 
The length change was given over [0 ms, 0.1 ms] after the contractile force was developped with 
[Ca] = 10 µM and SL = 1.9µm. The transients of the state ratios of Pre and PS2 are given in (C) and 
(D), respectively. The averaged rod strains for Pre and PS2 are given in (B) and (E), respectively.  
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S3. Derivation of the Active Stress Tensor and its Stiffness 

   The muscle power P  per unit volume delivered by the contractile tension 𝑇𝑇𝑓𝑓 (per unit area in the 
reference configuration) in the direction specified by the unit vector 𝒇𝒇 (in the reference configuration) 
is given by the product of 𝑇𝑇𝑓𝑓 and the time derivative of the stretching 𝜆𝜆 = �𝜕𝜕𝒙𝒙

𝜕𝜕𝑿𝑿
𝒇𝒇� along 𝒇𝒇:  

𝑃𝑃 = −𝑇𝑇𝑓𝑓𝜆̇𝜆 = −
𝑇𝑇𝑓𝑓
𝜆𝜆

�
𝜕𝜕𝑥𝑥𝑖𝑖
𝜕𝜕𝑋𝑋𝑗𝑗

𝑓𝑓𝑗𝑗
𝜕𝜕𝑥̇𝑥𝑖𝑖
𝜕𝜕𝑋𝑋𝑘𝑘

𝑓𝑓𝑘𝑘

3

𝑖𝑖,𝑗𝑗,𝑘𝑘=1

= −
𝑇𝑇𝑓𝑓
𝜆𝜆
�
𝜕𝜕𝒙𝒙
𝜕𝜕𝑿𝑿

∙ 𝒇𝒇⨂𝒇𝒇� :
𝜕𝜕𝒙̇𝒙
𝜕𝜕𝑿𝑿

                                            (S3.1) 

Here, the :  symbol denotes the dot product of the two tensors. Thus, the active stress can be 
represented by the first Piola-Kirchhoff stress tensor:  

𝜫𝜫act =
𝑇𝑇𝑓𝑓
𝜆𝜆
𝒇𝒇⨂𝒇𝒇 ⋅ �

𝜕𝜕𝒙𝒙
𝜕𝜕𝑿𝑿

�
𝑇𝑇

                                                                                                                   (S3.2) 
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As a result, Equation (S3.1) can be rewritten as  

𝑃𝑃 = −𝜫𝜫act
𝑇𝑇:
𝜕𝜕𝒙̇𝒙
𝜕𝜕𝑿𝑿

                                                                                                                                 (S3.3) 

The application of the first Piola-Kirchhoff stress tensor 𝜫𝜫act to an area element 𝑵𝑵𝑑𝑑𝑑𝑑 in the reference 
configuration, in which the normal vector 𝑵𝑵 points outward from the area, yields the traction force 
𝒅𝒅𝒅𝒅 in the current configuration, as follows:  

𝒅𝒅𝒅𝒅 = 𝜫𝜫act
𝑇𝑇𝑵𝑵𝑑𝑑𝑑𝑑 =

𝑇𝑇𝑓𝑓
𝜆𝜆
𝜕𝜕𝒙𝒙
𝜕𝜕𝑿𝑿

𝒇𝒇(𝒇𝒇 ∙ 𝑵𝑵)𝑑𝑑𝑑𝑑 = 𝑇𝑇𝑓𝑓𝒇𝒇�(𝒇𝒇 ∙ 𝑵𝑵)𝑑𝑑𝑑𝑑                                                            (S3.4) 

Here, 𝒇𝒇� = 1
𝜆𝜆
𝜕𝜕𝒙𝒙
𝜕𝜕𝑿𝑿
𝒇𝒇  is the unit vector directed along the fiber orientation direction in the current 

configuration, and (𝒇𝒇 ∙ 𝑵𝑵) is proportional to the number of actin filaments that pass through the unit 
area perpendicular to 𝑵𝑵. Thus, Equation (S3.4) indicates that the active stress tensor in Equation 
(S3.2) is based on the muscle power 𝑃𝑃, which corresponds with the usual stress tensor defined by the 
traction force.  

 From Equation (S3.2), the active stress tensor is represented by the second Piola-Kirchhoff stress 
tensor:  

𝑺𝑺act =
𝑇𝑇𝑓𝑓
𝜆𝜆
𝒇𝒇⨂𝒇𝒇                                                                                                                                     (S3.5) 

To perform an implicit time integration scheme, such as the Newmark-β method, we need to compute 
the derivative of the stress tensor with respect to the nodal displacement vector 𝒖𝒖, as well as its time 
derivative 𝒖̇𝒖. In Equation (S3.5), 𝜆𝜆 is a function of 𝒖𝒖, and 𝑇𝑇𝑓𝑓 is a function of 𝒖𝒖 and 𝒖̇𝒖 , because 𝑇𝑇𝑓𝑓 in 
Equation (38) contains 𝜆̇𝜆 (which is a function of 𝒖𝒖 and 𝒖̇𝒖) :  

⎩
⎪
⎨

⎪
⎧𝜆𝜆 = �1 + 2𝒇𝒇 ∙ �

𝜕𝜕𝒖𝒖
𝜕𝜕𝑿𝑿

𝒇𝒇� + �
𝜕𝜕𝒖𝒖
𝜕𝜕𝑿𝑿

𝒇𝒇� ∙ �
𝜕𝜕𝒖𝒖
𝜕𝜕𝑿𝑿

𝒇𝒇��
1 2⁄

𝜆̇𝜆 =
1
𝜆𝜆
�𝒇𝒇 ∙ �

𝜕𝜕𝒖̇𝒖
𝜕𝜕𝑿𝑿

𝒇𝒇� + �
𝜕𝜕𝒖𝒖
𝜕𝜕𝑿𝑿

𝒇𝒇� ∙ �
𝜕𝜕𝒖̇𝒖
𝜕𝜕𝑿𝑿

𝒇𝒇��           

                                                                       (S3.6) 

Thus, the derivative of 𝑺𝑺act can be computed by  

𝜹𝜹𝜹𝜹act =
𝑇𝑇𝑓𝑓
𝜆𝜆
�−

𝛿𝛿𝛿𝛿
𝜆𝜆

+
𝑑𝑑𝑇𝑇𝑓𝑓
𝑑𝑑𝜆̇𝜆

𝛿𝛿𝜆̇𝜆� 𝒇𝒇⨂𝒇𝒇                                                                                                 (S3.7) 

Now, from Equation (37), the derivative of 𝑇𝑇𝑓𝑓 is given by  

𝑑𝑑𝑇𝑇𝑓𝑓
𝑑𝑑𝜆̇𝜆

= ∆𝑇𝑇
𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆0
𝑆𝑆𝑆𝑆0

𝐾𝐾𝐹𝐹 
𝑇𝑇,∆𝑇𝑇                                                                                                                     (S3.8) 

and the derivatives of 𝜆𝜆 and 𝜆̇𝜆 are, respectively,  
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𝛿𝛿𝛿𝛿 =
1
𝜆𝜆
�𝒇𝒇 +

𝜕𝜕𝒖𝒖
𝜕𝜕𝑿𝑿

𝒇𝒇� ∙ �
𝜕𝜕𝜹𝜹𝜹𝜹
𝜕𝜕𝑿𝑿

𝒇𝒇�                                                                                                         (S3.9) 

and 

𝛿𝛿𝜆̇𝜆 =
1
𝜆𝜆
�
𝜕𝜕𝒖𝒖
𝜕𝜕𝑿𝑿

𝒇𝒇 −
𝜆̇𝜆
𝜆𝜆
�𝒇𝒇 +

𝜕𝜕𝒖𝒖
𝜕𝜕𝑿𝑿

𝒇𝒇�� ∙ �
𝜕𝜕𝜹𝜹𝜹𝜹
𝜕𝜕𝑿𝑿

𝒇𝒇� +
1
𝜆𝜆
�𝒇𝒇 +

𝜕𝜕𝒖𝒖
𝜕𝜕𝑿𝑿

𝒇𝒇� ∙ �
𝜕𝜕𝜹𝜹𝒖̇𝒖
𝜕𝜕𝑿𝑿

𝒇𝒇�                               (S3.10) 

 

S4 Passive and Viscous Parts of the Ventricle Model 

The passive stress tensor is given by the deformation potential function 𝑊𝑊𝑝𝑝𝑝𝑝𝑝𝑝 as 

𝜫𝜫pas =
𝜕𝜕𝑊𝑊pas

𝜕𝜕𝒁𝒁

𝑇𝑇

                                                                                                                                 (S4.1) 

The potential function 𝑊𝑊𝑝𝑝𝑝𝑝𝑝𝑝 is determined by a macroscopic passive potential: 

𝑊𝑊pas = 𝑐𝑐1(𝐼𝐼1 − 3) + 𝑐𝑐𝑢𝑢
exp(𝑄𝑄𝑢𝑢) − 1

2
+ 𝑅𝑅𝑆𝑆𝑊𝑊sar                                                                        (S4.2) 

where 𝐼𝐼1 is is the reduced invariant defined as 

𝐼𝐼1 = det(𝑪𝑪)−
1
3Tr(𝑪𝑪)                                                                                                                          (S4.3) 

with the right Cauchy-Green deformation tensor 𝑪𝑪 = 𝑭𝑭𝑇𝑇𝑭𝑭. 𝑄𝑄𝑢𝑢  is a quadratic form of the Green-
Lagrange strain tensor (Usyk et al., 2000): 

𝑄𝑄𝑢𝑢 = 𝑏𝑏𝑓𝑓𝑓𝑓𝐸𝐸𝑓𝑓𝑓𝑓2 + 𝑏𝑏𝑠𝑠𝑠𝑠𝐸𝐸𝑠𝑠𝑠𝑠2 + 𝑏𝑏𝑛𝑛𝑛𝑛𝐸𝐸𝑛𝑛𝑛𝑛2 + 2𝑏𝑏𝑓𝑓𝑓𝑓𝐸𝐸𝑓𝑓𝑓𝑓2 + 2𝑏𝑏𝑓𝑓𝑓𝑓𝐸𝐸𝑓𝑓𝑓𝑓2 + 2𝑏𝑏𝑠𝑠𝑠𝑠𝐸𝐸𝑠𝑠𝑠𝑠2                                       (S4.4) 

where the components are defined based on the fiber-sheet structure of the muscle walls as 

�
𝐸𝐸𝑓𝑓𝑓𝑓 = 𝑬𝑬:𝒇𝒇⊗ 𝒇𝒇,𝐸𝐸𝑠𝑠𝑠𝑠 = 𝑬𝑬: 𝒔𝒔⊗ 𝒔𝒔,𝐸𝐸𝑛𝑛𝑛𝑛 = 𝑬𝑬:𝒏𝒏⊗𝒏𝒏
𝐸𝐸𝑓𝑓𝑓𝑓 = 𝑬𝑬:𝒇𝒇⊗ 𝒔𝒔,𝐸𝐸𝑓𝑓𝑓𝑓 = 𝑬𝑬:𝒇𝒇⊗ 𝒏𝒏,𝐸𝐸𝑠𝑠𝑠𝑠 = 𝑬𝑬: 𝒔𝒔⊗ 𝒏𝒏                                                                   (S4.5) 

Here, {𝒇𝒇, 𝒔𝒔,𝒏𝒏} is the orthonormal basis of the ventricle walls that determines the fiber and laminar 
structures. 𝑅𝑅𝑆𝑆 denotes the volume ratio of the sarcomere in the ventricle muscle wall, and 𝑊𝑊sar is the 
potential function introduced by the material properties of the sarcomere mechanics. The thick 
filaments are connected to the Z-line with another filamentous protein called titin. These proteins are 
believed to prevent overstretching of the sarcomere, and the presence of the thick filaments is 
assumed to prevent too much shortening. These effects are modeled by introducing the potential as a 
function of the stretch 𝜆𝜆:   
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𝑊𝑊sar(𝜆𝜆) =

⎩
⎪
⎨

⎪
⎧

𝑐𝑐mf
4

(𝜆𝜆 − 𝜆𝜆mf)4,   𝜆𝜆 < 𝜆𝜆mf
0,　　　 𝜆𝜆mf ≤ 𝜆𝜆 ≤  𝜆𝜆titin
𝑐𝑐titin

3
(𝜆𝜆 − 𝜆𝜆titin)3,𝜆𝜆 >  𝜆𝜆titin

                                                                                    (S4.6)  

Here, 𝜆𝜆mf is the shortening threshold of 𝜆𝜆 of the thick filament, and  𝜆𝜆titin is the elongation threshold 
of the titin. 

For the viscous part, the Newtonian viscosity is given by  

𝜫𝜫vis = 2𝜇𝜇𝑆𝑆𝐽𝐽𝑭𝑭−1𝑫𝑫𝑆𝑆                                                                                                                            (S4.7) 

where 𝜇𝜇𝑆𝑆 is the viscosity coefficient, and 𝑫𝑫𝑆𝑆 is the deformation velocity tensor defined as: 

𝑫𝑫𝑆𝑆 =
1
2
�
𝜕𝜕𝒖̇𝒖
𝜕𝜕𝒙𝒙

+
𝜕𝜕𝒖̇𝒖
𝜕𝜕𝒙𝒙

𝑇𝑇

�                                                                                                                          (S4.8) 

Note that the derivatives are given with respect to the Eulerian coordinates 𝒙𝒙. 

 

Table S4.1 Parameters for the muscle material properties in the biventricular model.  

Parameter Value Unit Parameter Value Unit 

Muscle Passive Sarcomere 

𝑐𝑐1 71.8 Pa 𝑆𝑆𝑆𝑆0 0.001 µm2 

𝑐𝑐𝑢𝑢 600 Pa 𝑅𝑅𝑆𝑆 0.5 Unitless 

𝑏𝑏𝑓𝑓𝑓𝑓 5 Unitless 𝑐𝑐mf 10 GPa 

𝑏𝑏𝑠𝑠𝑠𝑠 6 Unitless 𝜆𝜆mf 0.87 Unitless 

𝑏𝑏𝑛𝑛𝑛𝑛 3 Unitless 𝑐𝑐titin 230 KPa 

𝑏𝑏𝑓𝑓𝑓𝑓 10 Unitless 𝜆𝜆titin 1.0 Unitless 

𝑏𝑏𝑓𝑓𝑓𝑓 2 Unitless    

𝑏𝑏𝑠𝑠𝑠𝑠 2 Unitless    

𝜇𝜇𝑆𝑆 36.66 Pa ∙ s    

𝜅𝜅 200 KPa    

𝛾𝛾 40 Unitless    

 

References for S4 
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S5. Circulatory System 

As the atrial model, the formulations by Kaye et al. (2014) were applied. The left and right atrial 
pressure 𝑃𝑃𝐴𝐴  is related to the time-varying elasticity 𝑒𝑒𝐴𝐴  and the chamber volume 𝑉𝑉𝐴𝐴  as follows. 
Hereafter, the subscript “A” stands for “LA” or “RA” for the left or the right atrium, respectively. 

𝑃𝑃𝐴𝐴(𝑒𝑒𝐴𝐴,𝑉𝑉𝐴𝐴) = 𝑃𝑃𝐴𝐴,𝑒𝑒𝑒𝑒(𝑉𝑉𝐴𝐴) + 𝑒𝑒𝐴𝐴 �𝑃𝑃𝐴𝐴,𝑒𝑒𝑒𝑒(𝑉𝑉𝐴𝐴) − 𝑃𝑃𝐴𝐴,𝑒𝑒𝑒𝑒(𝑉𝑉𝐴𝐴)�                                                                  (S5.1) 

Here, the functions 𝑃𝑃𝐴𝐴,𝑒𝑒𝑒𝑒  and 𝑃𝑃𝐴𝐴,𝑒𝑒𝑒𝑒  give, respectively, the pressure at the end of the diastolic and 
systolic phases for chamber volume 𝑉𝑉𝐴𝐴. These functions are defined by 

�
𝑃𝑃𝐴𝐴,𝑒𝑒𝑒𝑒(𝑉𝑉𝐴𝐴) = 𝛽𝛽𝐴𝐴 �exp �𝛼𝛼𝐴𝐴�𝑉𝑉𝐴𝐴 − 𝑉𝑉𝐴𝐴,0�� − 1� 

𝑃𝑃𝐴𝐴,𝑒𝑒𝑒𝑒(𝑉𝑉𝐴𝐴) = 𝐸𝐸𝐴𝐴,𝑒𝑒𝑒𝑒�𝑉𝑉𝐴𝐴 − 𝑉𝑉𝐴𝐴,0�                        
                                                                                (S5.2) 

The time-varying elastance 𝑒𝑒𝐴𝐴 is given as a function of the time 𝑇𝑇 as follows: 

𝑒𝑒𝐴𝐴(𝑇𝑇) = �
1
2
�sin𝜋𝜋 �𝑇𝑇−𝑇𝑇0

𝑇𝑇max
− 1

2
� + 1� ,   𝑇𝑇 ≤ 3

2
𝑇𝑇max + 𝑇𝑇0            

1
2

exp �−�𝑇𝑇−𝑇𝑇0 −
3
2
𝑇𝑇max� /𝜏𝜏𝐴𝐴� ,𝑇𝑇 > 3

2
𝑇𝑇max + 𝑇𝑇0  

                                                 (S5.3)     

Here, 𝑇𝑇0 is the start time of atrial excitation, 𝑇𝑇max is the time to maximal chamber elastance, and 𝜏𝜏𝐴𝐴 is 
the time constant of relaxation. Together with the other part of the circuit model of Figure 5 in the 
main text, the overall equations for pulmonary circulation are given by  

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ 𝐹𝐹𝑃𝑃𝑃𝑃 − 𝐻𝐻(𝐹𝐹�𝑃𝑃𝑃𝑃)𝐹𝐹�𝑃𝑃𝑃𝑃 = 0                                                                    

𝑄̇𝑄𝐴𝐴𝐴𝐴 + 𝐹𝐹𝑃𝑃𝑃𝑃 +
1
𝑅𝑅𝐴𝐴𝐴𝐴

�
𝑄𝑄𝐴𝐴𝐴𝐴
𝐶𝐶𝐴𝐴𝐴𝐴

−
𝑄𝑄𝑉𝑉𝑉𝑉
𝐶𝐶𝑉𝑉𝑉𝑉

� = 0                                           

𝑄̇𝑄𝑃𝑃𝑃𝑃 −
1
𝑅𝑅𝐴𝐴𝐴𝐴

�
𝑄𝑄𝐴𝐴𝐴𝐴
𝐶𝐶𝐴𝐴𝐴𝐴

−
𝑄𝑄𝑉𝑉𝑉𝑉
𝐶𝐶𝑉𝑉𝑉𝑉

� +
1
𝑅𝑅𝑉𝑉𝑉𝑉

�
𝑄𝑄𝑉𝑉𝑉𝑉
𝐶𝐶𝑉𝑉𝑉𝑉

− 𝑃𝑃𝐿𝐿𝐿𝐿(𝑒𝑒𝐿𝐿𝐿𝐿,𝑉𝑉𝐿𝐿𝐿𝐿)� = 0 

𝐹𝐹𝑀𝑀𝑀𝑀 − 𝐻𝐻(𝐹𝐹�𝑀𝑀𝑀𝑀)𝐹𝐹�𝑀𝑀𝑀𝑀 = 0                                                                    

𝑉̇𝑉𝐿𝐿𝐿𝐿 −
1
𝑅𝑅𝑉𝑉𝑉𝑉

�
𝑄𝑄𝑉𝑉𝑉𝑉
𝐶𝐶𝑉𝑉𝑉𝑉

− 𝑃𝑃𝐿𝐿𝐿𝐿(𝑒𝑒𝐿𝐿𝐿𝐿,𝑉𝑉𝐿𝐿𝐿𝐿)� − 𝐹𝐹𝑀𝑀𝑀𝑀 = 0                         

                                              (S5.4) 

Here, 𝐶𝐶 denotes the pulmonary venous compliance, and 𝑄𝑄 denotes the increase of the blood volume 
from zero pressure. 𝐹𝐹�𝑃𝑃𝑃𝑃 and 𝐹𝐹�𝑀𝑀𝑀𝑀, the flow rates in the case of no rectification, are given by  

https://doi.org/10.1023/A:1010883920374
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⎩
⎨

⎧𝐹𝐹�𝑃𝑃𝑃𝑃 =
1
𝑅𝑅𝑃𝑃𝑃𝑃

�𝑃𝑃𝑅𝑅 −
𝑄𝑄𝐴𝐴𝐴𝐴
𝐶𝐶𝐴𝐴𝐴𝐴

�                  

𝐹𝐹�𝑀𝑀𝑀𝑀 =
1
𝑅𝑅𝐿𝐿𝐿𝐿

(𝑃𝑃𝐿𝐿𝐿𝐿(𝑒𝑒𝐿𝐿𝐿𝐿,𝑉𝑉𝐿𝐿𝐿𝐿) − 𝑃𝑃𝐿𝐿)
                                                                                                (S5.5) 

Similarly, the overall equations for the systemic circulation are given by  

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ 𝐹𝐹𝐴𝐴𝐴𝐴 − 𝐻𝐻(𝐹𝐹�𝐴𝐴𝐴𝐴)𝐹𝐹�𝐴𝐴𝐴𝐴 = 0                                                               

𝑄̇𝑄𝐴𝐴 + 𝐹𝐹𝐴𝐴𝐴𝐴 +
1
𝑅𝑅𝐴𝐴

�
𝑄𝑄𝐴𝐴
𝐶𝐶𝐴𝐴

−
𝑄𝑄𝑉𝑉𝑉𝑉
𝐶𝐶𝑉𝑉𝑉𝑉

� = 0                                             

𝑄̇𝑄𝑉𝑉𝑉𝑉 −
1
𝑅𝑅𝐴𝐴

�
𝑄𝑄𝐴𝐴
𝐶𝐶𝐴𝐴

−
𝑄𝑄𝑉𝑉𝑉𝑉
𝐶𝐶𝑉𝑉𝑉𝑉

� +
1
𝑅𝑅𝑉𝑉𝑉𝑉

�
𝑄𝑄𝑉𝑉𝑉𝑉
𝐶𝐶𝑉𝑉𝑉𝑉

− 𝑃𝑃𝑅𝑅𝑅𝑅(𝑒𝑒𝑅𝑅𝑅𝑅,𝑉𝑉𝑅𝑅𝑅𝑅)� = 0 

𝐹𝐹𝑇𝑇𝑇𝑇 − 𝐻𝐻(𝐹𝐹�𝑇𝑇𝑇𝑇)𝐹𝐹�𝑇𝑇𝑇𝑇 = 0                                                               

𝑉̇𝑉𝑅𝑅𝑅𝑅 −
1
𝑅𝑅𝑉𝑉𝑉𝑉

�
𝑄𝑄𝑉𝑉𝑉𝑉
𝐶𝐶𝑉𝑉𝑉𝑉

− 𝑃𝑃𝑅𝑅𝑅𝑅(𝑒𝑒𝑅𝑅𝑅𝑅,𝑉𝑉𝑅𝑅𝑅𝑅)� − 𝐹𝐹𝑇𝑇𝑇𝑇 = 0                    

                                                     (S5.6) 

with flow rates (for no rectification)  

⎩
⎨

⎧ 𝐹𝐹�𝐴𝐴𝐴𝐴 =
1
𝑅𝑅𝐶𝐶

�𝑃𝑃𝐿𝐿 −
𝑄𝑄𝐴𝐴
𝐶𝐶𝐴𝐴
�                  

𝐹𝐹�𝑇𝑇𝑇𝑇 =
1
𝑅𝑅𝑅𝑅𝑅𝑅

(𝑃𝑃𝑅𝑅𝑅𝑅(𝑒𝑒𝑅𝑅𝑅𝑅,𝑉𝑉𝑅𝑅𝑅𝑅) − 𝑃𝑃𝑅𝑅)
                                                                                                 (S5.7) 

The parameters adopted in our simulation are listed in Table S5.1. The parameter values were chosen 
to reproduce the temporal changes in ventricular blood pressure for a standard healthy heart.  

 

Table S5.1 Parameters for the pulmonary and systemic circulations, with 𝑇𝑇cycle  standing for the 
period of a heartbeat 

Parameter Value Unit Parameter Value Unit 

Pulmonary Circulation Systemic Circulation 

𝑪𝑪𝑨𝑨𝑨𝑨 3.42 ml ∙ mmHg−1 𝐶𝐶𝐴𝐴 1.64 ml ∙ mmHg−1 

𝑪𝑪𝑽𝑽𝑽𝑽 7.52 ml ∙ mmHg−1 𝐶𝐶𝑉𝑉𝑉𝑉 67.3 ml ∙ mmHg−1 

𝑹𝑹𝑷𝑷𝑷𝑷 0.017 mmHg ∙ s ∙ ml−1 𝑅𝑅𝐶𝐶 0.043 mmHg ∙ s ∙ ml−1 

𝑹𝑹𝑨𝑨𝑨𝑨 0.139 mmHg ∙ s ∙ ml−1 𝑅𝑅𝐴𝐴 1.18 mmHg ∙ s ∙ ml−1 

𝑹𝑹𝑽𝑽𝑽𝑽 0.019 mmHg ∙ s ∙ ml−1 𝑅𝑅𝑉𝑉𝑉𝑉 0.060 mmHg ∙ s ∙ ml−1 

𝑹𝑹𝑳𝑳𝑳𝑳 0.0025 mmHg ∙ s ∙ ml−1 𝑅𝑅𝑅𝑅𝑅𝑅 0.0025 mmHg ∙ s ∙ ml−1 

Left Atrium Right Atrium 
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𝜶𝜶𝑳𝑳𝑳𝑳 0.044 ml−1 𝛼𝛼𝑅𝑅𝑅𝑅 0.044 ml−1 

𝜷𝜷𝑳𝑳𝑳𝑳 0.3 mmHg 𝛽𝛽𝑅𝑅𝑅𝑅 0.3 mmHg 

𝑬𝑬𝑳𝑳𝑳𝑳,𝒆𝒆𝒆𝒆 0.3 mmHg ∙ ml−1 𝐸𝐸𝑅𝑅𝑅𝑅,𝑒𝑒𝑒𝑒 0.25 mmHg ∙ ml−1 

𝑽𝑽𝑳𝑳𝑳𝑳,𝟎𝟎 5.0 ml 𝑉𝑉𝑅𝑅𝑅𝑅,0 5.0 ml 

𝝉𝝉𝑳𝑳𝑳𝑳 0.025 s 𝜏𝜏𝑅𝑅𝑅𝑅 0.025 s 

𝑻𝑻𝐦𝐦𝐦𝐦𝐦𝐦 0.125 s 𝑇𝑇max 0.125 s 

𝑻𝑻𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜
 

0.15 s 𝑇𝑇cycle − 𝑇𝑇0 0.15 s 

 

References for S5 

Kaye, D., Shah, S. J., Borlaug, B. A., Gustafsson, F., Komtebedde, J., Kubo, S., Magnin, C., Maurer, 
M. S., Feldman, T., and  Burkhoff, D. (2014). Effects of an interatrial shunt on rest and exercise 
hemodynamics: results of a computer simulation in heart failure. J Card Fail. 20, 212–221. doi: 
10.1016/j.cardfail.2014.01.005. 

 

S6. Newmark-beta Time Integration for the Macroscopic Nonlinear Equation 

In our process, the combined system composed of the mechanical equations for the biventricular 
model and the blood circulation equations were simultaneously solved implicitly using the Newmark-
beta scheme. The combined system of equations is given by the following three formulas, for the 
biventricular FEM, pulmonary circulation, and systemic circulation models.  

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧ �𝜹𝜹𝒖̇𝒖 ∙ 𝜌𝜌𝒖̈𝒖 𝑑𝑑Ω

 

Ω
+ �𝜹𝜹𝒁̇𝒁: (𝜫𝜫 + 2𝑝𝑝𝑝𝑝𝑭𝑭−1)𝑇𝑇 𝑑𝑑Ω

 

Ω

        −𝑃𝑃𝐿𝐿 � 𝜹𝜹𝒖̇𝒖 ∙ 𝒏𝒏 𝑑𝑑Γ𝐿𝐿
 

Γ𝐿𝐿
− 𝑃𝑃𝑅𝑅 � 𝜹𝜹𝒖̇𝒖 ∙ 𝒏𝒏 𝑑𝑑Γ𝑅𝑅

 

Γ𝐿𝐿
= 0

� 𝛿𝛿𝛿𝛿 �2(𝐽𝐽 − 1) −
𝑝𝑝
𝜅𝜅
�  𝑑𝑑Ω

 

Ω
= 0                              

𝛿𝛿𝑃𝑃𝐿𝐿 �� 𝒖̇𝒖 ∙ 𝒏𝒏 𝑑𝑑Γ𝐿𝐿
 

Γ𝐿𝐿
− (𝐹𝐹𝑀𝑀𝑀𝑀 − 𝐹𝐹𝐴𝐴𝐴𝐴)� = 0              

𝛿𝛿𝑃𝑃𝑅𝑅 �� 𝒖̇𝒖 ∙ 𝒏𝒏 𝑑𝑑Γ𝑅𝑅
 

Γ𝑅𝑅
− (𝐹𝐹𝑇𝑇𝑇𝑇 − 𝐹𝐹𝑃𝑃𝑃𝑃)� = 0             

 

  ⟹ 𝑮𝑮𝑉𝑉�{𝒖𝒖}, {𝒖𝒖}̇ , {𝒖𝒖}̈ , {𝒑𝒑},𝑃𝑃𝐿𝐿 ,𝑃𝑃𝑅𝑅 ,𝐹𝐹𝑃𝑃𝑃𝑃,𝐹𝐹𝑀𝑀𝑀𝑀 ,𝐹𝐹𝐴𝐴𝐴𝐴 ,𝐹𝐹𝐴𝐴𝐴𝐴� = 𝟎𝟎    (S6.1) 
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⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎧ 𝐹𝐹𝑃𝑃𝑃𝑃 − 𝐻𝐻(𝐹𝐹�𝑃𝑃𝑃𝑃)𝐹𝐹�𝑃𝑃𝑃𝑃 = 0:𝐹𝐹�𝑃𝑃𝑃𝑃 =

1
𝑅𝑅𝑃𝑃𝑃𝑃

�𝑃𝑃𝑅𝑅 −
𝑄𝑄𝐴𝐴𝐴𝐴
𝐶𝐶𝐴𝐴𝐴𝐴

�  

𝑄̇𝑄𝐴𝐴𝐴𝐴 + 𝐹𝐹𝑃𝑃𝑃𝑃 +
1
𝑅𝑅𝐴𝐴𝐴𝐴

�
𝑄𝑄𝐴𝐴𝐴𝐴
𝐶𝐶𝐴𝐴𝐴𝐴

−
𝑄𝑄𝑉𝑉𝑉𝑉
𝐶𝐶𝑉𝑉𝑉𝑉

� = 0                    

𝑄̇𝑄𝑃𝑃𝑃𝑃 −
1
𝑅𝑅𝐴𝐴𝐴𝐴

�
𝑄𝑄𝐴𝐴𝐴𝐴
𝐶𝐶𝐴𝐴𝐴𝐴

−
𝑄𝑄𝑉𝑉𝑉𝑉
𝐶𝐶𝑉𝑉𝑉𝑉

�                                     

+
1
𝑅𝑅𝑉𝑉𝑉𝑉

�
𝑄𝑄𝑉𝑉𝑉𝑉
𝐶𝐶𝑉𝑉𝑉𝑉

− 𝑃𝑃𝐿𝐿𝐿𝐿(𝑒𝑒𝐿𝐿𝐴𝐴,𝑉𝑉𝐿𝐿𝐿𝐿)� = 0  

𝐹𝐹𝑀𝑀𝑀𝑀 − 𝐻𝐻(𝐹𝐹�𝑀𝑀𝑀𝑀)𝐹𝐹�𝑀𝑀𝑀𝑀 = 0: 𝐹𝐹�𝑀𝑀𝑀𝑀 =
𝑃𝑃𝐿𝐿𝐿𝐿(𝑒𝑒𝐿𝐿𝐿𝐿,𝑉𝑉𝐿𝐿𝐿𝐿) − 𝑃𝑃𝐿𝐿

𝑅𝑅𝐿𝐿𝐿𝐿
  

𝑉̇𝑉𝐿𝐿𝐿𝐿 −
1
𝑅𝑅𝑉𝑉𝑉𝑉

�
𝑄𝑄𝑉𝑉𝑉𝑉
𝐶𝐶𝑉𝑉𝑉𝑉

− 𝑃𝑃𝐿𝐿𝐿𝐿(𝑒𝑒𝐿𝐿𝐿𝐿,𝑉𝑉𝐿𝐿𝐿𝐿)� − 𝐹𝐹𝑀𝑀𝑀𝑀 = 0  

⟹ 𝑮𝑮𝑃𝑃�𝐹𝐹𝑃𝑃𝑃𝑃,𝑄𝑄𝐴𝐴𝐴𝐴 , 𝑄̇𝑄𝐴𝐴𝐴𝐴 ,𝑄𝑄𝑃𝑃𝑃𝑃 , 𝑄̇𝑄𝑃𝑃𝑃𝑃𝐹𝐹𝑀𝑀𝑀𝑀 ,𝑉𝑉𝐿𝐿𝐿𝐿, 𝑉̇𝑉𝐿𝐿𝐿𝐿,𝑃𝑃𝐿𝐿 ,𝑃𝑃𝑅𝑅� = 𝟎𝟎  (S6.2) 

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎧ 𝐹𝐹𝐴𝐴𝐴𝐴 − 𝐻𝐻(𝐹𝐹�𝐴𝐴𝐴𝐴)𝐹𝐹�𝐴𝐴𝐴𝐴 = 0:𝐹𝐹�𝐴𝐴𝐴𝐴 =

1
𝑅𝑅𝐶𝐶

�𝑃𝑃𝐿𝐿 −
𝑄𝑄𝐴𝐴
𝐶𝐶𝐴𝐴
�            

𝑄̇𝑄𝐴𝐴 + 𝐹𝐹𝐴𝐴𝐴𝐴 +
1
𝑅𝑅𝐴𝐴

�
𝑄𝑄𝐴𝐴
𝐶𝐶𝐴𝐴

−
𝑄𝑄𝑉𝑉𝑉𝑉
𝐶𝐶𝑉𝑉𝑉𝑉

� = 0                               

𝑄̇𝑄𝑉𝑉𝑉𝑉 −
1
𝑅𝑅𝐴𝐴

�
𝑄𝑄𝐴𝐴
𝐶𝐶𝐴𝐴

−
𝑄𝑄𝑉𝑉𝑉𝑉
𝐶𝐶𝑉𝑉𝑉𝑉

�                                                

+
1
𝑅𝑅𝑉𝑉𝑉𝑉

�
𝑄𝑄𝑉𝑉𝑉𝑉
𝐶𝐶𝑉𝑉𝑉𝑉

− 𝑃𝑃𝑅𝑅𝑅𝑅(𝑒𝑒𝑅𝑅𝑅𝑅,𝑉𝑉𝑅𝑅𝑅𝑅)� = 0 

𝐹𝐹𝑇𝑇𝑇𝑇 − 𝐻𝐻(𝐹𝐹�𝑇𝑇𝑇𝑇)𝐹𝐹�𝑇𝑇𝑇𝑇 = 0:  𝐹𝐹�𝑇𝑇𝑇𝑇 =
𝑃𝑃𝑅𝑅𝑅𝑅(𝑒𝑒𝑅𝑅𝑅𝑅,𝑉𝑉𝑅𝑅𝑅𝑅) − 𝑃𝑃𝑅𝑅

𝑅𝑅𝑅𝑅𝑅𝑅
  

𝑉̇𝑉𝑅𝑅𝑅𝑅 −
1
𝑅𝑅𝑉𝑉𝑉𝑉

�
𝑄𝑄𝑉𝑉𝑉𝑉
𝐶𝐶𝑉𝑉𝑉𝑉

− 𝑃𝑃𝑅𝑅𝑅𝑅(𝑒𝑒𝑅𝑅𝑅𝑅,𝑉𝑉𝑅𝑅𝑅𝑅)� − 𝐹𝐹𝑇𝑇𝑇𝑇 = 0      

⟹ 𝑮𝑮𝑆𝑆�𝐹𝐹𝐴𝐴𝐴𝐴 ,𝑄𝑄𝐴𝐴 , 𝑄̇𝑄𝐴𝐴,𝑄𝑄𝑉𝑉𝑉𝑉 , 𝑄̇𝑄𝑉𝑉𝑉𝑉𝐹𝐹𝑇𝑇𝑇𝑇,𝑉𝑉𝑅𝑅𝑅𝑅, 𝑉̇𝑉𝑅𝑅𝑅𝑅,𝑃𝑃𝐿𝐿 ,𝑃𝑃𝑅𝑅� = 𝟎𝟎   (S6.3) 

Here,{𝒖𝒖}, {𝒖𝒖}̇ , {𝒖𝒖}̈ , and {𝒑𝒑} denote the nodal values of the displacement, the velocity, the acceleration, 
and the hydrostatic pressure to be interpolated on the tetrahedral MINI(5/4c) elements, respectively. 
The variables of the system are assigned to the total unknown vector and its time derivative:  

𝑼𝑼 = �
𝑼𝑼𝑉𝑉
𝑼𝑼𝑃𝑃
𝑼𝑼𝑆𝑆
�  ,     𝑼̇𝑼 = �

𝑼̇𝑼𝑉𝑉

𝑼̇𝑼𝑃𝑃

𝑼̇𝑼𝑆𝑆
�                                                                                                              (S6.4) 

as 

𝑼𝑼𝑉𝑉 = �

{𝒖𝒖}
{𝒑𝒑}
𝑃𝑃𝐿𝐿
𝑃𝑃𝑅𝑅

� ,𝑼𝑼𝑃𝑃 =

⎝

⎜
⎛

−
𝑄𝑄𝑃𝑃
𝑄𝑄𝑉𝑉𝑉𝑉
−
𝑉𝑉𝐿𝐿𝐿𝐿⎠

⎟
⎞

 ,𝑼𝑼𝑆𝑆 =

⎝

⎜
⎛

−
𝑄𝑄𝐴𝐴
𝑄𝑄𝑉𝑉𝑉𝑉
−
𝑉𝑉𝑅𝑅𝑅𝑅⎠

⎟
⎞

                                                                            (S6.5) 

and  
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𝑼̇𝑼𝑉𝑉 =

⎝

⎜
⎛

{𝒖̇𝒖}
{𝒑̇𝒑}
𝑃̇𝑃𝐿𝐿
𝑃̇𝑃𝑅𝑅 ⎠

⎟
⎞

, 𝑼̇𝑼𝑃𝑃 =

⎝

⎜⎜
⎛

𝐹𝐹𝑃𝑃𝑃𝑃
𝑄̇𝑄𝑃𝑃
𝑄̇𝑄𝑉𝑉𝑉𝑉
𝐹𝐹𝑀𝑀𝑀𝑀
𝑉̇𝑉𝐿𝐿𝐿𝐿⎠

⎟⎟
⎞

 , 𝑼̇𝑼𝑆𝑆 =

⎝

⎜
⎛

𝐹𝐹𝐴𝐴𝐴𝐴
𝑄̇𝑄𝐴𝐴
𝑄̇𝑄𝑉𝑉𝑉𝑉
𝐹𝐹𝑇𝑇𝑇𝑇
𝑉𝑉𝑅𝑅𝑅𝑅⎠

⎟
⎞

                                                                            (S6.6) 

The missing components denoted by “−” in Equation (S6.5) do not affect the values of function: 

𝑮𝑮�𝑼𝑼, 𝑼̇𝑼, 𝑼̈𝑼� = �
𝑮𝑮𝑉𝑉�𝑼𝑼, 𝑼̇𝑼, 𝑼̈𝑼�
𝑮𝑮𝑃𝑃�𝑼𝑼, 𝑼̇𝑼, 𝑼̈𝑼�
𝑮𝑮𝑆𝑆�𝑼𝑼, 𝑼̇𝑼, 𝑼̈𝑼�

�  .                                                                                                      (S6.7) 

Thus, the missing components in 𝑼𝑼 have no influence on the computational process, although they 
are also computed together with the other unknowns.   

In the Newmark-beta time integration scheme, the variables 𝑼𝑼, 𝑼̇𝑼, and 𝑼̈𝑼 are updated from those at 
time 𝑇𝑇 to time 𝑇𝑇 + ∆𝑇𝑇 so that both the interpolation relations in time (Equations (S6.8A-B)) and the 
equilibrium condition (Equation (S6.8C) at time 𝑇𝑇 + ∆𝑇𝑇   

⎩
⎪
⎨

⎪
⎧ 𝑼̇𝑼 𝑇𝑇+∆𝑇𝑇 = 𝑼̇𝑼 𝑇𝑇 + ∆𝑇𝑇�𝛾𝛾 𝑼̈𝑼 𝑇𝑇+∆𝑇𝑇 + (1 − 𝛾𝛾) 𝑼̈𝑼 𝑇𝑇+∆𝑇𝑇 �                                                                       (S6.8A)

𝑼𝑼 𝑇𝑇+∆𝑇𝑇 = 𝑼𝑼 𝑇𝑇 + ∆𝑇𝑇 𝑼̇𝑼 𝑇𝑇 + ∆𝑇𝑇2 �𝛽𝛽 𝑼̈𝑼 𝑇𝑇+∆𝑇𝑇 + �
1
2
− 𝛽𝛽� 𝑼̈𝑼 𝑇𝑇 �                                                       (S6.8B)

𝑮𝑮� 𝑼𝑼 𝑇𝑇+∆𝑇𝑇 , 𝑼̇𝑼 𝑇𝑇+∆𝑇𝑇 , 𝑼̈𝑼 𝑇𝑇+∆𝑇𝑇 � = 𝟎𝟎                                                                                                     (S6.8C) 

 

are fulfilled. Here, 𝛽𝛽 and 𝛾𝛾 are the interpolation weights which determine the numerical accuracy and 
stability of this scheme. In our case, we adopted 𝛽𝛽 = 0.3025 and 𝛾𝛾 = 0.6. 

To solve this system, Newton iterations are applied from the initial guess:  

𝑼𝑼(0)
 

𝑇𝑇+∆𝑇𝑇 ≡ 𝑼𝑼 𝑇𝑇 , 𝑼̇𝑼(0)
 

𝑇𝑇+∆𝑇𝑇 ≡ 𝑼̇𝑼 𝑇𝑇 , 𝑼̈𝑼(0)
 

𝑇𝑇+∆𝑇𝑇 ≡ 𝑼̈𝑼 𝑇𝑇 .                                                                        (S6.9) 

From Equations (S6.8A-B), the updates of 𝑼̇𝑼 and 𝑼𝑼 at the first iteration are given from that of 𝑼̈𝑼 as 
follows.  

�
∆𝑼̇𝑼(1) ≡ ∆𝑇𝑇� 𝑼̈𝑼 𝑇𝑇 + 𝛾𝛾∆𝑼̈𝑼(1)  �                        

∆𝑼𝑼(1) ≡ ∆𝑇𝑇 ∙ 𝑼̇𝑼 𝑇𝑇 + ∆𝑇𝑇2 �
1
2
𝑼̈𝑼 𝑇𝑇 + 𝛽𝛽∆𝑼̈𝑼(1)�

                                                                                 (S6.10) 

The linearization of Equation (S6.8C) at the initial guess (Equation (S6.9)) with the increments in 
Equation (S6.10) gives the linear equation for  𝑼̈𝑼(1):  

�𝑴𝑴(0) + 𝛾𝛾∆𝑇𝑇𝑪𝑪(0) + 𝛽𝛽∆𝑇𝑇2𝑲𝑲(0)�∆𝑼̈𝑼(1)

= −𝑮𝑮� 𝑼𝑼(0)
 

𝑇𝑇+∆𝑇𝑇 , 𝑼̇𝑼(0)
 

𝑇𝑇+∆𝑇𝑇 , 𝑼̈𝑼(0)
 

𝑇𝑇+∆𝑇𝑇 � − 𝑪𝑪(0)�∆𝑇𝑇 ∙ 𝑼̈𝑼 𝑇𝑇 �

− 𝑲𝑲(0) �∆𝑇𝑇 ∙ 𝑼̇𝑼 𝑇𝑇 +
1
2
∆𝑇𝑇2 ∙ 𝑼̈𝑼 𝑇𝑇 �                                                                           (S6.11)  
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where the matrices are given by the derivatives of 𝑮𝑮 , as follows (𝑘𝑘 = 0).  

�
𝑴𝑴(𝑘𝑘) ≡ 𝜕𝜕𝑮𝑮 𝜕𝜕𝑼̈𝑼⁄ � 𝑼𝑼(𝑘𝑘)

 
𝑇𝑇+∆𝑇𝑇 , 𝑼̇𝑼(𝑘𝑘)

 
𝑇𝑇+∆𝑇𝑇 , 𝑼̈𝑼(𝑘𝑘)

 
𝑇𝑇+∆𝑇𝑇 �

𝑪𝑪(𝑘𝑘) ≡ 𝜕𝜕𝑮𝑮 𝜕𝜕𝑼̇𝑼⁄ � 𝑼𝑼(𝑘𝑘)
 

𝑇𝑇+∆𝑇𝑇 , 𝑼̇𝑼(𝑘𝑘)
 

𝑇𝑇+∆𝑇𝑇 , 𝑼̈𝑼(𝑘𝑘)
 

𝑇𝑇+∆𝑇𝑇 �
𝑲𝑲(𝑘𝑘) ≡ 𝜕𝜕𝑮𝑮 𝜕𝜕𝑼𝑼⁄ � 𝑼𝑼(𝑘𝑘)

 
𝑇𝑇+∆𝑇𝑇 , 𝑼̇𝑼(𝑘𝑘)

 
𝑇𝑇+∆𝑇𝑇 , 𝑼̈𝑼(𝑘𝑘)

 
𝑇𝑇+∆𝑇𝑇 �

                                                                     (S6.12) 

For the first iteration, we may solve Equation (S6.11) to obtain ∆𝑼̈𝑼(1), then we update the variables 
according to: 

⎩
⎪
⎨

⎪
⎧ 𝑼̈𝑼(1)

 
𝑇𝑇+∆𝑇𝑇 ≡ 𝑼̈𝑼(0)

 
𝑇𝑇+∆𝑇𝑇 + ∆𝑼̈𝑼(1)                                                 

𝑼̇𝑼(1) ≡ 
𝑇𝑇+∆𝑇𝑇 𝑼̇𝑼(0)

 
𝑇𝑇+∆𝑇𝑇 + ∆𝑇𝑇� 𝑼̈𝑼 𝑇𝑇 + 𝛾𝛾∆𝑼̈𝑼(1)�                           

 𝑼𝑼(1)
 

𝑇𝑇+∆𝑇𝑇 ≡ 𝑼𝑼(0)
 

𝑇𝑇+∆𝑇𝑇 + ∆𝑇𝑇 ∙ 𝑼̇𝑼 𝑇𝑇 + ∆𝑇𝑇2 �
1
2
𝑼̈𝑼 𝑇𝑇 + 𝛽𝛽∆𝑼̈𝑼(1)�  

                                               (S6.13) 

Although the initial guess in Equation (S6.9) does not necessarily fulfill the interpolation relations in 
Equations (S6.8A-B), the solution after the first iteration in Equation (S6.13) fulfills them, regardless 
of the accuracy of the solution in Equation (S6.11). Thus, the relationships between the updates after 
the first iteration become different from those in Equation (S6.10)  

�∆𝑼̇𝑼
(𝑘𝑘+1) ≡ ∆𝑇𝑇𝛾𝛾∆𝑼̈𝑼(𝑘𝑘+1)   

∆𝑼𝑼(𝑘𝑘+1) ≡ ∆𝑇𝑇2𝛽𝛽∆𝑼̈𝑼(𝑘𝑘+1)   𝑘𝑘 > 0                                                                                                (S6.14)  

Thus, the linearized equation for ∆𝑼̈𝑼(𝑘𝑘) is  

�𝑴𝑴(𝑘𝑘) + 𝛾𝛾∆𝑇𝑇𝑪𝑪(𝑘𝑘) + 𝛽𝛽∆𝑇𝑇2𝑲𝑲(𝑘𝑘)�∆𝑼̈𝑼(𝑘𝑘+1) = −𝑮𝑮� 𝑼𝑼(𝑘𝑘)
 

𝑇𝑇+∆𝑇𝑇 , 𝑼̇𝑼(𝑘𝑘)
 

𝑇𝑇+∆𝑇𝑇 , 𝑼̈𝑼(𝑘𝑘)
 

𝑇𝑇+∆𝑇𝑇 �   𝑘𝑘 > 0  (S6.15) 

and the solution is updated by  

�
𝑼̈𝑼(𝑘𝑘+1)
 

𝑇𝑇+∆𝑇𝑇 ≡ 𝑼̈𝑼(𝑘𝑘)
 

𝑇𝑇+∆𝑇𝑇 + ∆𝑼̈𝑼(𝑘𝑘+1)           
𝑼̇𝑼(𝑘𝑘+1) ≡ 

𝑇𝑇+∆𝑇𝑇 𝑼̇𝑼(𝑘𝑘)
 

𝑇𝑇+∆𝑇𝑇 + ∆𝑇𝑇𝛾𝛾∆𝑼̈𝑼(𝑘𝑘+1)    
 𝑼𝑼(𝑘𝑘+1)

 
𝑇𝑇+∆𝑇𝑇 ≡ 𝑼𝑼(𝑘𝑘)

 
𝑇𝑇+∆𝑇𝑇 + ∆𝑇𝑇2𝛽𝛽∆𝑼̈𝑼(𝑘𝑘+1) 

     𝑘𝑘 > 0                                                                (S6.16) 

In our simulation, the iterations were terminated when the residual (the right-hand side in Equation 
(S6.15)) was sufficiently small.  

S7. Parallel Performance in the Beating-heart Simulation 

Figure S7.1 compares the elapsed times for simulating 1 ms at the peak of the systolic phase for 
various numbers of cores, ranging from 240 to 3840. Here, 32 elements were assigned to each core in 
the minimal configuration (#cores=240), while 2 elements were assigned to each core in the maximal 
configuration (#cores=3840). During the computation required for 1 ms, calculation of the 
macroscale portion occurred 250 times, and required about 65 s, regardless of the numbers of cores 
used. Because the elapsed time for the macroscale part was sufficiently small, even in the maximal 
configuration, a further reduction can be expected if a much larger number of cores are available. 
Figure S7.1(B) shows the effectiveness of using a large macroscale time step size, ∆𝑇𝑇. If we choose a 
smaller time step, for example, ∆𝑇𝑇 = 312.5 ns (𝑛𝑛 = ∆𝑇𝑇 ∆𝑡𝑡⁄ = 1250), the macroscale computational 
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portion occupies more than half of the time. Thus, an MTS scheme that admits a large macroscale 
time step size is necessary for this application.  

 

 

Figure S7.1 Elapsed time per 1 ms duration at the peak of the systolic phase (𝑇𝑇 = 0.225 s). (A) The 
total elapsed time (black) and the elapsed time for the macro portion (red) are plotted for various 
numbers of cores (240, 480, 960, 1920, and 3840). The time step sizes are set at ∆𝑡𝑡 = 0.25 ns and 
∆𝑇𝑇 = 5000 ns. (B) The total elapsed time (black) and the elapsed time for the macro portion (red) 
are plotted for various macroscale time step sizes (𝑛𝑛 = ∆𝑇𝑇 ∆𝑡𝑡⁄ =125, 250, 500, 1000, and 20000). 
The microscale time step size was set at ∆𝑡𝑡 = 0.25 ns, and the number of cores was 1920.  


