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1 Quadratic programming I 

Consider the following quadratic programming problem 
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where ݒ ∈ ܴ௡ is a constant vector, ݔ ∈ ܴ௡ is the target variable. The Lagrangian function of problem 

(1) is  
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where ߟ ∈ ߠ ,ܴ ∈ ܴ௡ are the Lagrange multipliers. According to the KKT condition (Boyd and 

Vandenberghe, 2004), we have  
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ݔ ൌ ݒ ൅ ߟ ൅ .ߠ ሺ7ሻ 

According to (6) and (7), we have  

௜ݔ௜ߠ ൌ ሺݔ௜ െ ௜ݒ െ θሻݔ௜ ൌ 0, ݅ ൌ 1,2, … , ݊. ሺ8ሻ 

When ݒ௜ ൅ ߟ ൐ 0, according to (5) and (7), we have ߠ௜ ൌ ௜ݔ െ ௜ݒ െ ߟ ൒ 0, and therefore ݔ௜ ൒ ௜ݒ ൅

ߟ ൐ 0. (8) holds only when ݔ௜ െ ௜ݒ െ ߟ ൌ 0, or equally ݔ௜ ൌ ௜ݒ ൅ ௜ݒ When .ߟ ൅ ߟ ൑ 0, if ݔ௜ ൐ 0, 

then ߠ௜ݔ௜ ൌ ሺݔ௜ െ ௜ݒ െ ௜ݔሻߟ ൐ 0, which violates (8); if ݔ௜ ൌ 0, (8) holds; if ݔ௜ ൏ 0, this condition 

violates (4). To summarize, we have ݔ௜ ൌ ሺݒ௜ ൅ ݅ ,ሻାߟ ൌ 1,2, … , ݊, or equally 

ݔ ൌ ሺݒ ൅ .ሻାߟ ሺ9ሻ 

According to (3) and (9), we have 

ሺݒ ൅ ሻା்૚ߟ ൌ 1. ሺ10ሻ 

Since the left side is a piecewise-linear function of ߟ, problem (10) has a unique solution. To solve ߟ, 

suppose that the number of nonzero elements in ݔ is ݇ (1 ൑ ݇ ൏  is a vector formed by sorting ݑ ,(݊

the elements of ݒ in descending order, and then we have  
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It requires that 
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According to (10) and (11), we have 
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By solving ߟ in (13), we have 
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According to (12) and (14), ݇ satisfies the following condition 
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This condition determines the unique ݇ value. Then we could obtain ߟ and ݔ according to (14) and 

(9) respectively. Or equivalently, we could alternatively iterate ߟ and ݇ according to (11) and (14) 

until convergence to solve ݔ. A special case that requires additional attention is that when the 

elements of ݒ are the same, the above discussions become invalid. In that case, the optimal solution is 

ݔ ൌ 1/݊. Since that case seldom happens, it can be neglected in practice. The code for problem (1) 

could be found at https://github.com/yuzhounh/GWC/blob/master/quadprog_can.m.  

2 Quadratic programming II 

Consider the following quadratic programming problem 
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where ݒ ∈ ܴ௡ is a constant vector, ݔ ∈ ܴ௡ is the target variable, ߙ ∈ ܴ is a tuning parameter that 

adjusts the number of nonzero elements (݇) in ݔ. In some practical problems, since ݇ is an integer, it 

is more convenient to tune ݇ than to tune ߙ. Therefore, we fix the ݇ value to determine ߙ and solve ݔ 

for problem (16). The Lagrangian function of problem (16) is  
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where ߟ ∈ ܴ and ߠ ∈ ܴ௡ are the Lagrange multipliers. According to (9), the solution of problem (16) 

is 
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Suppose ݑ is a vector formed by sorting the elements of ݒ in descending order, according to (14) and 

(15), we have  
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Let 
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Then we have  

ߙ ൌ෍ݑ௜

௞

௜ୀଵ

െ .௞ାଵݑ݇ ሺ21ሻ 

Then we could obtain ߟ and ݔ according to (19) and (18) respectively. Therefore, when the number 

of nonzero elements (݇) of ݔ is given, we could determine the parameter ߙ and obtain the explicit 

solution of ݔ to problem (16). The code for problem (16) could be found at: 

https://github.com/yuzhounh/GWC/blob/master/quadprog_can_explicit.m.  

3 Tuning the parameter ࢓ in SLIC and random SLIC 

It is worthwhile to set the parameter ݉ to other values in order to check how the parcellation 

performances of the SLIC and random SLIC approaches are affected by this parameter.  

When ݉ is small enough, the unified distance, i.e., equation (24) in the main text, approximates the 

functional distance multiplying a ratio, i.e.,  

݀௜௝ ൎ
ฮݒ௜ െ ௝ฮଶݒ

݉
. 

The ratio will not affect the clustering results because it is the comparison between two distances 

rather than the distance itself determines the label of a voxel. Therefore, when ݉ is small enough, the 

unified distance can be equivalently written as  

݀௜௝ ൌ ฮݒ௜ െ  .௝ฮଶݒ
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That is, the unified distance equals the functional distance. We denote this extreme condition as ݉ ൌ

0.  

In another extreme condition, i.e., when ݉ is large enough, we have  

݀௜௝ ൎ
ฮݑ௜ െ ௝ฮଶݑ

ܵ
, 

or equivalently 

݀௜௝ ൌ ฮݑ௜ െ  ௝ฮଶݑ

for the same reason. That is, the unified distance equals the spatial distance. We denote this extreme 

condition as ݉ ൌ  In this case, since the unified distance does not include functional distance, the .݂݊ܫ

parcellation is no longer determined by fMRI data or random fMRI data. Therefore, the SLIC and 

random SLIC approaches reduce to the same approach, and the clustering results are the same for 

different subjects.  

Except for the above two extreme conditions, we also tested the SLIC and random SLIC approaches 

with ݉ ൌ10, 20, 30, and 40.  

The results of the SLIC and random SLIC approaches with the above six ݉ values are shown in 

Supplementary Figures 1-6. To reduce computational time, the experiments were conducted only on 

three subjects and the number of clusters was sampled to [50:50:1000]. Since the initialized cluster 

number was set to [25:25:500] in the main text, we just focus our attention on the results obtained 

when the cluster numbers were no larger than 500. The remaining results are provided for references. 

The results in Supplementary Figures 2 and 5 were generally consistent with the corresponding 

results in Figure 6 in the main text.  

Then we compared the results across different ݉ values. When ݉ ൌ 0, the performances of the SLIC 

and random SLIC approaches were rather bad, especially in terms of spatial contiguity and 

reproducibility. When ݉ was larger than 10, the differences of performances between SLIC and 

random SLIC diminished with increasing ݉ value. The results indicate that SLIC with ݉ larger than 

10 relies heavily on spatial structures. In conclusion, setting ݉ to 10 is a reasonable choice for the 

SLIC approach.  
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Supplementary Figure 1. The results of different evaluation metrics for the SLIC and random SLIC 

approaches with ݉ ൌ 0.  

 

Supplementary Figure 2. The results of different evaluation metrics for the SLIC and random SLIC 

approaches with ݉ ൌ 10.  

 

Supplementary Figure 3. The results of different evaluation metrics for the SLIC and random SLIC 

approaches with ݉ ൌ 20.  
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Supplementary Figure 4. The results of different evaluation metrics for the SLIC and random SLIC 

approaches with ݉ ൌ 30.  

 

Supplementary Figure 5. The results of different evaluation metrics for the SLIC and random SLIC 

approaches with ݉ ൌ 40.  

 

Supplementary Figure 6. The results of different evaluation metrics for the SLIC and random SLIC 

approaches with ݉ ൌ   .݂݊ܫ
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4 Comparison of the three approaches 

 

Supplementary Figure 7. The results of different evaluation metrics for the (A) Ncut, (B) SLIC, and 

(C) GWC approaches. This is an alternative to Figure 7 in the main text.  
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