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1 Quadratic programming I

Consider the following quadratic programming problem

T e 112
mxmzllx V”z (1)

s.t. xT1=1,x>0,

where v € R™ is a constant vector, x € R™ is the target variable. The Lagrangian function of problem

(1) is
1
L0, 60) =5l = vll} ~ ("1 1) - 67x, )

where n € R, 6 € R™ are the Lagrange multipliers. According to the KKT condition (Boyd and
Vandenberghe, 2004), we have

xT1 =1, (3)
x =0, 4)
6 >0, (5)

Hixi = O,l = 1,2, ey n, (6)
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x=v+n+6. (7)
According to (6) and (7), we have
Hixi = (xl- % G)xi = O,l = 1,2, ey, N (8)

When v; + 1 > 0, according to (5) and (7), we have 6; = x; — v; —n = 0, and therefore x; > v; +
n > 0. (8) holds only when x; — v; —n = 0, or equally x; = v; + n. Whenv; + n <0, ifx; > 0,
then 6;x; = (x; — v; — n)x; > 0, which violates (8); if x; = 0, (8) holds; if x; < 0, this condition

violates (4). To summarize, we have x; = (v; + )4, = 1,2, ..., n, or equally

x=W+n),. 9)
According to (3) and (9), we have

w+nil1=1 (10)

Since the left side is a piecewise-linear function of 1, problem (10) has a unique solution. To solve 7,
suppose that the number of nonzero elements in x is k (1 < k < n), u is a vector formed by sorting

the elements of v in descending order, and then we have
wAn2u,+n=-2u +n>0>2 U Fn = 2> u, . (11)
It requires that
N € (—up, —Up41l- (12)

According to (10) and (11), we have

K
xT1 = z(ui +n)=1. (13)
i=1
By solving 1 in (13), we have
k
1 1
T]=E—Ezui. (14)
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According to (12) and (14), k satisfies the following condition

k
1 1
P / U; € (—Up, —Ugs1]- (15)

=1

This condition determines the unique k value. Then we could obtain 7 and x according to (14) and
(9) respectively. Or equivalently, we could alternatively iterate 7 and k according to (11) and (14)
until convergence to solve x. A special case that requires additional attention is that when the
elements of v are the same, the above discussions become invalid. In that case, the optimal solution is
x = 1/n. Since that case seldom happens, it can be neglected in practice. The code for problem (1)

could be found at https://github.com/yuzhounh/GWC/blob/master/quadprog_can.m.
2 Quadratic programming IT
Consider the following quadratic programming problem
o1 V)2
min E”’“‘EHZ (16)
s.t. xT1=1,x =0,

where v € R™ is a constant vector, x € R" is the target variable, @ € R is a tuning parameter that
adjusts the number of nonzero elements (k) in x. In some practical problems, since k is an integer, it
is more convenient to tune k than to tune a. Therefore, we fix the k value to determine a and solve x

for problem (16). The Lagrangian function of problem (16) is
1 v)°
L(x,n,0) =—||x——|| —n(xT1—-1)—-07x, (17)
2 all,

where 1 € R and 6 € R" are the Lagrange multipliers. According to (9), the solution of problem (16)

is

x=(£+n) . (18)

+

Suppose u is a vector formed by sorting the elements of v in descending order, according to (14) and

(15), we have
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k
1 I U Upsr
L G| (19)
=1
Let
1 1%
Ui  Ug+r
k kZa Ca 20)
=1
Then we have
k
a= Zui — KUj4q. (21)
i=1

Then we could obtain 77 and x according to (19) and (18) respectively. Therefore, when the number
of nonzero elements (k) of x is given, we could determine the parameter a and obtain the explicit
solution of x to problem (16). The code for problem (16) could be found at:
https://github.com/yuzhounh/GWC/blob/master/quadprog_can_explicit.m.

3 Tuning the parameter m in SLIC and random SLIC

It is worthwhile to set the parameter m to other values in order to check how the parcellation

performances of the SLIC and random SLIC approaches are affected by this parameter.

When m is small enough, the unified distance, i.e., equation (24) in the main text, approximates the

functional distance multiplying a ratio, i.e.,

N lvi —vill,

d.: ~
5] m

The ratio will not affect the clustering results because it is the comparison between two distances
rather than the distance itself determines the label of a voxel. Therefore, when m is small enough, the

unified distance can be equivalently written as

dij = [lvi — vyl
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That is, the unified distance equals the functional distance. We denote this extreme condition as m =

0.
In another extreme condition, i.e., when m is large enough, we have

s =,

>

or equivalently
dij = |lui —

for the same reason. That is, the unified distance equals the spatial distance. We denote this extreme
condition as m = Inf. In this case, since the unified distance does not include functional distance, the
parcellation is no longer determined by fMRI data or random fMRI data. Therefore, the SLIC and
random SLIC approaches reduce to the same approach, and the clustering results are the same for

different subjects.

Except for the above two extreme conditions, we also tested the SLIC and random SLIC approaches

with m =10, 20, 30, and 40.

The results of the SLIC and random SLIC approaches with the above six m values are shown in
Supplementary Figures 1-6. To reduce computational time, the experiments were conducted only on
three subjects and the number of clusters was sampled to [50:50:1000]. Since the initialized cluster
number was set to [25:25:500] in the main text, we just focus our attention on the results obtained
when the cluster numbers were no larger than 500. The remaining results are provided for references.
The results in Supplementary Figures 2 and 5 were generally consistent with the corresponding

results in Figure 6 in the main text.

Then we compared the results across different m values. When m = 0, the performances of the SLIC
and random SLIC approaches were rather bad, especially in terms of spatial contiguity and
reproducibility. When m was larger than 10, the differences of performances between SLIC and
random SLIC diminished with increasing m value. The results indicate that SLIC with m larger than
10 relies heavily on spatial structures. In conclusion, setting m to 10 is a reasonable choice for the

SLIC approach.
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Supplementary Figure 1. The results of different evaluation metrics for the SLIC and random SLIC

approaches with m = 0.
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Supplementary Figure 2. The results of different evaluation metrics for the SLIC and random SLIC

approaches with m = 10.
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Supplementary Figure 3. The results of different evaluation metrics for the SLIC and random SLIC

approaches with m = 20.
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Supplementary Figure 4. The results of different evaluation metrics for the SLIC and random SLIC

approaches with m = 30.
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Supplementary Figure 5. The results of different evaluation metrics for the SLIC and random SLIC

approaches with m = 40.
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Supplementary Figure 6. The results of different evaluation metrics for the SLIC and random SLIC

approaches with m = Inf.
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4 Comparison of the three approaches
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Supplementary Figure 7. The results of different evaluation metrics for the (A) Ncut, (B) SLIC, and
(C) GWC approaches. This is an alternative to Figure 7 in the main text.
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