

Supplementary Material

Construction and validation of subject-specific biventricular finiteelement models of healthy and failing swine hearts from highresolution DT-MRI

Kevin L. Sack^{1, 2}, Eric Aliotta³, Daniel B. Ennis³, Jenny S. Choy⁴, Ghassan S. Kassab⁴, Julius M. Guccione^{2*}, Thomas Franz^{1, 5}

* Correspondence:

Julius M Guccione

Email: Julius.Guccione@ucsf.edu

Phone: 415 680 6285 Fax: 415 750 2181

1 Supplementary Figures and Tables

Table S1: In vivo volume and pressure target values used in the model creation. Abbreviations: EDV: End diastolic volume; SV: Stroke volume; EDP: End diastolic pressure; ESP: End systolic pressure. * Mean value from full data set of larger group (n = 5) at healthy baseline.

Measurement	Healthy Subject	HF Subject	Source
LV EDV (ml)	57.8	103.0	in vivo echocardiogram
LV SV (ml)	30.9	33.0	in vivo echocardiogram
LV EDP (mmHg)	13.5 *	29.6	in vivo pressure catheterization
LV ESP (mmHg)	87.6 *	130	in vivo pressure catheterization
Min aortic pressure	60.6 *	90	in vivo pressure catheterization

¹ Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Cape Town, South Africa

² Department of Surgery, University of California at San Francisco, San Francisco, California, USA

³ Department of Radiological Sciences, University of California, Los Angeles, California, USA

⁴ California Medical Innovations Institute, Inc., San Diego, California, USA

⁵ Bioengineering Science Research Group, Engineering Sciences, Faculty of Engineering and the Environment, University of Southampton, Southampton, UK

Table S2: Constitutive parameters for the passive material response.

Passive Parameters	Description		
a, b	Governs the isotropic response of the tissue		
a_f, b_f	Governs additional stiffness in the fibre direction		
a_s, b_s	Governs additional stiffness in the sheet direction		
a_{fs}, b_{fs}	Governs coupling stiffness in the fibre and sheet directions		
I_1	The first isochoric strain invariant		
I_{4i}	A pseudo-invariant defined as $A_i \cdot \widetilde{C} \cdot A_i$		
I_{8fs}	A pseudo-invariant defined as $A_f \cdot \tilde{C} \cdot A_s$		
\widetilde{c}	The isochoric Right Cauchy-Green tensor $(\widetilde{\boldsymbol{c}} = J^{-2/3}\boldsymbol{c})$		
\boldsymbol{A}_i	Vector in direction <i>i</i>		
D	Multiple of Bulk modulus $(K = 2/D)$		
J	The third deformation gradient invariant $(J = \det \mathbf{F})$		
Active Parameters	Description		
t_0	Time to reach peak tension after the initiation of active tension		
m	Governs the slope of the relaxation		
b	Governs the length of relaxation		
l_{0}	The sarcomere length below which no active force develops		
В	Governs the shape of the peak isometric tension-sarcomere length relation		
Ca_0	The peak intercellular calcium concentration		
$Ca_{0_{max}}$	The maximum intercellular calcium concentration		
T_{max}	The maximum active tension able to develop		
l_r	The initial sarcomere length		
E_{ff}	Green strain in the fiber direction		

Table S3: Control values for the lumped circulatory flow model and literature values for comparison.

Variable	Units	Both subjects	Literature
R_{M}	mmHg s ml ⁻¹	0.03	0.0 - 0.20 [1-3]
R _A	mmHg s ml ⁻¹	0.03	0.0 - 0.20 [1-3]
R_{SYS}	mmHg s ml ⁻¹	1.70	1.05 - 4.00 [1-3]
R _P	mmHg s ml ⁻¹	0.03	0.0 - 0.06 [1-3]
R_{T}	mmHg s ml ⁻¹	0.03	0.0 - 0.02 [1-3]
C_P	ml mmHg ⁻¹	4.43	1.0 - 7.0 [2-4]
C_{SA}	ml mmHg ⁻¹	0.80	0.3 – 2.1 [2-4]
C_{SV}	ml mmHg ⁻¹	16.6	6.0 - 17.0 [2, 3]

Table S4: Initial pressure state of the compliance vessels in the subject-specific model.

Cavity	Units	Healthy subject	HF subject	Motivation
C_{P}	mmHg	15	35	Needed to ensure LV fills to correct pressure
C_{SA}	mmHg	65	90	Needed to ensure ejection begins at correct pressure
C _{SV}	mmHg	4	8	Needed to ensure RV fills to correct pressure
LV	mmHg	13.5	29.6	Determined from in vivo data
RV	mmHg	4	8	Based on literature: 1-7mmHg [5] 3.9 ±1.6 [6]

Figure S1: The 16 LV segment breakdown used in the in vivo strain calculation illustrated on (a): a radial map and (b): a simplified LV model. (c): A quadrilateral surface segment defined by 9 nodes. Nodes are joined by 3 circumferential cubic splines, C_i , and 3 longitudinal cubic splines, L_i . (d): A triangular surface segment defined by 7 nodes. Nodes are joined by 2 circumferential cubic splines, C_i , and 3 longitudinal cubic splines, L_i .

Figure S2: Passive material response of all 6 shear modes of an idealized tissue cube. FE model response given by solid lines and experimental data presented as circles.

2 Additional details for active contraction

The full description of active tension is described by

$$T_{a}(t,l) = T_{MAX} \frac{Ca_{0}^{2}}{Ca_{0}^{2} + ECa_{50}^{2}(l)} \frac{\left[1 - \cos\left(\omega(\text{mod}(t),l)\right)\right]}{2}h$$
(S1)

where

$$ECa_{50}(l) = \frac{ca_{0_{max}}}{\sqrt{e^{B(l-l_0)}-1}},$$
 (S2)

Due to the cyclic nature of the cardiac cycle, the modulus function acting on time is enforced to wrap the time variable around after each cardiac. This enforces $0 \le \text{mod}(t) \le HR/60$. Where HR is the heart rate. In our case HR is chosen as 77 Bpm for both subjects.

$$\omega(\operatorname{mod}(t), l) = \begin{cases} \pi \frac{\operatorname{mod}(t)}{t_0}, & \text{when } 0 \leq \operatorname{mod}(t) \leq t_0 \\ \pi \frac{\operatorname{mod}(t) - t_0 + t_r(l)}{t_r}, & \text{when } t_0 \leq \operatorname{mod}(t) \leq t_0 + t_r(l) \\ 0, & \text{when } \operatorname{mod}(t) \geq t_0 + t_r(l) \end{cases}$$
(S3)

$$t_r(l) = ml + b, (S4)$$

$$l = l_r \sqrt{2E_{ff} + 1},\tag{S5}$$

with parameters definitions provided in Supplementary Table1 and baseline values taken from [7]. This mathematical description of active tension ensures a smooth yet steep transition from zero tension at the start of systole to peak active tension, T_{MAX} , at time t_0 and then a smooth decline back to zero for the specified relaxation time t_r .

Supplementary references

- 1. Hoppensteadt, F.C. and C.S. Peskin, *Mathematics in medicine and the life sciences*. 1992, New York, NY: Springer-Verlag.
- 2. Pilla, J.J., J.H. Gorman III, and R.C. Gorman, *Theoretic Impact of Infarct Compliance on Left Ventricular Function*. Annals of Thoracic Surgery, 2009. **87**(3): p. 803-810.
- 3. Santamore, W.P. and D. Burkhoff, *Hemodynamic consequences of ventricular interaction as assessed by model analysis*. American Journal of Physiology-Heart and Circulatory Physiology, 1991. **260**(1): p. H146-H157.
- 4. Watanabe, H., et al., *Multiphysics simulation of left ventricular filling dynamics using fluid-structure interaction finite element method.* Biophysical journal, 2004. **87**(3): p. 2074-2085.

- 5. Mann, D.L., et al., *Braunwald's heart disease*. 2015, Philidelphia, PA: Elsevier-Saunders.
- 6. Quinn, T.A., et al., *Effects of sequential biventricular pacing during acute right ventricular pressure overload.* American Journal of Physiology-Heart and Circulatory Physiology, 2006. **60**(5): p. H2380.
- 7. Walker, J.C., et al., *MRI-based finite-element analysis of left ventricular aneurysm*. American Journal of Physiology-Heart and Circulatory Physiology, 2005. **289**(2): p. H692-H700.