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Appendix: Computations & Algorithms

The data we observe include three quantities for each of the N pyroclastic density currents
during the period of time [0, T ]:

{Vj} Flow Volumes ( m3), 1 ≤ j ≤ N ;
{φj} Initial Directions (deg), 1 ≤ j ≤ N ;
{τj} Flow Times ( yr), 1 ≤ j ≤ N.

Volumes for some PDCs are interval censored, so the data set includes only an interval
[V min

j , V max

j ] containing Vj . Directions for all PDCs are known only up to their drainage
Φj ⊂ S1, with φj ∈ Φj .

Hyperparameters

The hyperparameters we specify include:

ǫ Minimum flow for model inclusion 1.5 · 105 m3

Ω Minimum flow for new dome direction 6.0 · 106 m3

alo Shape parameter for {λlo} dist’n 1.8
ahi Shape parameter for {λhi} dist’n 9.1
b Rate parameter for {λlo, λhi} dist’n (0.5/365) yr
r Repulsion parameter for {λlo, λhi} dist’n 2.0
αlo Shape parameter for {(sm − tm−1)} dist’n 1.7
αhi Shape parameter for {(tm − sm)} dist’n 1.4

β Rate parameter for {~s,~t} dist’n 0.57 yr−1

κµ Concentration parameter for new {µe} 0.67
κφ Concentration parameter for new {φj} 1.00
T End of data time period [0, T ) 10.0 yr
T ′ End of forecast time period [T, T ′) 12.6 yr
M Number of high/lo periods 6

Note M must be large enough to ensure tM > T ′ with high probability; select M ≫ βT ′

αlo+αhi

to ensure this.
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Parameters

The parameters sampled within an MCMC loop include:

α − Pareto shape parameter for {Vj} distribution
{µe} deg Central directions during (Te, Te+1]
{λlo, λhi} yr−1 Event rates (or their logistics {η1 := log(λlo + λhi), η2 := 1

2
log(λhi/λlo)})

{sm, tm} yr Starts, ends of high-activity episodes.

Note that each new draw of {sm, tm} will change the values of {Nlo, Nhi} and {Tlo, Thi} (see
Eqns (2, 3)), and hence the likelihood function.

Mathematical Spaces

Standard notation for some mathematical spaces used in this work include:

R (−∞, ∞) Real numbers
R+ (0, ∞) Positive real numbers
N {1, 2, . . . } Natural numbers
S1 (−180◦, 180◦] Unit circle (here in degrees counter-clockwise from East)

Data-dependent Derived Quantities

J0 Indices of PDCs with uncensored volumes Vj

J1 Indices of PDCs with interval censored volumes Vj ∈ [V min

j , V max

j ]
J Indices of all PDCs (J0 ∪ J1)
Thi Total time in study period at high PDC rate λhi

Tlo Total time in study period at low PDC rate λlo (= T − Thi)
Nhi Total number of PDCs observed at high PDC rate λhi

Nlo Total number of PDCs observed at low PDC rate λlo (= N − Nhi)
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Probability Distributions

Probability distributions used in this analysis include:

Poisson Po(λ) f(x) = λx

x!
e−λ x = 0, 1, 2, . . .

Mean = λ, Variance = λ

Gamma Ga(α, β) f(x) = βα

Γ(α)
xα−1 e−βx 0 ≤ x < ∞

Mean = α/β, Variance = α/β2

Normal No(µ, σ2) f(x) = (2πσ2)−1/2 e−(x−µ)2/2σ2

−∞ < x < ∞
Mean = µ, Variance = σ2

Pareto Pa(α, ǫ) f(x) = αǫα x−α−1 ǫ ≤ x < ∞

Mean =

{

ǫ/(α − 1) α > 1

∞ α ≤ 1

Uniform Un(a, b) f(x) = 1
b−a

1[a,b](x) a ≤ x ≤ b

Mean = a+b
2

, Variance = (b−a)2

12

von Mises vM(µ, κ) f(x) =
(

360I0(κ)
)−1

eκ cos(x−µ) −180◦ < x ≤ 180◦

Likelihood Function

This model can be described either as a marked inhomogeneous Poisson process with event
times τj and marks (Vj , φj), or as an inhomogeneous Poisson random field with observed
points {(Vj, φj, τj) : 1 ≤ j ≤ N} on the three dimensional space [ǫ, ∞) × S1 × [0, T ]. From
either perspective the likelihood function is given by:

L =
{

∏

j∈J0∪J1

(Vj/ǫ)
}−α

(α/ǫ)|J0|
∏

j∈J1

[

1 − (V min

j /V max

j )α
]

×

N
∏

j=1

{

∫

Φj

fvM(φj | µej
, κφ) dφj λ(τj)

}

exp
(

−

∫ T

0

λ(t) dt
)

(11)

This expression includes two specified hyperparameters (ǫ > 0 and κφ > 0), and two features
that need more discussion: the the epoch-specific central directions µej

and time-varying
rate λ(t), each a piecewise-constant latent dynamic process.

Central directions {µe}

The probability distribution for PDC initial directions {φj} ∼ vM(µe, κφ) is constant (in this
model) during “epochs” τj ∈ (Te, Te+1] between successive PDCs that are sufficiently large
(say, that exceed a specified threshold volume V > Ω) to collapse the volcano dome. We
describe such PDCs as “major”. Such a dome collapse will lead to new dome morphology
and so to a new central direction µe for subsequent flows. In (11) “ej” denotes the index e
for the epoch (Te, Te+1] that contains the time τj of the jth PDC, so µej

is the central flow
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direction at the time of that PDC. Thus we set T0 = 0 and, for e ≥ 1,

Te := min{τj > Te−1 : Vj > Ω} ej := max{e : Te < τj}

The {Te} in (0, T ] are observed in the dataset, but those in our forecast simulation of events
in the period (T, T ′] subsequent to T (beyond our data) will depend on the random sample
{(Vj, φj, τj) | τj > T} for which Vj > Ω. These must be recomputed each time we resample
the forecast future PDCs.

Rate function λ(τ)

We model the rate of PDCs of volume V ≥ ǫ as a function λ(τ) of time τ that takes just
two values: a low one λlo and a high one λhi, with transitions from low to high at uncertain
times {sm} and subsequently from high to low at times {tm}. Thus with 0 = t0 < s1 < t1 <
s2 < · · · < tM with M ≫ Tβ/(αlo + αhi) chosen sufficiently large that tM ≫ T with high
probability, the rate (in PDC/ yr) at time τ is

λ(τ) = λlo

M
∑

m=1

1(tm−1,sm](τ) + λhi

M
∑

m=1

1(sm,tm](τ) =

{

λlo if tm−1 < τ ≤ sm,

λhi if sm < τ ≤ tm,

illustrated in Figure (5).
Denote the total time and event counts in the high and low activity periods during [0, T ]

by:

Thi :=

M
∑

m=1

[

(tm ∧ T ) − (sm ∧ T )
]

Tlo := T − Thi =

M
∑

m=1

[

(sm ∧ T ) − (tm−1 ∧ T )
]

Nhi =

M,N
∑

m=1,j=1

1(sm,tm](τj) Nlo := N − Nhi =

M,N
∑

m=1,j=1

1(tm−1,sm](τj).

In the computations below we will treat Nhi (and hence Nlo ≡ N − Nhi) as known, and so
must include its (binomial) conditional pmf, given α, {µe}, and {λ(·)}, in the likelihood.

Log likelihood

The logarithm ℓ := log L of the likelihood for the augmented data can now be written as:

ℓ = |J0| log α +
∑

j∈J1

log
[

1 − (V min

j /V max

j )α
]

− α
∑

j∈J0∪J1

log(V min

j /ǫ) (from {Vj}) (12a)

+

N
∑

j=1

log

{
∫

Φj

fvM(φj | µej
, κφ) dφj

}

(from {φj}) (12b)

+ Nlo log λlo + Nhi log λhi − (Tloλlo + Thiλhi) − log Nlo! − log Nhi! (from {τj}) (12c)
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Prior distributions

For the Pareto shape parameter α governing the PDC volumes we use the improper Jeffreys’
Rule (or “Reference”— see Berger et al., 2009) prior α ∼ α−11{α>0}. With this choice the
posterior distribution from uncensored observations would be the Gamma distribution

α | Data ∼ Ga
(

N,
∑

j∈J

log(Vj/ǫ)
)

, (13)

which depends only on the count and volumes of the flows {Vj ≥ ǫ} during [0, T ].
For the central initial flow parameters {µe} we begin with a uniform distribution µ0 ∼

Un(S1), and then at the start Te of each new epoch we take a von Mises-distributed step

µe | Past at time Te ∼ vM(µe−1, κµ). (14)

This makes {µe} a von Mises random walk on the circle, a priori, whose step sizes depend
on the concentration parameter κµ.

We model the levels 0 < λlo < λhi < ∞ with a conjugate joint prior distribution (6), with
log density

log π(λlo, λhi) = c + (alo − 1) log λlo + (ahi − 1) log λhi + r log(λhi − λlo) − b(λlo + λhi) (15a)

on 0 < λlo < λhi for constant c, unitless shape parameters alo, ahi > 0 and repulsion parameter
r > −1, and rate parameter b > 0 (in yr). For r = 0 this gives independent Gamma random
variables conditioned to satisfy the order relation λlo < λhi, but taking r > 0 will encourage
larger separation |λhi − λlo| between the high and low rates.

The transition times {~s,~t} are modeled as a Gamma renewal process, beginning with
t0 := 0 and proceeding sequentially for m ∈ N with increments

{(sm − tm−1)}
iid
∼ Ga(αlo, β) {(tm − sm)}

iid
∼ Ga(αhi, β)

leading to log pdf from (5),

log π(~st) = const + (αlo − 1)

M
∑

m=1

log(sm − tm−1) + (αhi − 1)

M
∑

m=1

log(tm − sm)

+ M [αlo log β − log Γ(αlo)] + M [αhi log β − log Γ(αhi)] − βtM (15b)
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Posterior distributions

The log posterior based on likelihood (12) and prior from (13), (14), and (15) is:

ℓ(θ) = − α
∑

j∈J0∪J1

log(V min

j /ǫ) + |J0| log α +
∑

j∈J1

log
[

1 − (V min

j /V max

j )α
]

(16a)

+

N
∑

j=1

log

{
∫

Φj

fvM(φj | µej
, κφ) dφj

}

(16b)

+ Nlo log(λlo) + Nhi log(λhi) − (Tloλlo + Thiλhi) − log Nlo! − log Nhi! (16c)

− log α (16d)

+
∑

e

log fvM(µe | µe−1, κµ) (16e)

+ (alo − 1) log λlo + (ahi − 1) log λhi (16f)

+ r log(λhi − λlo) − b(λlo + λhi)

+ (αlo − 1)

M
∑

m=1

log(sm − tm−1) + (αhi − 1)

M
∑

m=1

log(tm − sm) (16g)

+ M [αlo log β − log Γ(αlo)] + M [αhi log β − log Γ(αhi)] − βtM (16h)

where

T0 := 0 Te := min{τj > Te−1 : Vj > Ω}

Nhi :=
∑

m,j

1(sm,tm](τj) Nlo :=
∑

m,j

1(tm−1,sm](τj) = N − Nhi (17a)

Thi :=
∑

[

(tm ∧ T ) − (sm ∧ T )
]

Tlo :=
∑

[

(sm ∧ T ) − (tm−1 ∧ T )
]

= T − Thi (17b)

The terms in Eqns (16a,16b,16c) arise from the likelihood for α, {µe}, and {λ(τ)}, respec-
tively; (16d) from the prior for α, (16e) from the prior for {µe}, (16f) from the prior for
{αlo, αhi}, and (16g, 16h) from the prior for {(sm, tm)}.

An MCMC algorithm

To draw parameter samples and forecasts from the posterior distribution we construct a
Markov chain Monte Carlo (MCMC) computational scheme that employs a Metropolis-
Hastings approach for the vectors {µe}, {η1, η2}, and {sm, tm}, and Gibbs sampling for the
scalar α whose posterior distribution is known in closed form. For each complete MCMC
step we cycle through the four parameters in turn.

We implement these M-H steps by identifying for each parameter (let’s call it “θ”) the
specific terms ℓθ(θ) of the log posterior pdf (16) that depend on that parameter. After
generating the first t steps of the algorithm, arriving at value θ(t) for the parameter, we make
a proposal θ∗ ∼ q(θ∗ | θ(t)) for a new value from a proposal distribution with symmetric pdf
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q(θ1 | θ2) = q(θ2 | θ1) described below. We “accept” the proposal and set θ(t+1) := θ∗ if

ℓθ(θ
∗) + e(t) > ℓθ(θ

(t)) (18)

for independent identically-distributed (iid) standard exponentially-distributed random vari-

ables {e(t)}
iid
∼ Ex(1). Otherwise the proposal is rejected and θ(t+1) := θ(t) remains unchanged.

This is mathematically equivalent to, but numerically more stable than, accepting the pro-
posal with probability min(H, 1) for the Hastings ratio H := exp

(

ℓθ(θ
∗)

)

/ exp
(

ℓθ(θ
(t))

)

,

the ratio of posterior pdfs at the proposed θ∗ and old θ(t) parameter values. Typically the
proposal distributions q(θ∗ | θ) are symmetric random walks with step sizes σθ chosen empir-
ically to achieve acceptance rates in the range 5%–60%, near enough to the optimum 23.4%
(Rosenthal, 2011). To accomplish this, acceptance rates must be monitored separately for
each parameter θ.

For computational reasons it is helpful to re-parametrize the low and high rates (λlo, λhi)
by logistics (η1, η2) ∈ R × R+, given by

η1 := log(λlo + λhi) η2 := 1
2

log(λhi/λlo)

λlo = eη1/(1 + e2η2) λhi = eη1/(1 + e−2η2)

=
exp(η1 − η2)

2 cosh(η2)
=

exp(η1 + η2)

2 cosh(η2)

under which (λhi + λlo) = exp(η1) and (λhi − λlo) = exp(η1) tanh(η2). The Jacobian of
this transformation is λ−1

lo
λ−1

hi
dλlo dλhi = 2dη1 dη2, leading to the replacement of (16f) with

[alo log λlo + ahi log λhi]. Similarly, we employ a symmetric random walk for {(~sm,~tm)} on the
log scale, and so replace (16g) with

[

+ αlo

∑M
m=1 log(sm − tm−1) + αhi

∑M
m=1 log(tm − sm)

]

.
In both cases this amounts to simply removing each “−1” from (αlo − 1), (αhi − 1), (alo − 1),
and (ahi − 1) in (16).

The resulting algorithm begins with the specification of initial values {θ(0)} at step t = 0
and step sizes {σθ} for the four parameters, and proceeds at each step t ≥ 0 as follows:

1. α: Draw α(t+1) ∼ Ga
(

N,
∑

log(Vj/ǫ)
)

, its posterior distribution.

2. {µe}: Let emax := #{j : Vj > Ω} be the number of epochs in (0, T ]. Choose one of
the epochs e uniformly from {1, · · · , emax}. Add to µe a normally-distributed step

δ ∼ No(0, σ2
µ) to get central angle proposal µ∗

e = µ
(t)
e + δ (mod 360), and (from

Eqns (16a,16b,16e)) set

ℓµ(µe) := log fvM(µe | µe−1, κµ) + log fvM(µe+1 | µe, κµ)

+
∑

j: ej=e

log fvM(φj | µe, κφ)

= κ2
µ

[

cos(µe − µe−1) + cos(µe+1 − µe)
]

+ κ2
φ

∑

j: ej=e

cos(φj − µe) (19)
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(note we neglect terms that do not include µe, since they will cancel in the M-H step).
If the randomly-drawn epoch e is the first e = 0 or last e = emax, omit the missing
terms µe−1 or µe+1 in (19). Accept or reject the proposal as in (18).

An acceptable alternative is to add iid steps δe to all the {µe}, and accept or reject
the entire proposed vector using the sum

ℓ~µ(~µ) :=

N
∑

j=1

log fvM(φj | µej
, κφ) +

∑

e

log fvM(µe | µe−1, κµ). (20)

3. (λlo, λhi): Keep track of the values of the logistic transforms η1 = log(λlo + λhi) and

η2 = log(λhi/λlo)/2. Add to {η
(t)
i } increments δi

iid
∼ No(0, σ2

η) and, if necessary, reflect
to ensure η∗

2 > 0 to get proposals:

η∗
1 = η

(t)
1 + δ1 η∗

2 = |η
(t)
2 + δ2|.

Compute the corresponding λ∗
lo

= exp(η∗
1−η∗

2)/2 cosh(η2) and λ∗
hi

= exp(η∗
1+η∗

2)/2 cosh(η2)
and (from Eqns (16c, 16f), and using the Jacobian above) accept or reject the proposal
(as in (18)) using

ℓη(η1, η2) := (Nlo + alo) log λlo + (Nhi + ahi) log λhi

− (Tloλlo + Thiλhi) + r log(λhi − λlo) − b(λlo + λhi).

4. {(sm, tm) : m ≤ M}: To generate proposal vectors st∗ = (~s∗,~t∗) at time step t,
beginning with st(t) = (~s(t),~t(t)), fix σst > 0 and scale all the intervals (sm, tm] and
(tm−1, sm] by independent log-normal factors as follows:

a) Set ~x :=
(

s
(t)
1 , (t

(t)
1 − s

(t)
1 ), (s

(t)
2 − t

(t)
1 ), ..., (t

(t)
M − s

(t)
M )

)

∈ R
2M
+ ;

b) Draw ζi
iid
∼ No(0, 1) and set x∗

i := xi exp(σstζi) for 1 ≤ i ≤ 2M ;
c) Set s∗

1 := x∗
1, t∗

1 := (x∗
1 + x∗

2), s∗
2 := (x∗

1 + x∗
2 + x∗

3), . . . , t∗
M :=

∑

x∗
i ;

d) Compute N∗
hi

:=
∑

m,j 1(s∗

m,t∗

m](τj), N∗
lo

:= N − N∗
hi

;

and T ∗
hi

:=
∑

[

(t∗
m ∧ T ) − (s∗

m ∧ T )
]

, T ∗
lo

:= T − T ∗
hi

.

Now accept or reject the proposal as in (18), using log Hastings numerator function

= αhi

M
∑

m=1

log(t∗
m − s∗

m) + αlo

M
∑

m=1

log(s∗
m − t∗

m−1) − βt∗
M

+ [N∗
hi

log(λhi) + N∗
lo

log(λlo)] − [T ∗
hi

λhi + T ∗
lo

λlo] − [log N∗
hi

! + log N∗
lo

!]

(21)

based on Eqns (16c,16g,16h).
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5. Forecast {(Vj, φj, τj)}: For now, we ignore the initiation angles {φi} for future PDCs,
and focus on their volumes {Vi ≥ ǫ} and times {τi > T}.
Proposal: Select some T ′ > T which also satisfies T ′ ≪ M(αlo + αhi)/β, to ensure that
tM ≫ T ′ with high probability. Now simulate those event times {τi} in (T, T ′] and
the associated volumes {Vi}, and make overlay plots of the cumulative volume during
(T, T ′] similar to Figure (12).

One way to do that: Set

s′
m := (sm ∨ T ) ∧ T ′, t′

m := (tm ∨ T ) ∧ T ′

T ′
hi

= Time in (T, T ′] with high rate λ(t) = λhi

=

M
∑

m=1

(t′
m − s′

m)

T ′
lo

= (T ′ − T ) − T ′
hi

N ′
hi

∼ Po(T ′
hi

λhi), N ′
lo

∼ Po(T ′
lo

λlo), N ′ := N ′
hi

+ N ′
lo

{Vi}
iid
∼ Pa(α, ǫ), 1 ≤ i ≤ N ′

and draw N ′
hi

random times uniformly {τi} from the union of the intervals (s′
m, t′

m] and
N ′

lo
times {τi} uniformly from ∪

(

t′
m−1, s′

m

]

; sort all the {τi}, and plot the cumulative
sum of the {Vi} against {τi}.

A mathematically equivalent approach is to cycle through the intervals
(

s′
m, t′

m] with
positive length (t′

m − s′
m) and, for each of these, draw N ′

m ∼ Po
(

λhi(t
′
m − s′

m)
)

pairs

(τi, Vi) with τi
iid
∼ Un(s′

m, t′
m] and Vi ∼ Pa(α, ǫ), and similarly for the intervals

(

t′
m−1, s′

m].

Now set e′
max

:= emax + #{j : j > N and Vj > Ω}, the number of epochs in the
entire study and forecast period [0, T ′] and, for emax < e ≤ e′

max
, let Te := min{τj >

Te−1 : Vj > Ω} be the epoch ending times in the forecast period (T, T ′]. Draw forecast
central angles successively as

µe ∼ vM
(

µe−1, κµ

)

, emax < e ≤ e′
max

.

Once again identify the epoch for each forecast PDC by ej := max{e : Te < τj} for
j > N and, finally, draw initiation angles

φj
ind
∼ vM

(

µej
, κφ

)

, j > N.

This completes the simulation of PDCs {(Vj, φj, τj)} in the forecast period (T, T ′].
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