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Appendix: Computations & Algorithms

The data we observe include three quantities for each of the N pyroclastic density currents
during the period of time [0, 7T:

{V;} Flow Volumes (m?), 1<j<N;
{¢;} Initial Directions (deg), 1< j < N;
{r;}  Flow Times (yr), 1<j<N.

Volumes for some PDCs are interval censored, so the data set includes only an interval
[V;-mi“, V"] containing Vj. Directions for all PDCs are known only up to their drainage
(I)j - Sl, with ¢j S (I)j.

Hyperparameters

The hyperparameters we specify include:

€ Minimum flow for model inclusion 1.5-10°m?
0 Minimum flow for new dome direction 6.0 - 10°m3
a, Shape parameter for {\,} dist'n 1.8
ap;  Shape parameter for {\y;} dist’'n 9.1
b Rate parameter for {\j, Ay} dist'n (0.5/365) yr

r Repulsion parameter for {\,, Ay} distn 2.0
o) Shape parameter for {(s,, —t,,—1)} dist'n 1.7
ap; Shape parameter for {(t,, — s,,)} dist'n 14

B3 Rate parameter for {5,7} dist'n 0.57 yr—1
r, Concentration parameter for new {u.} 0.67

ks  Concentration parameter for new {¢;} 1.00

T  End of data time period [0,T") 10.0yr
T"  End of forecast time period [T',T") 12.6 yr
M Number of high/lo periods 6

Note M must be large enough to ensure t); > 7" with high probability; select M > BT
to ensure this.

Qlo+0thi
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Parameters

The parameters sampled within an MCMC loop include:

a - Pareto shape parameter for {V;} distribution

{pe} deg  Central directions during (7., 7T.41]

{ Mo, Mni}  yr~!  Event rates (or their logistics {n; := log(Aie + Ani), 72 := %log()\hi/)\b)})
{Sm,stm} yr Starts, ends of high-activity episodes.

Note that each new draw of {s,,, t,,} will change the values of { N, Ny} and {Tj,, T} (see
Eqns (2,3)), and hence the likelihood function.

Mathematical Spaces

Standard notation for some mathematical spaces used in this work include:

R (—o0,00) Real numbers

Ry (0,00) Positive real numbers

N  {1,2,...} Natural numbers

St (—180°,180°]  Unit circle (here in degrees counter-clockwise from East)

Data-dependent Derived Quantities

Jo  Indices of PDCs with uncensored volumes V;

Ji Indices of PDCs with interval censored volumes V; € [V™", V2]
J  Indices of all PDCs (Jy U J;)

Thi  Total time in study period at high PDC rate Ay;

T, Total time in study period at low PDC rate A, (=T — Ti;)

Ny Total number of PDCs observed at high PDC rate A,

N, Total number of PDCs observed at low PDC rate A\, (= N — Ny;)
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Probability Distributions

Probability distributions used in this analysis include:

Poisson Po(\) flz) =27e? r=0,1,2,...
Mean = X, Variance = A

Gamma  Ga(o, ) f(z) = F/J():)xa_l e P 0<z<oo
Mean = a/f3, Variance = a/3?

Normal No(p,02) f(x) = (2mo2)~1/2 e~ (-w?/20° —00 < T <00
Mean = p, Variance = o

Pareto Pa(a,e)  f(z) = ae™ z771 e <z <00
Mear — e/la—1) a>1

00 a<l

Uniform  Un(a,b)  f(z) = ;= 145() a<z<b

Mean = “TH’, Variance = ¢=%°

12

Tl gmcos—)  _180° <z < 180°

von Mises VM(u, k) f(z) = (3601o(x))

Likelihood Function

This model can be described either as a marked inhomogeneous Poisson process with event
times 7; and marks (V}, ¢;), or as an inhomogeneous Poisson random field with observed
points {(V},¢;,7;) : 1 <j < N} on the three dimensional space [¢,00) x S* x [0,T]. From
either perspective the likelihood function is given by:

L={ TI w/a} “@/a I [ - v vr=ye]

JjE€JoUJ1 VISUA
x ﬂ {/ Fonl ey ) 465 M) fex (= / A ) (1)

This expression includes two specified hyperparameters (¢ > 0 and x, > 0), and two features
that need more discussion: the the epoch-specific central directions j, and time-varying
rate A(t), each a piecewise-constant latent dynamic process.

Central directions {u.}

The probability distribution for PDC initial directions {¢;} ~ vM (i, k) is constant (in this
model) during “epochs” 7; € (1., T.4+1] between successive PDCs that are sufficiently large
(say, that exceed a specified threshold volume V' > Q) to collapse the volcano dome. We
describe such PDCs as “major”. Such a dome collapse will lead to new dome morphology
and so to a new central direction p. for subsequent flows. In (11) “e;” denotes the index e
for the epoch (T, T.1;] that contains the time 7; of the jth PDC, so He; 1s the central flow
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direction at the time of that PDC. Thus we set Ty = 0 and, for e > 1,
T, :==min{r; >T,_; : V; > Q} e;;=max{e: T, <7}

The {T.} in (0, 7] are observed in the dataset, but those in our forecast simulation of events
in the period (7', T"] subsequent to T (beyond our data) will depend on the random sample
{(V;,¢j,7;) | ; > T} for which V; > Q. These must be recomputed each time we resample
the forecast future PDCs.

Rate function \(7)

We model the rate of PDCs of volume V' > € as a function A(7) of time 7 that takes just
two values: a low one A\, and a high one Ap;, with transitions from low to high at uncertain
times {s,,} and subsequently from high to low at times {¢,,}. Thus with 0 =t; < s1 <t; <
Sg < o0 <ty with M > TS /(o + api) chosen sufficiently large that ¢y, > T with high
probability, the rate (in PDC/yr) at time 7 is

M M Ao ity <7 < 5y,
)\(7—) - >\|o Z 1(tm—1,3m] (T) + )\hi Z 1(Sm7tm](7—) - >\h' lf S <7<t
— i m = bm,

m=1

illustrated in Figure (5).
Denote the total time and event counts in the high and low activity periods during [0, 7]
by:

M M
Thi=Y [(tm AT) = (5m A T)] To=T Ty =Y [(sm AT) = (bt AT)
m=1 m=1
M,N M,N
Noi= Y Lgpin(m) No=N—=Noi= > La ()
m=1,j=1 m=1,j=1

In the computations below we will treat Ny; (and hence N, = N — Ny;) as known, and so
must include its (binomial) conditional pmf, given «, {u.}, and {A(-)}, in the likelihood.

Log likelihood
The logarithm ¢ := log L of the likelihood for the augmented data can now be written as:

(= |Jplloga+ Y log [L— (V™" /V"™)] —a > log(V/™/e)  (from {V;})  (12a)

je1 jeJoUJy

+ élog { /q>j fou(9j | e k) d¢j} (from {¢;}) (12Db)

+ Niolog Ao + Niilog Ani — (TioAio + Thidni) — log Nio! — log Ny;! (from {7;})  (12c)
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Prior distributions

For the Pareto shape parameter o governing the PDC volumes we use the improper Jeffreys’
Rule (or “Reference”— see Berger et al., 2009) prior oo ~ o '1g4503. With this choice the
posterior distribution from uncensored observations would be the Gamma distribution

o | Data ~Ga<N, Zlog(vj/e)), (13)

jeJ

which depends only on the count and volumes of the flows {V; > €} during [0, 7.
For the central initial flow parameters {y.} we begin with a uniform distribution gy ~
Un(Sh), and then at the start T, of each new epoch we take a von Mises-distributed step

pe | Past at time T, ~ vM(pte_1, K,,)- (14)

This makes {y.} a von Mises random walk on the circle, a priori, whose step sizes depend
on the concentration parameter x,,.

We model the levels 0 < A\, < Ay < 0o with a conjugate joint prior distribution (6), with
log density

10g T(Aioy Ani) = ¢ + (@10 — 1) log Ao + (ani — 1) log Api + 71og(Ani — Aio) — b( Ao + Ani)  (15a)

on 0 < A\, < Ay for constant ¢, unitless shape parameters ao, an; > 0 and repulsion parameter
r > —1, and rate parameter b > 0 (in yr). For r = 0 this gives independent Gamma random
variables conditioned to satisfy the order relation A\, < Ap;, but taking » > 0 will encourage
larger separation [Ap; — Ajo| between the high and low rates.
The transition times {§,¢} are modeled as a Gamma renewal process, beginning with
to := 0 and proceeding sequentially for m € N with increments
iid

{(5m = tm-1)} © Ga(wo, B)  {(tm — 5m)} ~ Galcwy, )

leading to log pdf from (5),

M M
log 7 (st) = const + (aje — 1) Z log(Sm — tm—1) + (oni — 1) Z log(tm — Sm)
m=1 m=1

+ Moo log 8 —log'(aue)]  + Mamilog 5 —logI'(am)] — Btar  (15b)
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Posterior distributions

The log posterior based on likelihood (12) and prior from (13), (14), and (15) is:

00) =—« Z log(‘/;-mi”/e) + | Jolloga  + Z log [1 — (V;-mi"/ijaX)o‘] (16a)
jeJoUJ1 JE€J1
N
DI P NCAPRSEEY (16b)
j=1 b
+ MO 10g<)\|o) + Nhi 1Og()\hi) - (]—]O)“O + Thi)\hi> - IOg Mo! - IOg Nhi! (16C>
—log « (16d)
+ ) 1og fuulpte | fre1, p) (16e)
+ (aj, — 1) log Ao + (ap; — 1) log Ap; (16f)
+ 7log(Ani — Aio) — b(Aio + Ani)
M M
+ (a1 = 1) > log(sm — ti—) + (ami = 1) Y " log(tm — sm) (16g)
m=1 m=1
+ Moo log B — log I'(cuo)] + Manilog 5 — log I'(ami)] — Bt (16h)
where
Ty :=0 T, :==min{r; >T._;: V; > Q}
Noi i= Y Lo 1) (75) No =Y 1, 1,5u(7) =N —Nu (17a)
m,j m,j

Thi =Y [(tw AT) = (5u AT)] Tio:=Y [(sm AT) = (tmea AT)] =T =Ty (17b)

The terms in Eqns (16a,16b,16¢) arise from the likelihood for o, {u.}, and {\(7)}, respec-
tively; (16d) from the prior for «, (16e) from the prior for {u.}, (16f) from the prior for
{auo, i}, and (16g, 16h) from the prior for {(s,,,tn)}-

An MCMC algorithm

To draw parameter samples and forecasts from the posterior distribution we construct a
Markov chain Monte Carlo (MCMC) computational scheme that employs a Metropolis-
Hastings approach for the vectors {u.}, {n1,m2}, and {s,,, ¢}, and Gibbs sampling for the
scalar o whose posterior distribution is known in closed form. For each complete MCMC
step we cycle through the four parameters in turn.

We implement these M-H steps by identifying for each parameter (let’s call it “0”) the
specific terms fy(0) of the log posterior pdf (16) that depend on that parameter. After
generating the first ¢ steps of the algorithm, arriving at value #®) for the parameter, we make
a proposal 8* ~ q(6* | 1) for a new value from a proposal distribution with symmetric pdf
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q(01 | 02) = q(0, | 61) described below. We “accept” the proposal and set §¢+1 := §* if
Lo(67°) 4 e > £4(0Y) (18)

for independent identically-distributed (iid) standard exponentially-distributed random vari-

ables {e®} o Ex(1). Otherwise the proposal is rejected and 8¢+ := ) remains unchanged.
This is mathematically equivalent to, but numerically more stable than, accepting the pro-
posal with probability min(H, 1) for the Hastings ratio H := exp ({5(6"))/ exp (£o(01")),
the ratio of posterior pdfs at the proposed #* and old #®) parameter values. Typically the
proposal distributions ¢(6* | §) are symmetric random walks with step sizes oy chosen empir-
ically to achieve acceptance rates in the range 5%-60%, near enough to the optimum 23.4%
(Rosenthal, 2011). To accomplish this, acceptance rates must be monitored separately for
each parameter 6.

For computational reasons it is helpful to re-parametrize the low and high rates (Ao, Api)
by logistics (n1,72) € R x Ry, given by

= log(Mio + Ani) Ne = %log(khi/)\lo)
Mo = €™ /(1 + %) Api = €™ /(1 + e ™)

_ exp(in — 1) _ oxXp(m + 1)
2 cosh(ny) 2 cosh(n,)

under which (Api + Ao) = exp(m1) and (A\y — A\o) = exp(ny) tanh(ng). The Jacobian of
this transformation is A 1)\h| d\io dX\ni = 2dn; dng, leading to the replacement of (16f) with
(@16 10g Ao + @ni log Api]- Slmllarly, we employ a symmetric random walk for {(sm,t )} on the
log scale, and so replace (16g) with [+ Qo Efle log(Sy — tm—1) + pi ZM log(t,, )]
In both cases this amounts to simply removing each “—1” from (ayo — 1), (ah, —1), (a|o 1),
and (ap — 1) in (16).

The resulting algorithm begins with the specification of initial values {#(©)} at step t = 0
and step sizes {0y} for the four parameters, and proceeds at each step ¢ > 0 as follows:

1. o Draw o™ ~ Ga(N, > log(V;/€)), its posterior distribution.

2. {pe}: Let e = #{j : V; > Q} be the number of epochs in (0,7]. Choose one of
the epochs e uniformly from {1, -+ e...}. Add to p. a normally-distributed step

0 ~ No(O,ai) to get central angle proposal p! = ,ug) + ¢ (mod 360), and (from
Eqns (16a,16b,16e)) set

Eu(:ue) = log va(,ue | He—1, "{u) + log va(,ue-i-l | He, "{u)
+ > og fu(@ | pre, o)

Jj: ej=e

= mi[cos(,ue — fte—1) + co8(fles1 — ,ue)} + Iii Z cos(p; — fhe) (19)

J: ej=e
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(note we neglect terms that do not include g, since they will cancel in the M-H step).
If the randomly-drawn epoch e is the first e = 0 or last e = e,,,,, omit the missing
terms fie_1 Or fieyq in (19). Accept or reject the proposal as in (18).

An acceptable alternative is to add iid steps d. to all the {u.}, and accept or reject
the entire proposed vector using the sum

N
Ca(ji) = 108 fua (| pre; kip) + D108 fonspte | fremt, ) (20)
Jj=1 e

3. (Aio; Ani): Keep track of the values of the logistic transforms 17, = log(Aj, + Ani) and

ne = log(Ani/Aio)/2. Add to {ni(t)} increments d; No(0,07) and, if necessary, reflect
to ensure 75 > 0 to get proposals:

mi=n 16 mp =0 + 6

Compute the corresponding A, = exp(nj—mn3)/2 cosh(nz) and Af; = exp(n;+mn3)/2 cosh(ns)

and (from Eqns (16¢, 16f), and using the Jacobian above) accept or reject the proposal
(as in (18)) using

Cy(m,m2) = (Nio + o) log Mg + (Nhi + ani) log Api
— (TioNio + Thirni) + 7 log(Ani — Aio) — b(Aio + Ani)-

4. {(Sm:tm) : m < M}: To generate proposal vectors st* = (§*,1*) at time step t,
beginning with st} = (5 {®) fix oy > 0 and scale all the intervals (s,,,,,] and
(tm—1, Sm] by independent log-normal factors as follows:

a) Set 7= (s = s, (58 =), 1) = W) e R,
b) Draw G i No(0,1) and set z} := x; exp(ox(;) for 1 < i < 2M;
c) Set st =ay, b= (a4 ab), sy = (et b+ ), =D
d) Compute Ny =3 L o1(75), Nig == N — Ny;;
and Ty =Y [(t5, AT) = (s;, AT)], Ty :=T-T;.

Now accept or reject the proposal as in (18), using log Hastings numerator function

M M
o3 loa(t, — %) + a3 log(sh — f5y) — Bty
m=1 m=1

+ [Ny log(Ani) + Niglog(Nio)] — [Thidni + TigAio] — [log Ny! + log N

(21)

based on Eqns (16¢,16g,16h).
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5. Forecast {(V}, ¢;,7;)}: For now, we ignore the initiation angles {¢;} for future PDCs,
and focus on their volumes {V; > €} and times {r; > T'}.
Proposal: Select some T” > T which also satisfies 7" < M (ayo + i) /3, to ensure that
tar > 1" with high probability. Now simulate those event times {7;} in (7',7"] and
the associated volumes {V;}, and make overlay plots of the cumulative volume during
(T, T'] similar to Figure (12).

One way to do that: Set

sioi= (s VIYNT', . =t VT)NT

m

Ty, = Time in (T, T'] with high rate \(t) = Ay;

I I
2 51lds
(-

T) - Ty
Ny ~ Po (Th. Mi); - Nig ~ Po(Tjg M), N := Ny + Ny,

iid

{Vi} ~ Pa(a,e), 1<i < N

and draw IV}, random times uniformly {7;} from the union of the intervals (s/,, ¢/ ] and

Ny, times {7;} uniformly from U(#, ,,s],]; sort all the {r;}, and plot the cumulative
sum of the {V;} against {7;}.

A mathematically equivalent approach is to cycle through the intervals ( 'yt ] with

positive length (t’ — ,,) and, for each of these, draw N/, ~ Po(An(t], — s.,)) pairs
(73, V;) with 7; ~ Un(

Now set €/ = €p +#{j : j > Nand V; > Q}, the number of epochs in the
entire study and forecast period [0,7"] and, for Cmaxe < € < €l let T, := min{r; >

Te—q : V; > Q} be the epoch ending times in the forecast period (7, 7"]. Draw forecast
central angles successively as

and V; ~ Pa(a, €), and similarly for the intervals (/,_;, s,,].

m’m] m—17°m

/

fhe ~ VM (,ue_l, mu), Cmax < €< €

Once again identify the epoch for each forecast PDC by e; := max{e : T, < 7;} for
7 > N and, finally, draw initiation angles

0; 1rrgivM(,ue,/-ﬁ(z,) j > N.

This completes the simulation of PDCs {(V}, ¢;,7;)} in the forecast period (7°,7"].
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