Supplemental Figure 8. Activation of cAMP and Ca^{2+} signaling pathways by isotocin in primary pituitary cells of female ricefield eels. A, effects of isotocin on cellular cAMP contents. The pituitary cells were pre-incubated for 12 hrs before being treated with isotocin (100 nM) for 12 hrs. After treatment, the amount of cAMP in the pituitary cells was quantified with a Monoclonal Anti-cAMP Antibody Based Direct cAMP ELISA Kit (catalog number 80203, NewEast Biosciences, Inc., PA, USA). Results are expressed as measured cAMP concentrations in pituitary cell homogenates. Bars represent means \pm SEM (n=4). *P<0.05 vs the vehicle control. B, effects of isotocin on intracellular Ca^{2+} levels. The primary pituitary cells were plated onto cell culture dish, loaded with 5 μ M Fluo-3 AM. The fluorescence intensity in single cells was analyzed with a laser scanning confocal imaging system (TCS SP5; Leica Microsystems, Mannheim, Germany), and expressed as percentage of the initial Fluo-3 fluorescence. Ca^{2+} levels are presented as mean fluorescence intensities \pm SEM (n=3) of three independent experiments.