
Appendix

APPENDIX A: MODEL DERIVATION AND FORMAL INTERPRETATION

A1: Sample to prototype association

We approximate the probability qj(x) for the feature vector x of a sample, to be associated to the j-th
prototype writing:

qj(x)
def
= τνj

(
−‖x− pj‖2/2

)
= τνj

(
pTj x− ‖pj‖2/2− ‖x‖2/2

)
by expansion

= τνj

(
pTj x− ‖pj‖2/2

)
by offset invariance

using the soft-max function:

τνj (x)
def
= exp(fj(x)/τ)∑

j′ exp(fj′ (x)/τ)

writing fj(x)
def
= pTj x− ‖pj‖2/2, thus ∂pj

fj(x)T = x− pj . In the core of the paper we omit the temperature
τ without loss of generality since integrated in the fj(·) parameters. See Appendix A2 for a review of the basic
equations used in this paper.

More generally we could consider fj(x)
def
= −‖x− pj‖d/d, yielding ∂pj

fj(x) ∗ T = ‖x− pj‖d−2 (x− pj),
in order to deal with more than the L2 norm (e.g., for sparse estimation).

A2: Remainder on softmax function

The softmax function generalizes the logistic function and enjoys the facts that:
0 ≤ τνj (x) ≤ 1,

∑
j τνj (x) = 1, τνj (x)fj→fj+o = τνj (x) , τ/τ ′νj (x) = τνj (x)τ

′
/∑

j′ νj′ (x)τ
′
,

in words, yields probability distributions with with offset invariance and power effect of the temperature τ ,
while:

τνj (x) = maxj(fj(x)) τ→o = 1
J + 1

τ J

(
fj(x)− 1

J

∑
j′ fj′(x)

)
+O

(
1
τ2

)
,

computes the maximal values at low temperature, while approximating the given affine operator at high temper-
ature. Moreover, for some parameter θj′ of the fj′(x) we obtain:

τ ∂θj′ τνj′(x) = τνj(x) (δj=j′ − τνj′(x)) ∂θj′fj′(x),

while for some parameter θ of the x we obtain:
τ ∂θτνj(x) = τνj(x)

(
∂xfj(x)−

∑
j′ τνj′(x) ∂xfj′(x)

)
∂θx.

Considering an approximate cross-entropy criterion to adjust the values of a standard soft-max criterion yields
the following minimization:
C = −

∫
X p(x) log (ν(x))

' − 1
N

∑
i log (ν(xi)) approximating p() on the data samples

= − 1
N

∑
i log (νli(xi)) since each sample is associated to one class

= − 1
τ N

∑
i fli(xi) + log

(∑
j′ exp(fj′(x)/τ)

)
by substitution and factorization

yielding the gradient, for a parameter θj′ of the function fj′(x):
−τ ∂θj′C =

(
1
N

∑
i δj′=li − τνj′(x)

)
∂θj′fj′(x).

1

Appendix

A3: Deriving the model variational equations

Considering an approximate cross-entropy criterion to adjust the parameters given samples xi and their label
li yields the following minimization:

C = −
∫
X p(x) log (c(x))

' − 1
N

∑
i log (cli(xi)) approximating p() on the data samples

yielding:
−N τ ∂wl

CT =
∑

i [δl=li − cl(xi)]︸ ︷︷ ︸
ζi

q(xi)

−N τ ∂pj′CT =
∑

i

∑
j

(
wlij −

∑
l

cl(xi)wlj

)
qj(xi) (δj=j′ − qj′(xi))


︸ ︷︷ ︸

ξij′

(xi − pj′)

so that we can write, for some sufficiently small ε:
∆wl = ε

∑
i ζi q(xi) and pj =

∑
i ξij xi/

∑
i ξij

at each step, and leading to:

• expectation (estimated the prototypes as weighted mean over the samples),

• minimization (decreasing the criterion by adjusting the soft-max weights) mechanism.

With such an approach there is a weak clustering of the samples with respect to a prototype, e.g., samples
with different labels can be related to the same prototype.

A4 : Analysis of the k-means extended metric

Let us consider the for a given sample xi the augmented feature space of dimension D + J : (xi, ci) where
ci ∈ [0, 1]J are the a-priori probabilities for the sample of index i to belong to each category. For a learning
sample (xi, li) of known category li we obviously have cik = δli=k. Such augmented dimensions act as a
level-set over the feature space.

Let us consider a standard k-means algorithm on such extended feature space, for some β > 0:
(pj , cj) =

∑
i ξij (xi, ci)/

∑
i ξij , with jx = arg min‖xi − pj‖2 + β ‖ci − cj‖2

with ξij = δj=jx ∈ {0, 1} for a hard k-means algorithm, while more general soft k-means mechanism with
ξij ≥ 0 (as in the previous subsection) could be introduced, the prototype being the centroid of the samples
belonging to this cluster.

If β = 0 the augmented dimensions are not taken into account, and we are left with the original k-means
mechanism.

If 2β > M
def
= maxii′ |xi − xi′ |2 then it is easy to verify that two samples with different categories can not

be in the same cluster, providing that the number of prototype is not lower than the number of category.

To verify this fact, let us consider two samples (xi, li) and (xi′ , li′) with xi 6= xi′ and li 6= li′ so that
‖ci − ci′‖2 =

∑
k(δli=k − δli′=k)2 = 2

since for k = li and k = li′ the values in the summation differs by a value of 1. As a consequence, regarding their extended
distance

‖xi − xi′‖2 + β ‖ci − ci′‖2 = ‖xi − xi′‖2 + 2β > M

it is higher than any sample pair within the same category. Furthermore, if a prototype corresponds to samples of the same
category its within-cluster maximal square distance to each sample is lower than M , as being the centroid of the samples
belonging to this cluster. As consequence, as soon as two prototypes are used in the algorithm, if these two samples are in

2

Appendix

the same cluster, the within-cluster distance is going to be higher than any solution with clusters only grouping samples of
the same category.

Therefore, considering a k-means algorithm with a proper initialization mechanism that minimizes the within-
cluster distance, we have a mechanism that weight the importance of taking the a-priori information about
category into account.

A5 : Probabilistic interpretation of representing samples by prototypes

Representing the sample x by prototypes means approximating the x distribution by a distribution only
function of the prototypes, e.g.:

x ' Eq̂(x) =
∑

j qj(x)pj , with q̂(x)
def
=
∑

j qj(x) δ(x− pj)

where q̂(x) approximates the true sample probability distribution p(x) as a discrete distribution, given the
prototypes.

Another view is to consider a partition {· · · , Pj , · · · } of the space induced by the prototypes (i.e., with
pj ∈ Pj , see Appendix C), yielding:

q(xi) =
∑

j p(xi ∈ Pj) p(pj |xi) =
∑

j κij qj(xi)

for some κij = p(xi ∈ Pj). Here the partition has not to be made explicit, only the κij have to be estimated.

Very easily, we obtain
∑

j κij = 1 (since Pj forms a partition), while the κj
def
=
∑

i κij is the expectation
of the number of sample in the partition, i.e. associated to the prototype. If κj = 0 the prototype is inactive,
i.e., not associated to any sample. If κij ∈ {0, 1}, i.e, if we know whether xi ∈ Pj or not, i.e., is related to
this prototype or not. In such a situation, the constraint

∑
j κij = 1 states that each sample is associated to a

unique prototype, while κj
def
=
∑

i κij is the number of samples associated to a given prototype. This restrained
modeling is not what is proposed in this paper.

Moreover, the fact we consider for cl(x):
p(l|x) = τνl

(
wT
l p(pj ∈ Qj |x)

)
6=
∑

j p(l|pj ∈ Qj) p(pj ∈ Qj |x)

simply means that we do not consider that Qj , namely the set of samples associated to the j-th prototype,
corresponds to a partition of the sample space X , but that the corresponding regions may overlap, while some
regions may not correspond to any samples associated to any prototypes.

A6: Duality between partition, prototypes and metric

Given a set of prototypes P = {· · ·pj · · · } in a topological space X we can consider a partition of the space
P = {· · ·Pj · · · } around the prototypes, i.e. such that

pj ∈ Pj 6= ∅, ∪jPi = X , ∀i, j, P̊j ∩ P̊i = ∅.
The last condition means that we do not require the intersection to be empty but only its interior (i.e., maximal
open set). This notion of partition is thus related to a topology. Roughly speaking, this means that we do not
take into account what happens at the frontier between two subsets of the partition. For any point, but those at
the frontier between two subsets, we can define its partition subset index j = p(x) = {j,x ∈ Pj}.

Given a set of prototypes, any metric induces such a partition, writing:
Pj = {x ∈ X , d(x,pj) <= minj′d(x,pj′)}

On the reverse, given a partition and a topology, the ultrametric:
d(x,y) = δx6=y (1 + δp(x)6=p(y)) ∈ {0, 1, 2}

is a trivial metric compatible with the partition (i.e. fitting in the previous definition).

Frontiers 3

Appendix

More interesting is the fact that given any partition with a metric, and choosing a precision ε there exists a
countable set of prototypes such that the given partition is a subset of the partition induced by these prototypes,
up to the ε precision. If X is bounded, e.g. compact, the prototype set if finite. Let us consider this case. Any
compact set has always a finite cover. As being a metric space, it always has a finite cover by balls of a given
radius, say B(pi, ε/2). From this construction, we only keep the prototypes corresponding to the center of balls
that intersect the initial partition subsets frontiers. It is then easy to prove that this induce, up to ε, a partition:

pj ∈ Pj 6= ∅, ∪jPi = X , ∀i, j, Pj ∩ Pi ⊂ B(pi, ε),

where Pj is defined from the metric as given above. Such a construction is related to vector support machines,
the given prototypes being somehow the classification support set.

A7: Relation between softmax and prototypes

In our model specification we relate a prototype representation to a softmax function writing
qj(x) = νj

(
−‖x− pj‖2/2

)
.

Let us develop here the inverse relation and see to which extent we can link a softmax function to prototypes.

Consider an affine softmax function:

τνl (x)
def
= exp(fl(x)/τ)∑

j′ exp(fj′ (x)/τ)

with fl(x)
def
= wT

l x + w0
l and the decision rule

lx = arg maxl′τνl′ (x)

This yields a piece-wise linear segmentation of the feature space1. Writing wll′ = wl −wl′ we obtain:
lx = {l,∀l′ 6= l,wT

ll′ x + w0
ll′ ≥ 0}

for the N (N − 1)/2 category pairs.

For each inequality we may consider any pair of points pll′ ,pl′l for which the separation hyperplane defined
by wT

ll′ x + w0
ll′ = 0 is the median. We can this write2:

1 Since:

τνl (x)
>
< τνl′ (x)

⇔ exp(fl(x)/τ)∑
l′′ exp(fl′′ (x)/τ)

>
< exp(fl′ (x)/τ)∑

l′′ exp(fl′′ (x)/τ)

⇔ exp(fl(x)/τ)
>
< exp(fl′(x)/τ)

⇔ fl(x)
>
< fl′(x)

the denominators being identical and the exponential being a strictly increasing function, we make explicit this piece-wise linear segmentation.
2 We easily derive:

d(x,pll′)
<
> d(x,pl′l)

⇔ d(x,pll′)
2

<
> d(x,pl′l)

2

⇔ ‖x‖2 − 2pTll′ x + ‖pll′‖2
<
> ‖x‖2 − 2pTl′l x + ‖pl′l‖2

⇔ −2(pll′ − pl′l)
T x + ‖pll′‖2 − ‖pl′l‖2

<
> 0

⇔ −4λwT
ll′ x + ‖pll′‖2 − ‖pl′l‖2

<
> 0

⇔ −4λwT
ll′ x− 4αλ‖wll′‖2

<
> 0

⇔ −4λ
(
wT
ll′ x + w0

ll′

) <
> 0

⇔ wT
ll′ x + w0

ll′
>
< 0

.

4

Appendix

mll′
def
= w⊥ll′ − αwll′

pll′
def
= mll′ + λwll′

pl′l
def
= mll′ − λwll′

α
def
= w0

ll′/‖wll′‖2

for any λ > 0 and any vector w⊥ll′ ,wll′ ⊥ w⊥ll′ = 0. These pairs of points pll′ ,pl′l are thus defined up to
DN (N − 1)/2 degrees of freedom (λ and w⊥ll′ ∈ RD subject to an orthogonality constraint, for each category
pair).

Furthermore, from a geometrical point of view, it is coherent to require that lpll′ = l, in words that each
prototype belongs to a polytope Ωl corresponding to the label l, i.e., that ∀l, l′, l′′l 6= l′, l 6= l′′,wT

ll′′ pll′ +w0
ll′′ >

0. This corresponds to a linear programming problem with DN degrees of freedom and (N (N − 1)/2)2

inequalities, thus with solutions in the general case as soon as D > N3/4 +O(N2), i.e., as soon as the number
of features is high enough with respect to the number of categories.

Is it possible to reduce the number of prototypes, i.e., that pll′
?
= pll′′ for some of the N (N − 1) prototypes ?

This generates N additional linear constraints for each prototype merge, and the non trivial fact that prototype
pairs are to live into the same connected component of a given Ωl has to be taken into account. A simple count of
the number of degrees of freedom shows that the number of constraints is in the general case twice the number
of possible adjustment. Prototype merge is thus possible, but not completely.

The softmax decision rules is thus equivalent to a nearest-neighbor algorithm considering O(N2) prototypes.

APPENDIX B: HYPER PARAMETERS ANALYSIS

As far as significance and interpretability of the results is concerned a key point is the influence and adjustment
of the algorithm hyper-parameters. We have already discussed those for which it was worth studying specifically
their influence, but let us now briefly review exhaustively all of them.

Experiments are performed in Python with help of basic scientific libraries, especially the machine learning
library scikit-learn (Pedregosa et al., 2011), from which comes implementations for k-means and cross-entropy
multinomial (softmax) regression.

Regarding the k-means algorithm and its k-means++ initialization heuristic, we have to consider:
- The number J of clusters, studied in this section.
- The number R of random draws of initial conditions of the expectation-minimization algorithm.
- The maximal number K of iteration of the expectation-minimization algorithm.
- The tolerance E on the criterion variation in order to detect the convergence.
- The extended criterion hyper-parameter β introduced in the previous section.
- A choice between two algorithm variants which mainly differ in computational efficiency, the faster one being
chosen.

Here given a data set we easily compute the maximal and minimal distances between clusters:
M

def
= maxii′ |xi − xi′ |2 and m def

= minii′ |xi − xi′ |2,
allowing us to adjust of fix these hyper-parameters.

Frontiers 5

Appendix

We have observed that the number R of random draws is not significant as soon as sufficient (typically
R > 10). The maximal number of iterations K has not to be bounded because the algorithm always converges.
The tolerance E is easy to infer from the data, because as soon as the expectation step of the k-means algorithm
does not “redistribute” samples between clusters the algorithm is expected to converge in one step. This occurs
as soon as the criterion variation magnitude is lower than the minimal distance between samples, i.e. as soon as
E � m, say 10 times lower.

The number J of clusters is to be adjusted as studied in this section, but we know in which bounds, since we
can easily set as minimal number the number of categories (i.e., considering one cluster by category), and set as
maximal number the number of learning samples (i.e., falling back to a nearest-neighbor algorithm).

Finally, through β is a parameter to be observed and adjusted as studied in this section, we also know in which
bounds, since β = 0 corresponds to the not taking a-priori information into account and β = M to hard-wire
prototypes on categories, as analyzed in Appendix A.4.

Regarding the second step of the method — the cross-entropy minimization — we have to consider similarly:
- The choice of the minimization solver.
- The maximal number K of iterations of the minimization algorithm.
- The tolerance E on the criterion variation in order to detect the convergence.
- The choice of the LD, D ∈ {1, 2} regularization.
- The regularization balance weight C.

A softmax function being considered here, we can again calculate the output variation under which the
algorithm convergence is negligible. The classification decision does not vary for variations of the output below
c = minjj′ |cj = cj′ | as being a comparison between two outputs, while cj ∈ [0, 1].

For L2 penalty, L-BFGS solver was chosen for its faster convergence (less iterations). The algorithm always
converged allowing us not to consider K as a significant value, at a tolerance E = 10−4. Given some restrictions
by the library, only one solver option was available for L1 penalties (SAGA solver). Tolerance was relaxed for
SAGA solver so as to achieve convergence within the same K iterations (E = 10−1). The initial point for both
solvers is always taken at zero, thus no hyper-parameter or heuristic is to be considered.

Beyond these parameters, the more significant parameters C and D have been studied in the text.

In addition to these two sets of parameters we have discussed the α ∈ [0, 1] shortcut gain allowing us to better
understand the performances ans limit of our method.

All together, the literature knowledge, simple rule of thumbs on the data values, the concrete understanding of
the proposed algorithms and specific numerical studies of more critical parameters allows us to both propose a
reproducible piece of experimental results and a method than can be reused without any opaque or application
dependent hyper-parameters adjustment, that are not done by the hyper-parameter adjustment layer or the
proposed method.

REFERENCES

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al. (2011). Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research 12, 2825–2830

6

